首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anandamide, the first identified endogenous cannabinoid and TRPV1 agonist, is one of a series of endogenous N-acylethanolamines, NAEs. We have generated novel assays to quantify the levels of multiple NAEs in biological tissues and their rates of hydrolysis through fatty acid amide hydrolase. This range of NAEs was also tested in rapid response assays of CB1, CB2 cannabinoid and TRPV1 receptors. The data indicate that PEA, SEA and OEA are not endocannabinoids or endovanilloids, and that the higher endogenous levels of these metabolites compared to polyunsaturated analogues are a correlate of their slow rates of hydrolysis. The n?6 NAEs (AEA, docosatetraenoyl and docosapentaenoyl derivatives) activated both CB1 and CB2 receptors, as well as TRPV1 channels, suggesting them to be ‘genuine’ endocannabinoids and ‘endovanilloids’. The n?3 NAEs (eicosapentaenoyl, docosapentaenoyl and docosahexaenoyl derivatives) activated CB2 receptors and some n?3 NAEs (docosapentaenoyl and docosahexaenoyl derivatives) also activated TRPV1 channels, but failed to activate the CB1 receptor. We hypothesise that the preferential activation of CB2 receptors by n?3 PUFA NAEs contributes, at least in some part, to their broad anti-inflammatory profile.  相似文献   

2.
CB1- and CB2-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB1/CB2-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB1/CB2-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB1/CB2-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB1/CB2-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids.  相似文献   

3.
Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson''s and Huntington''s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB2 receptors, and/or (v) adjunctive ‘multi-targeting’.  相似文献   

4.
Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids.  相似文献   

5.
Tetrahydrocannabinol and other mixed cannabinoid (CB) receptors CB1/CB2 receptor agonists are well established to elicit antinociceptive effects and psychomimetic actions, however, their potential for abuse have dampened enthusiasm for their therapeutic development. In an effort to refine a semi-rigid structural framework for CB2 receptors binding, we designed novel compounds based on aromatic moiety and flexible linker with various amides mimicking the outlook of the endogenous anandamide which could provide as CB2 receptor ligand. In this direction, we developed and synthesized new aryl or arylidene hexanoic acid amides and aryl alkanoic acid diamide carrying different head groups. These new compounds were tested for their affinities for human recombinant CB receptors CB1 and CB2 and fatty acid amide hydrolase. Although, the preliminary screening of these compounds demonstrated weak binding activity towards CB receptor subtypes at 10 µmole, yet this template still could serve up as probes for further optimization and development of affinity ligand for CB receptors.  相似文献   

6.
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca2+-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during conditions for neuronal maturation, TRPV1-expressing SHSY5Y neuroblastoma cells were differentiated into a neuronal phenotype using all-trans-retinoic acid (RA). We show that RA highly up-regulated the total and cell surface TRPV1 protein expression but the TRPV1 mRNA level was unaffected. The up-regulated receptors were localised to the cell bodies and the developed neurites. Furthermore, RA increased both the basal intracellular free Ca2+ concentration by 30% as well as the relative capsaicin-induced Ca2+ influx. The results show that TRPV1 protein expression increases during RA-induced differentiation in vitro, which generates an altered intracellular Ca2+ homeostasis.  相似文献   

7.
Active Ca2+ absorption through epithelial Ca2+ channels TRPV5/6 in duodenum is activated by hyperpolarisation. However, when diet and Ca2+ are plentiful, digestion products cause depolarisation. We therefore used homology-based PCR from a rat jejunal mucosal cDNA preparation to reveal the presence of the neuroendocrine L-type isoform Cav1.3α1. Immunocytochemical labelling and immunoblotting localised Cav1.3α1 protein in apical membrane from proximal jejunum to mid ileum. Perfusion studies in vivo with 1.25 mM luminal Ca2+ revealed L-type channel activity. Inhibition of glucose absorption with phloridzin strongly inhibited 45Ca2+ absorption; absorption was inhibited by nifedipine and Mg2+ and activated by Bay K 8644, none of which affect TRPV5/6. At 10 mM Ca2+, nifedipine inhibited 45Ca2+ absorption with a time course similar to that at 1.25 mM Ca2+: absorption was therefore channel-mediated rather than paracellular. We suggest that in times of dietary sufficiency, Cav1.3 may mediate a significant route of Ca2+ absorption into the body.  相似文献   

8.
Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) and vanilloid subtype-1 (TRPV1) are structurally related, non-selective cation channels that show a high permeability to calcium. Previous studies indicate that TRP channels play a prominent role in the regulation of cardiovascular dynamics and homeostasis, but also contribute to the pathophysiology of many diseases and disorders within the cardiovascular system. However, no studies to date have identified the functional expression and/or intracellular localization of TRPA1 in primary adult mouse ventricular cardiomyocytes (CMs). Although TRPV1 has been implicated in the regulation of cardiac function, there is a paucity of information regarding functional expression and localization of TRPV1 in adult CMs. Our current studies demonstrate that TRPA1 and TRPV1 ion channels are co-expressed at the protein level in CMs and both channels are expressed throughout the endocardium, myocardium and epicardium. Moreover, immunocytochemical localization demonstrates that both channels predominantly colocalize at the Z-discs, costameres and intercalated discs. Furthermore, specific TRPA1 and TRPV1 agonists elicit dose-dependent, transient rises in intracellular free calcium concentration ([Ca2+]i) that are abolished in CMs obtained from TRPA1?/? and TRPV1?/? mice. Similarly, we observed a dose-dependent attenuation of the TRPA1 and TRPV1 agonist-induced increase in [Ca2+]i when WT CMs were pretreated with increasing concentrations of selective TRPA1 or TRPV1 channel antagonists. In summary, these findings demonstrate functional expression and the precise ultrastructural localization of TRPA1 and TRPV1 ion channels in freshly isolated mouse CMs. Crosstalk between TRPA1 and TRPV1 may be important in mediating cellular signaling events in cardiac muscle.  相似文献   

9.
The endocannabinoid system consists of cannabinoid CB1 and CB2 receptors, endogenous ligands and their synthesising/metabolising enzymes. Cannabinoid receptors are present at key sites involved in the relay and modulation of nociceptive information. The analgesic effects of cannabinoids have been well documented. The usefulness of nonselective cannabinoid agonists can, however, be limited by psychoactive side effects associated with activation of CB1 receptors. Following the recent evidence for CB2 receptors existing in the nervous system and reports of their up-regulation in chronic pain states and neurodegenerative diseases, much research is now aimed at shedding light on the role of the CB2 receptor in human disease. Recent studies have demonstrated anti-nociceptive effects of selective CB2 receptor agonists in animal models of pain in the absence of CNS side effects. This review focuses on the analgesic potential of CB2 receptor agonists for inflammatory, post-operative and neuropathic pain states and discusses their possible sites and mechanisms of action. Jhaveri and Sagar joint first author.  相似文献   

10.
Lipids and lipid-derived metabolites are increasingly recognised as bona fide signalling molecules that regulate many cellular processes. These include the well-established InsP3, diacylglycerol (DAG), PIP2, PIP3 and arachidonic acid (AA), as well as other poly-unsaturated fatty acids (PUFAs), lysophospholipids, sphingolipids, endocannabinoids and endovanilloids. They regulate a plethora of molecules that are involved in Ca2+ signalling, including various ion channels, pumps and transporters, thereby triggering, modulating and fine-tuning Ca2+ signals. Although appreciated individually, it seems timely to highlight the overall impact of lipids as signalling molecules and their role in Ca2+ signalling, and this is the aim of this special issue of Cell Calcium.  相似文献   

11.
The changes in cytosolic Ca2+ levels play an important role in the jasmonic acid (JA) signal transduction pathway. We demonstrate that an increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) of Arabidopsis leaf cells was affected by pretreatment with heparin and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8). With pretreatment of heparin, an antagonist of inositol 1,4,5-trisphosphate (IP3) sensitive channels, the basal and JA induced fluorescence of [Ca2+]cyt were both decreased. Furthermore, heparin and TMB-8, another antagonist of IP3 sensitive channels, enhanced the JA-induced gene expression of JR1. These data suggest that there may be a fine tune control system between extracellular and intracellular Ca2+ mobilization in JA signaling pathway.  相似文献   

12.
The pharmacokinetic based optimisation of a novel series of indole-2-carboxamide antagonists of the cannabinoid CB1 receptor is disclosed. Compound 24 was found to be a highly potent and selective cannabinoid CB1 antagonist with high predicted human oral bioavailability.  相似文献   

13.
Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.  相似文献   

14.
Spinal cannabinoid receptor 1 (CB1R) and purinergic P2X receptors (P2XR) play a critical role in the process of pathological pain. Both CB1R and P2XR are expressed in spinal dorsal horn (DH) neurons. It is not clear whether CB1 receptor activation modulates the function of P2X receptor channels within dorsal horn. For this reason, we observed the effect of CP55940 (cannabinoid receptor agonist) on ATP-induced Ca2+ mobilization in cultured rat DH neurons. The changes of intracellular calcium concentration ([Ca2+]i) were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator. 100 μM ATP caused [Ca2+]i increase in cultured DH neurons. ATP-evoked [Ca2+]i increase in DH neurons was blocked by chelating extracellular Ca2+ and P2 purinoceptor antagonist PPADS. At the same time, ATP-γ-S (a non-hydrolyzable ATP analogue) mimicked the ATP action, while P2Y receptor agonist ADP failed to evoke [Ca2+]i increase in cultured DH neurons. These data suggest that ATP-induced [Ca2+]i elevation in cultured DH neurons is mediated by P2X receptor. Subsequently, we noticed that, in cultured rat DH neurons, ATP-induced Ca2+ mobilization was inhibited after pretreated with CP55940 with a concentration-dependent manner, which implies that the opening of P2X receptor channels are down-regulated by activation of cannabinoid receptor. The inhibitory effect of CP55940 on ATP-induced Ca2+ response was mimicked by ACEA (CB1R agonist), but was not influenced by AM1241 (CB2R agonist). Moreover, the inhibitory effect of CP55940 on ATP-induced Ca2+ mobilization was blocked by AM251 (CB1 receptor antagonist), but was not influenced by AM630 (CB2 receptor antagonist). In addition, we also observed that forskolin (an activator of adenylate cyclase) and 8-Br-cAMP (a cell-permeable cAMP analog) reversed the inhibitory effect of CP55940, respectively. In a summary, our observations raise a possibility that CB1R rather than CB2R can downregulate the opening of P2X receptor channels in DH neurons. The reduction of cAMP/PKA signaling is a key element in the inhibitory effect of CB1R on P2X-channel-induced Ca2+ mobilization.  相似文献   

15.
The changes in cytosolic Ca2+ levels play important roles in the signal transduction pathways of many environmental and developmental stimuli in plants and animals. We demonstrated that the increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) of Arabidopsis thaliana leaf cells was induced by exogenous application of jasmonic acid (JA). The elevation of [Ca2+]cyt was detected within 1 min after JA treatment by the fluorescence intensity using laser scanning confocal microscopy, and the elevated level of fluorescence was maintained during measuring time. With pretreatment of nifedipine (Nif), a nonpermeable L-type channel blocker, the fluorescence of [Ca2+]cyt induced by JA was inhibited in a dose-dependent manner. In contrast, verapamil, another L-type channel blocker, had no significant effect. Furthermore, Nif repressed JA-induced gene expression of JR1 but verapamil did not. JA-induced gene expression could be mimicked by higher concentration of extracellular Ca2+. W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], an antagonist of calmodulin (CaM), blocked the JA induction of JR1 expression while W-5 [N-(6-aminohexyl)-1-naphthalenesulfonamide], its inactive antagonist, had no apparent effect. These data provide the evidence that the influx of extracellular Ca2+ through Nif sensitive plasma membrane Ca2+ channel may be responsible for JA-induced elevation of [Ca2+]cyt and downstream gene expression, CaM may be also involved in JA signaling pathway.  相似文献   

16.
The mammalian body has a highly developed immune system which guards against continuous invading protein attacks and aims at preventing, attenuating or repairing the inflicted damage. It is conceivable that through evolution analogous biological protective systems have been evolved against non-protein attacks. There is emerging evidence that lipid endocannabinoid signaling through cannabinoid 2 (CB2) receptors may represent an example/part of such a protective system/armamentarium. Inflammation/tissue injury triggers rapid elevations in local endocannabinoid levels, which in turn regulate signaling responses in immune and other cells modulating their critical functions. Changes in endocannabinoid levels and/or CB2 receptor expressions have been reported in almost all diseases affecting humans, ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, autoimmune, lung disorders to pain and cancer, and modulating CB2 receptor activity holds tremendous therapeutic potential in these pathologies. While CB2 receptor activation in general mediates immunosuppressive effects, which limit inflammation and associated tissue injury in large number of pathological conditions, in some disease states activation of the CB2 receptor may enhance or even trigger tissue damage, which will also be discussed alongside the protective actions of the CB2 receptor stimulation with endocannabinoids or synthetic agonists, and the possible biological mechanisms involved in these effects.  相似文献   

17.
Extracellular ATP caused a dose-dependent accumulation of inositol phosphates and a rise in cytosolic free Ca2+ ([Ca2+]i) in C6 glioma cells with an EC50 of 60±4 and 10±5 M, respectively. The threshold concentration of ATP (3 M) for increasing [Ca2+]i was approximately 10-fold less than that for stimulating phosphoinositide (PI) turnover. The PI response showed a preference for ATP; ADP was about 3-fold less potent than ATP but had a comparable maximal stimulation (11-fold of the control). AMP and adenosine were without effect at concentrations up to 1 mM. ATP-stimulated PI metabolism was found to be partially dependent on extracellular Ca2+ and Na+ but was resistant to tetrodotoxin, saxitoxin, amiloride, ouabain, and inorganic blockers of Ca2+ channels (Co2+, Mn2+, La3+, or Cd2+). In Ca2+-free medium, ATP caused only a transient increase in [Ca2+]i as opposed to a sustained [Ca2+]i increase in normal medium. The ATP-induced elevation of [Ca2+]i was resistant to Na+ depletion and treatment with saxitoxin, verapamil and nisoldipine, but was attentuated by La3+. The differences in the characteristics of ATP-caused P1 hydrolysis and [Ca2+]i rise suggest that ATP receptors are independently coupled to phospholipase C and receptor-gated Ca2+ channels. Because of the robust effect of ATP in stimulating PI turnover and the apparent absence of P1-purinergic receptors, the C6 glioma cell line provides a useful model for investigating the transmembrane signalling pathway induced by extracellular ATP. The mechanisms underlying the unexpected finding of [Na+]o dependency for ATP-induced PI turnover require further investigation.Abbreviations PI phosphoinositide - [Ca2+]i cytosolic free Ca2+ concentration - PDBu phorbol 12, 13-dibutyrate - PSS physiological saline solution - IP inositol phosphates - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - IP4 inositol (1,3,4,5) tetrakisphosphate - PLC phospholipase C  相似文献   

18.
Large conductance Ca2+-activated K+ channel (BKCa) is a potential target for coronary artery-relaxing medication, but its functional regulation is largely unknown. Here, we report that inositol trisphosphate (IP3) activated BKCa channels in isolated porcine coronary artery smooth muscle cells and by which decreased the coronary artery tone. Both endogenous and exogenous IP3 increased the spontaneous transient outward K+ currents (STOC, a component pattern of BKCa currents) in perforated and regular whole-cell recordings, which was dependent on the activity of IP3 receptors. IP3 also increased the macroscopic currents (MC, another component pattern of BKCa currents) via an IP3 receptor- and sarcoplasmic Ca2+ mobilization-independent pathway. In inside-out patch recordings, direct application of IP3 to the cytosolic side increased the open probability of single BKCa channel in an IP3 receptor-independent manner. We conclude that IP3 is an activator of BKCa channels in porcine coronary smooth muscle cells and exerts a coronary artery-relaxing effect. The activation of BKCa channels by IP3 involves the enhancement of STOCs via IP3 receptors and stimulation of MC by increasing the Ca2+ sensitivity of the channels.  相似文献   

19.
D1- and D2-types of dopamine receptors are located separately in direct and indirect pathway striatal projection neurons (dSPNs and iSPNs). In comparison, adenosine A1-type receptors are located in both neuron classes, and adenosine A2A-type receptors show a preferential expression in iSPNs. Due to their importance for neuronal excitability, Ca2+-currents have been used as final effectors to see the function of signaling cascades associated with different G protein-coupled receptors. For example, among many other actions, D1-type receptors increase, while D2-type receptors decrease neuronal excitability by either enhancing or reducing, respectively, CaV1 Ca2+-currents. These actions occur separately in dSPNs and iSPNs. In the case of purinergic signaling, the actions of A1- and A2A-receptors have not been compared observing their actions on Ca2+-channels of SPNs as final effectors. Our hypotheses are that modulation of Ca2+-currents by A1-receptors occurs in both dSPNs and iSPNs. In contrast, iSPNs would exhibit modulation by both A1- and A2A-receptors. We demonstrate that A1-type receptors reduced Ca2+-currents in all SPNs tested. However, A2A-type receptors enhanced Ca2+-currents only in half tested neurons. Intriguingly, to observe the actions of A2A-type receptors, occupation of A1-type receptors had to occur first. However, A1-receptors decreased CaV2 Ca2+-currents, while A2A-type receptors enhanced current through CaV1 channels. Because these channels have opposing actions on cell discharge, these differences explain in part why iSPNs may be more excitable than dSPNs. It is demonstrated that intrinsic voltage-gated currents expressed in SPNs are effectors of purinergic signaling that therefore play a role in excitability.  相似文献   

20.
Cannabinoid CB1 receptor antagonists exhibit pharmacologic properties favorable for the treatment of metabolic disease. CP-945,598 (1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylamino piperidine-4-carboxylic acid amide hydrochloride) is a recently discovered selective, high affinity, competitive CB1 receptor antagonist that inhibits both basal and cannabinoid agonist-mediated CB1 receptor signaling in vitro and in vivo. CP-945,598 exhibits sub-nanomolar potency at human CB1 receptors in both binding (Ki = 0.7 nM) and functional assays (Ki = 0.2 nM). The compound has low affinity (Ki = 7600 nM) for human CB2 receptors. In vivo, CP-945,598 reverses four cannabinoid agonist-mediated CNS-driven responses (hypo-locomotion, hypothermia, analgesia, and catalepsy) to a synthetic cannabinoid receptor agonist. CP-945,598 exhibits dose and concentration-dependent anorectic activity in two models of acute food intake in rodents, fast-induced re-feeding and spontaneous, nocturnal feeding. CP-945,598 also acutely stimulates energy expenditure in rats and decreases the respiratory quotient indicating a metabolic switch to increased fat oxidation. CP-945,598 at 10 mg/kg promoted a 9%, vehicle adjusted weight loss in a 10 day weight loss study in diet-induced obese mice. Concentration/effect relationships combined with ex vivo brain CB1 receptor occupancy data were used to evaluate efficacy in behavioral, food intake, and energy expenditure studies. Together, these in vitro, ex vivo, and in vivo data indicate that CP-945,598 is a novel CB1 receptor competitive antagonist that may further our understanding of the endocannabinoid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号