首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The folding of in vitro synthesized outer membrane protein PhoE of Escherichia coli was studied in immunoprecipitation experiments with monoclonal antibodies which recognize cell surface-exposed conformational epitopes. The signal sequence appears to interfere with the formation of these conformational epitopes, since a mutant PhoE protein which lacks the majority of the signal peptide could be precipitated four times better than the wild type precursor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the immunoprecipitated PhoE protein revealed that part of the immunoprecipitated PhoE was present as a heat-modifiable form of the protein which migrated faster in the gels than the completely denatured protein. This form of the protein probably represents a folded monomer which might be an intermediate in the assembly of the protein. Outer membrane vesicles were required to induce the formation of small amounts of heat-stable trimers, the functional form of the protein in vivo.  相似文献   

2.
To investigate the role of the cell surface-exposed regions of outer membrane protein PhoE of Escherichia coli K12 in the biogenesis of the protein, deletions were generated in two presumed cell surface-exposed regions of the protein. Intact cells expressing these mutant proteins were recognized by PhoE-specific monoclonal antibodies, which recognize conformational epitopes on the cell surface-exposed parts of the protein and/or were sensitive to a PhoE-specific phage. This shows that the polypeptides were normally incorporated into the outer membrane. When the deletions extended four amino acid residues into the seventh presumed membrane-spanning segment, the polypeptides accumulated in the periplasm. In conclusion, exposed regions of PhoE protein apparently do not play an essential role in outer membrane localization, which is consistent with the observation that these regions are hypervariable when PhoE is compared to the related proteins OmpF and OmpC. In contrast, the membrane-spanning segments are essential for the assembly process.  相似文献   

3.
The assembly of the wild-type and several mutant forms of the trimeric outer membrane porin PhoE of Escherichia coli was investigated in vitro and in vivo. In in vivo pulse-chase experiments, approximately half of the wild-type PhoE molecules assembled within the 30-s pulse in the native conformation in the cell envelope. The other half of the molecules followed slower kinetics, and three intermediates in this multistep assembly process were detected: a soluble trypsin-sensitive monomer, a trypsin-sensitive monomeric form that was loosely associated with the cell envelope and a metastable trimer, which was integrated into the membranes and converted to the stable trimeric configuration within minutes. The metastable trimers disassembled during sample preparation for standard SDS/PAGE into folded monomers. In vitro, the isolated PhoE protein could efficiently be folded in the presence of N,N-dimethyldodecylamine-N-oxide (LDAO). A mutant PhoE protein, DeltaF330, which lacks the C-terminal phenylalanine residue, mainly followed the slower kinetic pathway observed in vivo, resulting in increased amounts of the various assembly intermediates. It appears that the DeltaF330 mutant protein is intrinsically able to fold, because it was able to fold in vitro with LDAO with similar efficiencies as the wild-type protein. Therefore, we propose that the conserved C-terminal Phe is (part of) a sorting signal, directing the protein efficiently to the outer membrane. Furthermore, we analysed a mutant protein with a hydrophilic residue introduced at the hydrophobic side of one of the membrane-spanning amphipathic beta strands. The assembly of this mutant protein was not affected in vivo or in vitro in the presence of LDAO. However, it was not able to form folded monomers in a previously established in vitro folding system, which requires the presence of lipopolysaccharides and Triton. Hence, a folded monomer might not be a true assembly intermediate of PhoE in vivo.  相似文献   

4.
H de Cock  J Tommassen 《The EMBO journal》1996,15(20):5567-5573
To identify the requirements for the biogenesis of outer-membrane proteins in Gram-negative bacteria, the sorting and assembly of the trimeric, pore-forming protein PhoE was studied in vitro. Purified lipopolysaccharide (LPS) in combination with low amounts of Triton X-100 and divalent cations induced the formation of folded monomers. LPS of deep-rough strains was far less efficient in the formation of folded monomers than wild-type LPS was. These folded monomers could be converted into heat-stable trimers upon addition of outer membranes and higher amounts of Triton X-100. Trimerization could precede the insertion step. These in vitro data suggest that the assembly in vivo proceeds sequentially by (i) formation of a folded monomer by interaction with LPS; (ii) sorting of the folded monomers to assembly sites in the outer membrane; (iii) trimerization; and (iv) insertion.  相似文献   

5.
The porins in the outer membranes of gram-negative bacteria are trimeric proteins. A folded monomeric form of the Escherichia coli porin PhoE, with a higher electrophoretic mobility than that of the denatured protein, has recently been detected in in vitro folding studies. To investigate the possible biological significance of the folded monomer, we attempted to detect this form in vivo. After pulse-labeling, folded monomers could be detected by immunoprecipitation. Furthermore, folded monomers were detected in a preparation of mutant PhoE porins, in which the subunit interactions were weakened by a E-66-->R substitution. Together, these results show that the folded monomer is not an in vitro folding artifact but an integral part of the native trimer.  相似文献   

6.
TolA central domain interacts with Escherichia coli porins.   总被引:3,自引:0,他引:3       下载免费PDF全文
TolA is an inner membrane protein with three domains: a transmembrane N-terminus and periplasmic central and C-terminal domains. The interaction of TolA with outer membrane porins of Escherichia coli was investigated. Western blot analyses of cell extracts with anti-TolA antibodies indicated that TolA forms high molecular weight complexes specifically with trimeric OmpF, OmpC, PhoE and LamB, but not with OmpA. The interaction of purified TolA domains with purified porins was also studied. TolA interacted with OmpF, PhoE and LamB porins via its central domain, but not with either their denatured monomeric forms or OmpA. Moreover, the presence or absence of lipopolysaccharides associated with trimeric porins did not modify the interactions. These results suggest that the specific interaction of TolA with outer membrane porins might be relevant to the function of Tol proteins.  相似文献   

7.
PhoE protein is an abundant outer membrane protein of theEscherichia coli K-12 outer membrane. This protein can be used as an exposure system to produce foreign antigenic determinants and for their transport to the bacterial cell surface. The system is very flexible, since insertions varying in length and nature could be made in different cell surface-exposed regions of PhoE, without interfering with the assembly process of the mutant proteins into the outer membrane. Two antigenic determinants of the structural VP1 protein of foot-and-mouth disease virus were inserted in different combinations in four cell surface-exposed regions of PhoE. The epitopes were exposed at the bacterial cell surface and they keep their antigenic and immunogenic properties in this PhoE-associated conformation. Immunization of guinea pigs with one hybrid protein, containing a combination of the two epitopes inserted in the fourth exposed region, resulted in complete protection against challenge with the virus. A T-cell epitope of the 65 kDa heat shock protein ofMycobacterium tuberculosis was inserted in the fourth exposed region of PhoE and in vitro proliferation of two T-cell specific clones was demonstrated. Thus, the PhoE exposure system has been shown to be suitable for presentation of both B-cell and T-cell determinants to the immune system. Furthermore, good expression of the hybrid protein in attenuatedSalmonella strains, which can be used as live oral vaccines, was shown.Paper awarded the Kluyver Prize 1990 by the Netherlands Society of Microbiology to Dr. M.C. Agterberg  相似文献   

8.
Abstract Escherichia coli K-12 PhoE protein is found to be normally expressed and incorporated into the outer membrane of two avirulent Salmonella typhimurium strains, G30 and SH aroA . A hybrid protein which contains an insertion of an antigenic epitope of VP1 protein of foot-and-mouth disease virus into the PhoE protein, was also normally assembled into the Salmonella outer membranes. In the case of the G30 stain, which carries a galE mutation, the inserted epitope is accessible to antibodies in intact cells. In contrast, the epitope is less accessible in the case of the SH aroA strain, probably due to the shielding effect of the O-antigen in this strain.  相似文献   

9.
The PhoE porin of Escherichia coli is induced by phosphate deprivation and when purified, forms moderately anion-selective channels in lipid bilayer membranes. To further investigate the basis of anion selectivity, PhoE was chemically acetylated with acetic anhydride. Acetylation modified the mobility and staining characteristics of the PhoE porin on SDS-polyacrylamide gel electrophoresis but the acetylated protein was still found in its normal trimeric state after solubilization in SDS at low temperatures. Furthermore, the acetylated PhoE porin retained its ability to reconstitute into lipid bilayer membranes and the single channel conductance in 1 M KCl was unaltered. Zero-current potential measurements demonstrated that whereas the native PhoE porin was anion-selective, a 30-40-fold increase in preference for cations upon acetylation resulted in the acetylated PhoE porin being cation-selective. Increasing the pH of KCl solutions bathing lipid bilayer membranes from pH 3 to pH 6 caused symmetrical 4-fold increases in the selectivity of both the native and acetylated PhoE proteins for cations. In contrast, increasing the pH from 7 to 9 caused a 2.5-fold increase in selectivity only for the native PhoE porin. These results suggest that the basis of anion selectivity in the native PhoE porin is fixed protonated amino groups (possibly on lysines) in or near the channel, and furthermore indicate that deprotonated carboxyl groups have a strong influence on ion selectivity.  相似文献   

10.
The in vitro trimerization of folded monomers of the bacterial pore protein PhoE, into its native-like, heat- and SDS-stable form requires incubations with isolated cell envelopes and Triton X-100. The possibility that membranes could be isolated that are enriched in assembly factors required for assembly of the pore protein was now investigated. Fractionation of total cell envelopes of Escherichia coli via various techniques indeed revealed the existence of membrane fractions with different capacities to support assembly in vitro. Fractions containing mainly inner membrane vesicles supported the formation of trimers that were associated with these membrane vesicles. However, only a proportion of these trimers were heat- and SDS-stable and these were formed with slow kinetics. In contrast, fractions containing mainly outer membrane vesicles supported formation of high amounts of heat-stable trimers with fast kinetics. We identified phospholipids as active assembly components in these membranes that support trimerization of folded monomers in a process with similar characteristics as observed with inner membrane vesicles. Furthermore, phospholipids strongly stimulate the kinetics of trimerization and increase the final yield of heat-stable trimers in the context of outer membranes. We propose that lipopolysaccharides stabilize the assembly competent state of folded monomers as a lipochaperone. Phospholipids are involved in converting the folded monomer into new assembly competent intermediate with a short half-life that will form heat-stable trimers most efficiently in the context of outer membrane vesicles. These results provide biochemical evidence for the involvement of different lipidic components at distinct stages of the porin assembly process.  相似文献   

11.
E F Eppens  N Nouwen    J Tommassen 《The EMBO journal》1997,16(14):4295-4301
The transport of bacterial outer membrane proteins to their destination might be either a one-step process via the contact zones between the inner and outer membrane or a two-step process, implicating a periplasmic intermediate that inserts into the membrane. Furthermore, folding might precede insertion or vice versa. To address these questions, we have made use of the known 3D-structure of the trimeric porin PhoE of Escherichia coli to engineer intramolecular disulfide bridges into this protein at positions that are not exposed to the periplasm once the protein is correctly assembled. The mutations did not interfere with the biogenesis of the protein, and disulfide bond formation appeared to be dependent on the periplasmic enzyme DsbA, which catalyzes disulfide bond formation in the periplasm. This proves that the protein passes through the periplasm on its way to the outer membrane. Furthermore, since the disulfide bonds create elements of tertiary structure within the mutant proteins, it appears that these proteins are at least partially folded before they insert into the outer membrane.  相似文献   

12.
Twenty-four monoclonal antibodies (mAbs) against group B Neisseria meningitidis surface antigens were analyzed by immunoenzymatic assays and by a bactericidal test. Two mAbs were specific to polysaccharide B and one to lipopolysaccharide. The others were directed against outer membrane proteins ranging in molecular mass from 25 to 200 kDa. The outer membrane protein epitopes recognized by the mAbs were not conformational and were located on the outer surface of the microorganism. Linear epitopes on the class 5 protein, exposed on the surface of the membrane, were able to induce bactericidal antibodies to the homologous strain. The susceptibility of Neisseria meningitidis to these antibodies was unchanged when this organism was cultivated under conditions of iron depletion. These results demonstrate that peptides derived from class 5 proteins are potentially important in synthetic peptide or in recombinant protein vaccines containing linear bactericidal epitopes.  相似文献   

13.
Monoclonal antibodies which recognize the cell surface-exposed part of outer membrane protein PhoE of Escherichia coli were used to select for antigenic mutants producing an altered PhoE protein. The selection procedure was based on the antibody-dependent bactericidal action of the complement system. Using two distinct PhoE-specific monoclonal antibodies, seven independent mutants with an altered PhoE protein were isolated. Among these seven mutants, five distinct binding patterns were observed with a panel of 10 monoclonal antibodies. DNA sequence analysis revealed the following substitutions in the 330-residue-long PhoE protein: Arg-201----His (three isolates), Arg-201----Cys, Gly-238----Ser, Gly-275----Ser and Gly-275----Asp. It is argued that amino acid residues 201, 238, and 275 are most likely directly involved in antibody binding and, therefore, exposed at the cell surface. Together with Arg-158, which was previously shown to be cell surface exposed as it is changed in phage TC45-resistant phoE mutants, these four positions show a remarkably regular spacing, being approximately 40 residues apart. A model is suggested in which the PhoE polypeptide repeatedly traverses the outer membrane in an antiparallel beta-pleated sheet structure, exposing eight areas to the outside which are all separated by approximately 40 residues.  相似文献   

14.
To obtain insight into the mechanism of precursor protein translocation across membranes, the effect of synthetic signal peptides and other relevant (poly)peptides on in vitro PhoE translocation was studied. The PhoE signal peptide, associated with inner membrane vesicles, caused a concentration-dependent inhibition of PhoE translocation, as a result of a specific interaction with the membrane. Using a PhoE signal peptide analog and PhoE signal peptide fragments, it was demonstrated that the hydrophobic part of the peptide caused the inhibitory effect, while the basic amino terminus is most likely important for an optimal interaction with the membrane. A quantitative analysis of our data and the known preferential interaction of synthetic signal peptides with acidic phospholipids in model membranes strongly suggest the involvement of negatively charged phospholipids in the inhibitory interaction of the synthetic PhoE signal peptide with the inner membrane. The important role of acidic phospholipids in protein translocation was further confirmed by the observation that other (poly)peptides, known to have both a high affinity for acidic lipids and hydrophobic interactions with model membranes, also caused strong inhibition of PhoE translocation. The implication of these results with respect to the role of signal peptides in protein translocation is indicated.  相似文献   

15.
Efficient in vivo translocation of the precursor of Escherichia coli outer membrane protein PhoE across the inner membrane is shown to depend on SecB protein. A set of mutants, carrying internal deletions in the phoE gene, was used to locate a possible SecB-binding site and/or a site that makes the protein dependent on SecB for export. Except for two small mutant PhoE proteins, the in vivo and in vitro translocation of all mutant proteins was more efficient in the presence of SecB. The interaction of SecB protein with wild-type and mutant PhoE proteins, synthesized in vitro, was further studied in co-immunoprecipitation experiments with anti-SecB protein serum. The efficiencies of co-immunoprecipitation of precursor and mature PhoE were very similar, indicating the absence of a SecB-binding site in the signal sequence. Moreover, all mutant proteins with deletions in the mature moiety of the PhoE protein were co-immunoprecipitated in these assays, albeit mostly with reduced efficiency. Taken together, these results indicate the existence of multiple SecB-binding sites in the mature portion of the PhoE protein.  相似文献   

16.
J M Pages  J M Bolla  A Bernadac  D Fourel 《Biochimie》1990,72(2-3):169-176
Various monoclonal antibodies (MoF) directed against cell-surface-exposed epitopes of OmpF, one major outer membrane pore protein of Escherichia coli B and K-12, have been used to study the assembly and the topology of the protein. This paper firstly describes the characterization of the OmpF epitopes recognized by the various monoclonal antibodies. A comparison between OmpC, OmpF and PhoE porins with respect to their primary amino acid sequence and their cell-surface exposed regions allows us to propose a rough model including 2 antigenic sites. The second part is focused on the assembly of the OmpF protein in the outer membrane. Various forms, precursor, unassembled monomer, metastable oligomer (pre-trimer) and trimer are detected with immunological probes directed against OmpF during a kinetic analysis of the process. The requirement for a concomitant lipid synthesis during the trimerization has been demonstrated by investigating the presence of a specific native epitope. The role of lipopolysaccharide during the stabilization of the conformation is discussed with regard to the various steps of assembly.  相似文献   

17.
A panel of monoclonal antibodies, seven against the trimeric and seven against the monomeric forms to outer membrane protein D (OmpD) of Salmonella typhimurium were produced. The specificities of these monoclonal antibodies for the porin proteins of S. typhimurium and their cross-reactions with Salmonella porins OmpC and OmpF were determined by Western immunoblotting and enzyme-linked immunosorbent assay. We observed that OmpD shared more epitopes and had greater structural similarity with OmpC than with OmpF.  相似文献   

18.
The hybrid plasmid pLC44-11 from the Clarke and Carbon collection, which was known to carry the proA gene, was shown also to contain the phoE gene. In vitro recombination techniques were used to subclone a 4.9-kilobase-pair DNA fragment of pLC44-11 into the plasmid vectors pACYC184 and pBR322. Expression of this fragment in a minicell system showed that it codes for the PhoE protein and for polypeptides with apparent molecular weights of 47,000 and 17,000. These results supply definite proof for the earlier supposition that the phoE gene is the structural gene for the outer membrane PhoE protein. Overproduction of the PhoE protein in a phoS strain resulted in reduced amounts of OmpF and LamB proteins.  相似文献   

19.
Porin PhoE of the outer membrane of Escherichia coli was isolated and purified. Reconstitution experiments with lipid bilayer membranes showed that this protein formed pores which had a single channel conductance of 210 pS at 0.1 M KCl. The PhoE pores were obviously not voltage-controlled or regulated. In contrast to pores formed by the OmpF porin from E. coli the PhoE channel was found to be anion-selective at neutral pH. Chloride is about three to ten times more permeable through the pore than alkali ions. On the basis of the observed pH dependence of the permeability ratio of anions and cations, this anionic selectivity is explained by the assumption that the PhoE pore contains an excess of fixed positive charges.  相似文献   

20.
The different conformations of the outer membrane protein OmpF of Escherichia coli B were studied with immunological probes. The antigenic determinants recognized by one monoclonal (MoF3) and two polyclonal antibodies were investigated under various conditions of solubilization which modify the association of OmpF with other membrane components, such as lipopolysaccharide. Several polymeric forms of the protein could be detected after extraction at 37 degrees C or 56 degrees C. The monoclonal antibody, which is specific to an exposed region of native OmpF, recognized various trimeric forms in an immunoprecipitation assay. Under the same conditions, the binding of polyclonal antibodies apparently induced strong conformational rearrangements, since the pattern of trimeric forms detected was greatly modified. The conversion of newly synthesized monomers of OmpF to the various trimer forms was investigated using these antibodies. The trimerization occurred rapidly but the appearance of the native conformation of OmpF was delayed. Some additional step was required to expose the MoF3-specific antigenic site at the surface of the trimeric form. These results are discussed in relation to the structure of OmpF and its association with lipopolysaccharide in the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号