首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of bovine pulmonary artery smooth muscle microsomes with peroxynitrite (ONOO-) (100 microM) markedly stimulated matrix metalloproteinase-2 (MMP-2) activity and also enhanced Ca2+ATPase activity and ATP-dependent Ca2+ uptake. Pretreatment of the microsomes with vitamin E (1 mM) and TIMP-2 (50 microg/ml) preserved the increase in MMP-2 activity, Ca2+ATPase activity and also ATP-dependent Ca2+ uptake in the microsomes. In contrast, Na(+)-dependent Ca2+ uptake in the microsomes was inhibited by ONOO- and this was found to be reversed by vitamin E (1 mM) and TIMP-2 (50 microg/ml). However, changes caused by ONOO- in MMP-2 activity, ATP-dependent Ca2+ uptake and Na(+)-dependent Ca2+ uptake were not reversed upon pretreatment of the microsomes with a low concentration of 5 microg/ml of TIMP-2 which, on the contrary, reversed MMP-2 (1 microg/ml)-mediated alteration on these parameters. The inhibition of Na(+)-dependent Ca2+ uptake by ONOO- and MMP-2 overpowered the stimulation of ATP-dependent Ca2+ uptake in the microsomes. Treatment with ONOO- abolished the inhibitory effect of TIMP-2 (5 microg/ml) on MMP-2 (1 microg/ml) causing 14C-gelatin degradation. Overall, the present study suggests that ONOO- inactivated TIMP-2, the ambient inhibitor of MMP-2, leading to activation of the ambient proteinase, MMP-2, and subsequently stimulated Ca2+ATPase activity and ATP-dependent Ca2+ uptake, but inhibited Na(+)-dependent Ca2+ uptake, resulting in a marked decrease in Ca2+ uptake in microsomes of bovine pulmonary artery smooth muscle.  相似文献   

2.
Electron-dense deposits representing calcium oxalate crystals which result from ATP-dependent calcium uptake have been localized within vesicles of of a heavy microsomal fraction prepared from mouse pancreatic acini. In the absence of either ATP or oxalate, no electron-dense deposits could be observed. By subfractionation of microsomes on discontinuous sucrose gradients, it could be shown that the highest energy-dependent calcium transport activity was associated with the rough endoplasmic reticulum. In rough microsomes, the 45Ca2+-uptake measured was 7 times greater than that of smooth microsomes in the presence of ATP and oxalate and about 3 times greater in he presence of ATP alone. When ribosomes were released from the rough endoplasmic reticulum vesicles by treatment with KCl in the presence of puromycin, the stripped microsomes showed a 40% increase in the specific 45Ca2+-uptake activity measured in he presence of ATP and oxalate and an increase of 80 to 90% in the presence of ATP alone. From these results it can be concluded that the calcium transport activity of microsomes prepared from mouse pancreatic acini is located predominantly in the rough endoplasmic reticulum membrane.  相似文献   

3.
Treatment of microsomes (preferably enriched with endoplasmic reticulum) isolated from bovine pulmonary artery smooth muscle tissue with the O2*- -generating system (hypoxanthine (HPX) plus xanthine oxidase (XO)), markedly stimulated matrix metalloproteinase-2 (MMP-2) activity and also enhanced Ca2+ ATPase activity and ATP-dependent Ca2+ uptake. Pretreatment with superoxide dismutase (SOD) and tissue inhibitor of metalloproteinase (TIMP-2) (50 microg ml(-1)), preserved the increase in MMP-2 activity, Ca2+ ATPase activity and also ATP-dependent Ca2+ uptake in the microsomes. In contrast, Na+-dependent Ca2+ uptake in the microsomes was found to be inhibited by the O2*- - generating system. Additionally, O2*- -induced inhibition of Na+-dependent Ca2+ uptake was reversed by SOD and TIMP-2 (50 microg ml(-1)). Electron microscopy revealed that treatment with the O2*- -generating system did not cause any noticeable damage to the microsomes. O2*- -induced changes in MMP-2 activity, ATP-dependent Ca2+ uptake and Na+-dependent Ca2+ uptake, were not reversed upon pretreatment of the microsomes with a low dose (5 microg ml(-1)) of TIMP-2 which, on the contrary, reversed MMP-2 (1 microg ml(-1))-mediated alteration on these parameters. The inhibition of Na+-dependent Ca2+ uptake by O2*- and MMP-2, overpowered the stimulation of ATP-dependent Ca2+ uptake in the microsomes. Treatment of TIMP-2 (5 microg ml(-1)) with the O2*- -generating system abolished the inhibitory effect of TIMP-2 (5 microg ml(-1)) on MMP-2 (1 microg ml(-1)) (measured by (14)C-gelatin degradation). Overall, the present study suggests that O2*- inactivated TIMP-2, the ambient inhibitor of MMP-2, leading to activation of the ambient proteinase, MMP-2, which subsequently stimulated Ca2+ ATPase activity and ATP-dependent Ca2+ uptake, but inhibited Na+-dependent Ca2+ uptake, resulting in a marked decrease in Ca2+ uptake in the smooth muscle microsomes.  相似文献   

4.
Ca2+ release triggered by inositol 1,4,5-trisphosphate (IP3) and/or GTP has been studied with rough and smooth microsomes isolated from rat liver. Microsomes were loaded with Ca2+ in the presence of MgATP and in the presence or in the absence of glucose 6-phosphate (glucose-6-P) which markedly stimulated the MgATP-dependent Ca2+ accumulation in rough and smooth microsomes (5- and 10-fold, respectively). Upon addition of IP3 (5 microM), rough and smooth microsomes rapidly release a part (not exceeding 20%) of the Ca2+ previously accumulated both in the absence and in the presence of glucose-6-P. Under the same experimental conditions, inositol 1,3,4,5-tetrakisphosphate was ineffective in triggering any Ca2+ release. Upon addition of GTP (10 microM) both the microsomal fractions progressively release the Ca2+ previously accumulated in the presence of glucose-6-P, when 3% polyethylene glycol was also present. In the absence of polyethylene glycol, GTP released Ca2+ from rough microsomes only, and GTP plus IP3 caused a Ca2+ release which was the sum of the Ca2+ releases caused by GTP and IP3 independently. Both IP3 and GTP, added to microsomes at the beginning of the glucose-6-P-stimulated Ca2+ uptake, reduced the Ca2+ accumulation into rough and smooth microsomes without modifying the initial rate (3 min) of Ca2+ uptake. Also in these conditions, the effects of GTP and IP3 were merely additive. These results indicate that both rough and smooth liver microsomes are responsive to IP3 and GTP with respect to Ca2+ release and that IP3 and GTP likely act independently.  相似文献   

5.
Saponin, a cell-skinning reagent which perforates the cell membrane via its specific interaction with plasmalemmal cholesterol, was used to identify the subcellular origin of ATP-dependent Ca2+ accumulation in the presence and absence of inorganic phosphate and oxalate by microsomal fractions isolated from rat vas deferens and dog aorta. The purified plasma membranes from rat gastric fundus muscle, which elicit the stimulation of ATP-dependent Ca2+ accumulation by inorganic phosphate but not by oxalate, were used as a control reference. Saponin at concentrations effective for skinning smooth muscle fibres (10-50 micrograms/ml) inhibited Ca2+ binding in the absence of ATP to a similar extent in all fractions, but the inhibition of ATP-dependent Ca2+ accumulation was more pronounced in dog aorta microsomes and rat gastric fundus muscle plasma membranes than in rat vas deferens microsomes. The resistance of phosphate- and oxalate-stimulated ATP-dependent Ca2+ accumulation to inhibition by saponin was much greater in rat vas deferens than in dog aorta microsomes. Our results suggest that phosphate- and oxalate-stimulated ATP-dependent Ca2+ accumulation also occurs in plasma membrane vesicles isolated from smooth muscle and is by no means an unique property of endoplasmic reticulum.  相似文献   

6.
A technique employing sucrose-density centrifugation for the enrichment of rat liver microsomes and rat liver plasma membranes in separate subcellular fractions is described. The fractions are enriched in glucose 6-phosphatase and 5'-nucleotidase, respectively, and are free of cytochrome oxidase activity. Vanadate-sensitive Ca2+ transport activity (half-maximal inhibition at approximately 10 microM vanadate, corresponding to approximately 12 nmol/mg of protein) was detected in only that fraction enriched in microsomal membranes. Inhibition by vanadate of ATP-dependent Ca2+ transport is noncompetitive with respect to added Ca2+ but competitive with respect to added ATP. Because it inhibits ATP-dependent Ca2+ transport in rat liver microsomes but not in rat liver plasma membranes, vanadate becomes a useful tool to distinguish in vitro between these two transport systems.  相似文献   

7.
The widely-used food dye Erythrosin B inhibited ATP-dependent Ca2+ accumulation by rat brain microsomes, half-maximal inhibition requiring 1 microM dye. Addition of 0.5-20 microM dye to microsomes preloaded with Ca2+ did not cause any net Ca2+ release. 10 microM dye produced a constant inhibition of Ca2+ accumulation as the intravesicular free Ca2+ was lowered suggesting that, at low concentrations, it acts on the uptake system only. Ca2+ accumulation was ten-fold more sensitive to the dye than Erythrosin B-induced neurotransmitter release reported by others. Higher dye concentrations (100 microM) caused Ca2+ release.  相似文献   

8.
The activities of Mg2+-ATPase (Mg2+-activated ATPase), (Ca2+ + Mg2+)-activated ATPase and (Na+ + K+)-activated ATPase have been determined in microsomes (microsomal fractions) obtained from rat myometrium under different hormonal conditions. Animals were either ovariectomized and treated for a prolonged period of time with 17 beta-oestradiol or progesterone, or myometria were obtained at day 21 of pregnancy. In each case the endometrium was carefully removed. The Mg2+-ATPase consists of two components: an inactivating labile component and a second constant component. The rate of ATP hydrolysis by the labile component of the Mg2+-ATPase declines exponentially as a function of time after adding the membranes to the assay medium; this inactivation is caused by the presence of ATP in the medium. This ATPase activity inhibited by ATP is catalysed by a labile enzyme and hence it gradually diminishes within a few hours, even when the microsomes are kept on ice. This labile component has the highest activity in microsomes from pregnant rats, a lower activity in progesterone-treated rats, and the lowest in 17 beta-oestradiol-treated rats. This component of the Mg2+-ATPase is not affected by 90 nM-oxytocin. The constant component of the Mg2+-ATPase must be ascribed to a different enzyme, which, in contrast with the labile component, is very stable and not affected by the hormonal status of the animal. This constant component of the Mg2+-ATPase is inhibited both by Ca2+-calmodulin, and by oxytocin in microsomes from pregnant and from progesterone-treated animals, whereas such inhibition does not occur in microsomes from 17 beta-oestradiol-treated animals. The activity of the (Na+ + K+)-activated ATPase is not dependent on the hormonal status of the animal. Myometrial microsomes present an ATP-dependent Ca2+ transport, irrespective of the hormonal condition, but only in microsomes obtained from rats treated with 17 beta-oestradiol, can a (Ca2+ + Mg2+)-activated ATPase activity be demonstrated. This activity can be stimulated by calmodulin.  相似文献   

9.
Developmental changes in intracellular Ca2+ stores in brain was studied by examining: (1) IP3- and cADPR-induced increase in [Ca2+]i in synaptosomes; (2) Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; (3) TG-induced inhibition of Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; and (4) gene expression of Ca(2+)-ATPase pump in neurons obtained from brains of the new-born and the 3-week-old rats. IP3 (EC50 310 +/- 8 nM, 200% maximum increase in [Ca2+]i) and cADPR (EC50 25 +/- 3 nM, greater than 170% maximum increase in [Ca2+]i) both were potent agonist of Ca2+ release from internal stores in synaptosomes obtained from the 3-week-old rats. However, IP3 (EC50 250 +/- 10 nM, 175 maximum increase in [Ca2+]i) was a potent, but cADPR (EC50 300 +/- 20 nM, 75% maximum increase) was a poor agonist of Ca2+ release from intracellular stores in synaptosomes obtained from the new-born rats. [3H]IP3, [32P]cADPR and [3H]Ry binding in the new-born samples were significantly less than that in the 3-week-old samples. [3H]Ry binding to its receptor was more sensitive to cADPR in microsomes from the 3-week-old rats than those from the new-born rats. Microsomes from the new-born rats exhibited TG-sensitive (IC50 30 +/- 4 nM) and TG-insensitive forms of Ca(2+)-ATPase, while microsomes from the 3-week-old rats exhibited only the TG-sensitive form of Ca(2+)-ATPase (5 +/- 1 nM IC50). Microsomes from the 3-week-old rats were more sensitive to TG but less sensitive to IP3, while microsomes from the new-born rats were more sensitive to IP3 but less sensitive to TG. The lower TG sensitivity of the new-born Ca2+ store may be because they poorly express a 45 amino acid C-terminal tail of Ca(2+)-ATPase that contains the TG regulatory sites. This site is adequately expressed in the older brain. This suggests that: (1) the new-born brain contains fully operational IP3 pathway but poorly developed cADPR pathway, while the older brain contains both IP3 and cADPR pathways; and (2) a developmental switch occurs in the new-born Ca(2+)-ATPase as a function of maturity.  相似文献   

10.
Two microsomal subfractions from isolated rat pancreatic acini were produced by centrifugation through a discontinuous sucrose density gradient and characterized by biochemical markers. The denser fraction ( SF2 ) was a highly purified preparation of rough endoplasmic reticulum; the less-dense fraction ( SF1 ) was heterogeneous and contained Golgi, endoplasmic reticulum and plasma membranes. 45Ca2+ accumulation in the presence of ATP and its rapid release after treatment with the bivalent-cation ionophore A23187 were demonstrated in both fractions. The pH optimum for active 45Ca2+ uptake was approx. 6.8 for the rough endoplasmic reticulum ( SF2 ) and approx. 7.5 for SF1 . Initial rate measurements were used to determine the affinity of the rough-endoplasmic-reticulum uptake system for free Ca2+. An apparent Km of 0.16 +/- 0.06 microM and Vmax. of 21.5 +/- 5.6 nmol of Ca2+/min per mg of protein were obtained. 45Ca2+ uptake by SF1 was less sensitive to Ca2+, half-maximal uptake occurring at 1-2 microM-free Ca2+. When fractions were prepared from isolated acini stimulated with 3 microM-carbamylcholine, 45Ca2+ uptake was increased in the rough endoplasmic reticulum. The increased uptake was due to a higher Vmax. with no significant change in Km. No effect was observed on 45Ca2+ uptake by SF1 . In conclusion, two distinct non-mitochondrial, ATP-dependent calcium-uptake systems have been demonstrated in rat pancreatic acini. One of these is located in the rough endoplasmic reticulum, but the precise location of the other has not been determined. We have shown that the Ca2+-transporting activity in the rough endoplasmic reticulum may have an important role in maintaining the cytosolic free Ca2+ concentration in resting acinar cells and is involved in Ca2+ movements which occur during stimulation of enzyme secretion.  相似文献   

11.
ATP-dependent calcium sequestration by rat liver microsomes has been analyzed by steady state isotope exchange. Liver microsomes display high affinity for Ca2+; the half-maximal concentration of free Ca2+ is 0.10 microM, and intravesicular steady state concentrations of 7-8 mM Ca2+ are achieved under optimal conditions. The uptake system displays multiphasic kinetics with respect to both Mg-ATP and free Mg2+, suggesting that microsomal preparations contain two distinct Ca2+-sequestering systems. Measurement of the kinetics of Ca2+ sequestration permits independent assessment of the activity of the calcium active transport system(s) and of the permeability of the membrane to Ca2+ backflux. Addition of ionophore A-23187 to microsomes renders them more permeable, and this is reflected in a more rapid equilibration of isotope. Conversely, low levels of free Ca2+ lead to a decreased rate of active transport, and this is reflected in a lower initial rate of isotope exchange. This system should be useful for investigating the mechanisms by which hormones, hepatotoxins, and other agents influence Ca2+ fluxes in cells.  相似文献   

12.
The relationships between agonist-sensitive calcium pools and those discharged by the Ca(2+)-ATPase inhibitor thapsigargin were studied in intact bovine adrenal glomerulosa cells and a subcellular adrenocortical membrane fraction. In Fura-2-loaded glomerulosa cells, angiotensin II (AII) stimulated a rapid increase in cytoplasmic Ca2+ concentration ([Ca2+]i) followed by a smaller plateau phase that was dependent on extra-cellular Ca2+. In such cells thapsigargin caused a sustained and dose-dependent increase in [Ca2+]i which was diminished in Ca(2+)-deficient medium. The contribution of an influx component to the thapsigargin-induced [Ca2+]i response was demonstrated by measurement of 45Ca influx rate in glomerulosa cells. Thapsigargin-induced Ca2+ entry was significantly less than that evoked by AII, and its kinetics were similar to those of the concomitant increase in [Ca2+]i. The rate of emptying of the agonist-responsive Ca2+ pool after thapsigargin treatment, as indicated by the progressive decrease in the size of the AII-induced Ca2+ transient, showed a rapid initial (t1/2 = 1.7 min) component that accounted for about 80% of the response and a slowly decreasing phase with t1/2 = 112 min. The latter thapsigargin-resistant component was abolished by the removal of extracellular Ca2+. Pretreatment with AII dose-dependently attenuated but did not abolish the subsequent Ca2+ response to thapsigargin and also increased the rate of the Ca2+ rise induced by thapsigargin. In bovine adrenocortical microsomes, thapsigargin inhibited the ATP-dependent filling of Ca2+ pools and caused a dose-dependent rise in extravesicular Ca2+ levels when added to previously loaded microsomes. The thapsigargin-releasable Ca2+ pool in adrenal microsomes was larger than the inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca2+ pool but only slightly greater than the GTP-releasable pool. Ins(1,4,5)P3-induced Ca2+ release was reduced markedly when ATP-dependent Ca2+ loading of the microsomes was prevented by prior addition of thapsigargin. However, the subsequent Ca2+ response to Ins(1,4,5)P3 was consistently better preserved after the addition of thapsigargin to microsomes preloaded with Ca2+. This difference suggests that although Ca2+ uptake by the Ins(1,4,5)P3-responsive pool is also sensitive to thapsigargin, once filled, this pool shows a slower passive leakage than other thapsigargin-sensitive pools. These findings indicate that thapsigargin increases [Ca2+]i by inhibiting Ca2+ uptake into multiple intracellular Ca2+ pools and by also promoting entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
We have permeabilized the plasma membranes of Schizosaccharomyces pombe cell with nystatin and measured ATP-dependent Ca2+ uptake in the presence of KNO3 and a protonophore in order to inhibit Ca2+ uptake into the vacuole. ATP-dependent Ca2+ accumulation into non-vacuolar Ca(2+)-storing organelles was detected. This Ca2+ uptake activity was maximal at pH 6 and inhibited by vanadate, the inhibitor of P-type ATPases. The null mutation of cta3, a putative Ca2+ gene, [Ghislain, M., Goffeau, A., Halachmi, D. and Eilam, Y. (1990) J. Biol. Chem. 265, 18400-18407] strongly reduced the level of ATP-dependent Ca2+ uptake into non-vacuolar intracellular storing organelles. This result suggests that cta3 encodes an intracellular ATP-dependent Ca2+ pump. The residual ATP-dependent Ca2+ uptake in the mutant strain indicated the presence of a second nonvacuolar, intracellular Ca(2+)-ATPase encoded by a different gene.  相似文献   

14.
The spontaneous contractions of cultured chick skeletal muscle fibers were abolished by growth of cultures in the presence of tetrodotoxin (TTX). Inhibition of the contractile activity of cultured myofibers was associated with a marked reduction in the rate of azide-insensitive, ATP-dependent Ca2+ uptake by the total particulate fraction of cell homogenates and by purified sarcoplasmic reticulum. Myosin heavy chain (MHC) accumulation and azide-insensitive, ATP-dependent Ca2+ uptake into a total cell membrane fraction were measured simultaneously in the same culture dish. A decrease in the activity of the ATP-dependent Ca2+ uptake system preceded a significant reduction in MHC content of contraction-inhibited cultures. The reduced rate of Ca2+ uptake observed in the sarcoplasmic reticulum from TTX-treated cultures paralleled a decrease in the amount of enzymatically active Ca2+-transport ATPase. The cellular concentration of the ATPase was estimated from a measurement of the concentration of the Ca2+-dependent, hydroxylamine-sensitive, steady state level of phosphorylated intermediate formed in culture microsomes. In contrast to the changes observed in activity of the sarcoplasmic reticulum ATPase and MHC content of TTX-treated cultures, neither the specific activity of creatine kinase nor the accumulation of the MM isoenzyme were affected. It is therefore concluded that the contractile activity of muscle has a selective effect on the maintenance of the adult skeletal muscle phenotype.  相似文献   

15.
Ca2+ uptake by microsomes prepared from guinea-pig stomach required the presence of both ATP and Mg2+ and was unaffected by NaN3. ATP-dependent Ca2+ uptake increased with increasing free Ca2+ concentration from 0.1 to 5 microM, and further increase in Ca2+ concentration above 5 microM did not enhance the uptake further. Half-saturation occurred at approximately 0.55 microM. The t1/2 values of Ca2+ loss from these vesicles loaded in the presence of oxalate were significantly slower than those in the absence of oxalate. Enzyme activity suggested linkage between Ca2+ uptake and ATPase activity, and most of the azide-sensitive component of ATP hydrolysis was attributable to potent inhibition of ADPase activity.  相似文献   

16.
ATP-dependent Ca2+ uptake was measured in vesicles of rat liver cell basolateral plasma membranes. Nucleotide-dependent uptake was specific for ATP and observed at pH 7.0 and 7.4/7.5 but not at pH 8.0. ATP-dependent Ca2+ transport was only observed in the presence of Mg2+. Kinetic analysis of ATP-dependent transport revealed an apparent Km in the submicromolar region. Addition of calmodulin and trifluoperazine had no effect on ATP-dependent uptake. A Ca2+-dependent, phosphorylated intermediate with the apparent molecular weight of 135,000 could be demonstrated in the basolateral plasma membranes. Phosphorylated intermediates with apparent molecular weights of 200,000 and 110,000 were demonstrated in microsomes and appeared to contaminate 'basolateral' membrane protein phosphorylation. The results suggest that a 135,000 molecular weight protein is a Ca2+-ATPase and the enzymatic expression of the liver cell basolateral membrane Ca2+ pump.  相似文献   

17.
The properties of the Ca2+-pump system of platelet microsomes isolated without Ca2+-precipitating anions are studied. Passive Ca2+ binding to the microsomes takes place in a noncooperative manner with Kd = 0.7 microM. Half-maximal stimulation of ATP-dependent transport occurs at 0.4 microM Ca2+. The velocity of Ca2+ uptake, Ca2+ capacity and the level of phosphoprotein in platelet microsomes are significantly lower than in cardiac microsomes. Energization of platelet and muscle microsomes and activation of intact platelets result in opposite charge redistribution in hydrophobic regions of the membranes. It is concluded that these charge movements are caused by Ca2+ binding to and dissociation from nonpolar binding sites in the membranes.  相似文献   

18.
Curcumin is a compound derived from the spice, tumeric. It is a potent inhibitor of the SERCA Ca2+ pumps (all isoforms), inhibiting Ca2+-dependent ATPase activity with IC50 values of between 7 and 15 microm. It also inhibits ATP-dependent Ca2+-uptake in a variety of microsomal membranes, although for cerebellar and platelet microsomes, a stimulation in Ca2+ uptake is observed at low curcumin concentrations (<10 microm). For the skeletal muscle isoform of the Ca2+ pump (SERCA1), the inhibition of curcumin is noncompetitive with respect to Ca2+, and competitive with respect to ATP at high curcumin concentrations ( approximately 10-25 microm). This was confirmed by ATP binding studies that showed inhibition in the presence of curcumin: ATP-dependent phosphorylation was also reduced. Experiments with fluorescein 5'-isothiocyanate (FITC)-labelled ATPase also suggest that curcumin stabilizes the E1 conformational state. The fact that FITC labels the nucleotide binding site of the ATPase (precluding ATP from binding), and the fact that curcumin affects FITC fluorescence indicate that curcumin must be binding to another site within the ATPase that induces a conformational change to prevent ATP from binding. This observation is interpreted, with the aid of recent structural information, as curcumin stabilizing the interaction between the nucleotide-binding and phosphorylation domains, precluding ATP binding.  相似文献   

19.
The effect of Ca(2+)-binding protein regucalcin on Ca(2+)-ATPase activity in isolated rat liver microsomes was investigated. The presence of regucalcin (0.1-1.0 microM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the microsomes. Thapsigargin (10(-6) M), a specific inhibitor of microsomal Ca(2+) pump enzyme (Ca(2+)-ATPase), clearly inhibited regucalcin (0.5 microM)-increased microsomal Ca(2+)-ATPase activity. Liver microsomal Ca(2+)-ATPase activity was markedly decreased by N-ethylmaleimide (NEM; 2.5 mM), while the activity was clearly elevated by dithiothreitol (DTT; 2.5 mM), indicating that the sulfhydryl (SH) group of the enzyme is an active site. The effect of regucalcin (0.5 microM) in increasing Ca(2+)-ATPase activity was completely inhibited by the presence of NEM (2.5 mM) or digitonin (10(-2) %), a solubilizing reagent of membranous lipids. Moreover, the effect of regucalcin on enzyme activity was seen in the presence of Ca(2+) ionophore (A23187; 10(-7) M). The present study demonstrates that regucalcin can stimulate Ca(2+) pump activity in rat liver microsomes, and that the protein may act the SH groups of microsomal Ca(2+)-ATPase.  相似文献   

20.
The effects of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and inositol 1,4,5-triphosphate(InsP3) on the Ca2+ release from ATP-dependent Ca2+-transporting microsomes prepared from ox platelets were investigated. Under optimal conditions, both PtdInsP2 and InsP3 released Ca2+ from the microsomes in a similar dose-dependent manner. However, the maximal amount of Ca2+ released by InsP3 was almost one-fourth of that released by PtdInsP2. Neither PtdInsP2 nor InsP3 appeared to act as a Ca2+ ionophore since they showed no effect on the Ca2+ content of liposomes prepared from platelet microsomal lipids. InsP3-induced but not PtdInsP2-induced Ca2+ release was decreased with increasing extravesicular Ca2+ from 0.1 microM to 10 microM and it was completely inhibited by 10 microM Ca2+. PtdInsP2-induced but not InsP3-induced Ca2+ release was markedly inhibited by Mg2+, ruthenium red and neomycin. In addition, InsP3 could induce no additional Ca2+ release after the accumulated Ca2+ had been maximally released by PtdInsP2. These results indicate that PtdInsP2 releases Ca2+ from platelet microsomes more effectively than InsP3 by a mechanism distinct from that of InsP3-induced release, and further that InsP3-sensitive microsomes are included within the population of PtdInsP2-sensitive microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号