首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate, here, the mechanism of the costimulatory signals for CD8 T cell activation and confirm that costimulation signals via CD28 do not appear to be required to initiate proliferation, but provide survival signals for CD8 T cells activated by TCR ligation. We show also that IL-6 and TNF-alpha can provide alternative costimulatory survival signals. IL-6 and TNF-alpha costimulate naive CD8 T cells cultured on plate-bound anti-CD3 in the absence of CD28 ligation. They act directly on sorted CD8-positive T cells. They also costimulate naive CD8 T cells from Rag-2-deficient mice, bearing transgenic TCRs for HY, which lack memory cells, a potential source of IL-2 secretion upon activation. IL-6 and TNF-alpha provide costimulation to naive CD8 T cells from CD28, IL-2, or IL-2Ralpha-deficient mice, and thus function in the absence of the B7-CD28 and IL-2 costimulatory pathways. The CD8 T cell generated via the anti-CD3 plus IL-6 and TNF-alpha pathway have effector function in that they express strong cytolytic activity on Ag-specific targets. They secrete only very small amounts of any of the cytokines tested upon restimulation with peptide-loaded APC. The ability of the naive CD8 T cells to respond to TCR ligation and costimulatory signals from IL-6 and TNF-alpha provides a novel pathway that can substitute for signals from CD4 helper cells or professional APC. This may be significant in the response to viral Ags, which can be potentially expressed on the surface of any class I MHC-expressing cell.  相似文献   

2.
3.
T cells are required for an effective immune response against a wide range of pathogens and for the generation of immunological memory. T cell activation can be divided into two phases: an antigen-specific signal delivered through the T cell antigen receptor, and a costimulatory signal delivered through accessory molecules on the T cell surface. Following activation, T cells differentiate to acquire distinct effector functions depending on the costimulatory signal, cytokine environment, and the pathogen itself. Although CD28 has been identified as the dominant costimulatory molecule, several other molecules have been described as having a costimulatory function. This review will focus on recent evidence for the existence of alternate costimulatory molecules, and the differential roles they might play in the activation, development, and survival of T cells.  相似文献   

4.
CD28 costimulation controls multiple aspects of T cell function, including the expression of proinflammatory cytokine genes. One of these genes encodes IL-2, a growth factor that influences T cell proliferation, survival, and differentiation. Antigenic signaling in the absence of CD28 costimulation leads to anergy, a mechanism of tolerance that renders CD4+ T cells unable to produce IL-2. The molecular mechanisms by which CD28 costimulatory signals induce gene expression are not fully understood. In eukaryotic cells, the expression of many genes is influenced by their physical structure at the level of DNA methylation and local chromatin remodeling. To address whether these epigenetic mechanisms are operative during CD28-dependent gene expression in CD4+ T cells, we compared cytosine methylation and chromatin structure at the IL-2 locus in fully activated CD4+ effector T cells and CD4+ T cells rendered anergic by TCR ligation in the absence of CD28 costimulation. Costimulation through CD28 led to marked, stable histone acetylation and loss of cytosine methylation at the IL-2 promoter/enhancer. This was accompanied by extensive remodeling of the chromatin in this region to a structure highly accessible to DNA binding proteins. Conversely, TCR activation in the absence of CD28 costimulation was not sufficient to promote histone acetylation or cytosine demethylation, and the IL-2 promoter/enhancer in anergic cells remained completely inaccessible. These data suggest that CD28 may function through epigenetic mechanisms to promote CD4+ T cell responses.  相似文献   

5.
CD4+ T cells require two signals to produce maximal amounts of IL-2, i.e., TCR occupancy and an unidentified APC-derived costimulus. Here we show that this costimulatory signal can be delivered by the T cell molecule CD28. An agonistic anti-CD28 mAb, but not IL-1 and/or IL-6, stimulated T cell proliferation by tetanus toxoid-specific T cells cultured with Ag-pulsed, costimulation-deficient APC. Furthermore, the ability of B cell tumor lines to provide costimulatory signals to purified T cells correlated well with expression of the CD28 ligand B7/BB-1. Finally, like anti-CD28 mAb, autologous human APC appeared to stimulate a cyclosporine A-resistant pathway of T cell activation. Together, these results suggest that the two signals required for IL-2 production by CD4+ T cells can be transduced by the TCR and CD28.  相似文献   

6.
Previous studies demonstrated that a human pre-B acute lymphoblastic leukemia cell line, NALM-6, failed to stimulate a primary MLR, despite expression of class II MHC and adhesion molecules. Here we demonstrate that this is the result of the fact that NALM-6 cells do not express the ligand for CD28, namely B7. NALM-6 transfectants that expressed high levels of B7 gained the capacity to stimulate IL-2 production by class II MHC molecule-specific alloreactive T cells and to costimulate a polyclonal population of purified T cells cultured with immobilized anti-CD3 mAb. In the presence of PMA, NALM-6 cells transfected with B7 polyclonally stimulated T cells in a cyclosporine A-resistant fashion, a property previously attributed only to agonistic anti-CD28 mAb. The gain of these functions could not be explained solely by an increased capacity of the transfectants to form conjugates with T cells, suggesting that the CD28/B7 interaction transduces a costimulatory signal in T cells.  相似文献   

7.
8.
Although the role of CD28 in T cell costimulation is firmly established, the mechanisms by which it exerts its costimulatory actions are less clear. In many circumstances it is difficult to distinguish the effects of CD28 from subsequent actions of cytokines, such as IL-2, on T cell proliferation. Here, we report a model of CD28 costimulation using PMA plus the natural ligand CD80 that resulted in very limited stimulation of IL-2, as evidenced by both cytokine production and IL-2 promoter stimulation. Promoter assays revealed CD28-dependent effects on both NF-kappaB and AP-1, but not on NF-AT or the intact IL-2 promoter. In addition, T cell proliferation was completely resistant to the actions of the immunosuppressant cyclosporin A (CsA). Moreover T cell proliferation was unaffected by the addition of blocking Abs to both IL-2 and the IL-2 receptor, demonstrating that this form of costimulation by CD28 was independent of IL-2. We also investigated the effects of stimulating T cell blasts with CD80 alone and found that there was a limited requirement for IL-2 in this system. We conclude that CD28 costimulation can cause substantial T cell proliferation in the absence of IL-2, which is driven by a soluble factor independent of NF-AT transactivation.  相似文献   

9.
10.
The strength of immune repression by regulatory T (Treg) cells is thought to depend on the efficiency of Treg cell activation. The stimuli and their individual strength required to activate resting human Treg cells, however, have so far not been elucidated in detail. We reveal here that induction of proliferation of human CD4(+)C25(+) Treg cells requires an extraordinary strong CD28 costimulatory signal in addition to TCR/CD3 engagement. CD28 costimulation, noteworthy, cannot be substituted by IL-2 to induce proliferation of Treg cells, which is in contrast to CD4(+)CD25(-) T cells. IL-2, in contrast, prevents spontaneous apoptosis of Treg cells, but does not initiate their amplification. IL-2 and CD28 costimulation clearly exhibit disparate effects on Treg cells which are in contrast to those on CD4(+)CD25(-) T cells. Moreover, the prerequisites for Treg cell proliferation differ strikingly from those for effector T cells, implying a balanced orchestration in initiating and limiting a T cell immune response. In addition, data are of relevance for the design of therapeutic strategies involving IL-2 administration and CD28 costimulation.  相似文献   

11.
12.
Molecular mechanisms of CD200 inhibition of mast cell activation   总被引:11,自引:0,他引:11  
CD200 and its receptor CD200R are both type I membrane glycoproteins that contain two Ig-like domains. Engagement of CD200R by CD200 inhibits activation of myeloid cells. Unlike the majority of immune inhibitory receptors, CD200R lacks an ITIM in the cytoplasmic domain. The molecular mechanism of CD200R inhibition of myeloid cell activation is unknown. In this study, we examined the CD200R signaling pathways that control degranulation of mouse bone marrow-derived mast cells. We found that upon ligand binding, CD200R is phosphorylated on tyrosine and subsequently binds to adapter proteins Dok1 and Dok2. Upon phosphorylation, Dok1 binds to SHIP and both Dok1 and Dok2 recruit RasGAP, which mediates the inhibition of the Ras/MAPK pathways. Activation of ERK, JNK, and p38 MAPK are all inhibited by CD200R engagement. The reduced activation of these MAPKs is responsible for the observed inhibition of mast cell degranulation and cytokine production. Similar signaling events were also observed upon CD200R engagement in mouse peritoneal cells. These data define a novel inhibitory pathway used by CD200R in modulating mast cell function and help to explain how engagement of this receptor in vivo regulates myeloid cell function.  相似文献   

13.
Cyclin-dependent kinases (CDKs) are enzymes involved in crucial cellular processes. Their biological activity is directly linked to their high conformational variability, which involves large protein conformational rearrangements. We present here the application of an enhancing sampling technique to the study of conformational transitions between the open and closed state of CDKs. The analysis of the conformational intermediates supports the idea that the process is regulated by two important protein regions, which sequentially rearrange in order to allow the protein to reach its final conformation. Furthermore, the two paths involve additional (minor) protein rearrangements which are specific to the paths. Our results show that our procedure can provide reasonable transition pathways between the two protein forms at a very reduced computational cost. The robustness and the simplicity of our approach make it of general application to describe virtually any macromolecular conformational transitions.  相似文献   

14.
The glucocorticoid-induced TNF-related gene receptor (GITR) is the newest member of the costimulatory molecule family and is expressed on both resting CD4+CD25+ regulatory T (T(R)) cells and activated CD4+ T cells. We investigated the endogenous mechanisms that regulate GITR expression on both T(R) and CD4+ T cells, as well as the functional interaction between GITR and other costimulatory molecules. CD28 stimulation increased GITR expression on both T(R) and CD4+ T cells via IL-2-dependent mechanisms. In addition, ligation of GITR and/or CD28 increased the level of CD4+ T cell proliferation and effector function under both APC-dependent and -independent conditions, suggesting that these costimulatory molecules cooperate to regulate CD4+ T cell activation and function by directly signaling to the CD4+ T cell. Thus, GITR may serve opposing functional roles on CD4+ T(R) and effector cells and alterations in GITR expression and/or function may tip the balance between immune tolerance and effector function.  相似文献   

15.
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28.  相似文献   

16.
T cell activation requires co-engagement of the TCR with accessory and costimulatory molecules. However, the exact mechanism of costimulatory function is unknown. Mice lacking CD2 or CD28 show only mild deficits, demonstrating that neither protein is essential for T cell activation. In this paper we have generated mice lacking both CD2 and CD28. T cells from the double-deficient mice have a profound defect in activation by soluble anti-CD3 Ab and Ag, yet remain responsive to immobilized anti-CD3. This suggests that CD2 and CD28 may function together to facilitate interactions of the T cell and APC, allowing for efficient signal transduction through the TCR.  相似文献   

17.
Deaggregated mouse thyroglobulin (dMTg) induces tolerance to experimental autoimmune thyroiditis (EAT), a Th1-cell-mediated disease. To test whether IL-12, a potent activator of Th1 cells, can overcome tolerance induction, different doses of IL-12 were given to CBA/J mice during the critical interval of 2--3 days after dMTg administration. After challenge with MTg/LPS, dMTg/IL-12-pretreated mice showed more extensive thyroiditis than immunized controls, but comparable levels of anti-MTg and T cell proliferation. Without challenge, few MTg antibodies were produced. In contrast, pretreatment with dMTg/poly A:U or dMTg/IL-1, two other T cell activators which also interfere with tolerance induction, induced antibodies before challenge, but not more severe thyroiditis. Mice pretreated with IL-12 without dMTg developed thyroiditis comparable to immunized controls, but less severe thyroiditis than dMTg/IL-12-pretreated mice. Clearly, IL-12 not only blocked tolerance induction, but also primed antigen-specific T cells during the tolerogenic period of dMTg pretreatment, resulting in stronger thyroiditis than immunization only. Neither treatment with anti-IFN-gamma nor the use of IFN-gamma knockout mice altered the capacity of IL-12 to prevent tolerance induction. However, both anti-CD28 and anti-CD40L antibodies diminished the priming effect by dMTg/IL-12. The mechanisms of IL-12 action include priming of MTg-specific T cells and the involvement of T cell costimulatory molecules.  相似文献   

18.
J Sheen 《The Plant cell》1991,3(3):225-245
I describe here the organization of maize C4 chloroplast and non-C4 cytosolic pyruvate, orthophosphate dikinase (PPDK) genes and the molecular mechanisms underlying their differential expression. The maize C4 chloroplast PPDK gene (C4ppdkZm1) appears to have been created by the addition of an exon encoding the chloroplast transit peptide at a site upstream of a cytosolic PPDK gene (cyppdkZm1). A splice acceptor sequence located in the first exon of cyppdkZm1 allows the fusion of the transit peptide to the cyppdkZm1 sequences. A second cyPPDK gene (cyppdkZm2) shares extensive homology with cyppdkZm1 in the coding region and in the 5' flanking region up to the TATA box. By a novel protoplast transient expression method, I show that the light-inducible expression of C4ppdkZm1 is controlled by two expression programs mediated through separate upstream regulatory elements that are active in leaf, but inactive in root and stem. Light-mediated C4ppdkZm1 expression in maize is apparently uncoupled from leaf development and partially associated with chloroplast development. For cyppdkZm1 expression, distinct upstream elements and a specific TATA promoter element, located in the first intron of C4ppdkZm1, are required. The low expression of cyppdkZm2 can be attributed to an absence of upstream positive elements and weak activity of the TATA promoter element.  相似文献   

19.
In this study we report that the relative expression of 4-1BB (CD137) and CD28 molecules can differentially be modulated on CD8(+) T cells by combinations of various cytokines and anti-cytokine antibodies. During allostimulation of naive CD8(+) T cells in the presence of IL-2, IFN-gamma, IL-12, and anti-IL-4, they evolved into IL-2, IFN-gamma-producing Tc1 cells and showed inability to upregulate 4-1BB expression but not CD28. On the other hand, the Tc2 cells, generated in the presence of allogeneic APCs, IL-2, IL-10, IL-4, and anti-IFN-gamma, demonstrated intact and elevated 4-1BB and CD28 molecules. Activation of Tc1 and Tc2 cells with anti-CD3 and plate-bound anti-4-1BB and anti-CD28 mAbs revealed differential proliferative and cytokine secretory patterns. The 4-1BB signaling in the context of anti-CD3 as first signal led to the increased secretion of IL-4 by the Tc2 cells and not by Tc1 cells, while CD28 triggering produced IL-4 from Tc2 and IL-2 and IFN-gamma from Tc1 cells. Flow cytometric analysis of cell surface expression on Tc1 and Tc2 cells strengthened our observation that 4-1BB expression but not CD28 is poorly expressed on Tc1 cells. Both of the polarized CD8(+) T cell subsets exhibited comparable cytotoxic abilities and perforin and granzyme expression. The regeneration of 4-1BB expression is possible on Tc1 cells when back cultured in a Tc2 cytokine environment, but its expression could not be significantly altered on the Tc2 population unless IL-12 was included in the system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号