首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
Human parathyroid hormone, hPTH, an 84 amino acid polypeptide, was produced intracellularly inEscherichia coli as a fusion protein, linked to the C-terminus of a 15 kD IgG-binding protein. Approximately 100 mg fusion protein was obtained per liter fermentation medium. To test the efficiency of two alternative enzymatic cleavage methods, two fusion proteins differing only in the linker region were constructed. Cleavage of a Phe-Phe-Pro-Arg linker was obtained with bovine thrombin and cleavage of a Phe-Ala-His-Tyr linker with recombinant H64A subtilisin. Both enzmes yielded the correct N-terminus and cleaved their respective linkers quantitatively, although additional internal cleavage sites in hPTH were detected and characterized. The linker cleavage conditions were optimized and hPTH was purified to homogeneity. Thrombin cleavage resulted in a final yield of 5 mg hPTH/L, while H64A subtilisin cleavage was more specific and gave 8 mg/L. The purified recombinant product was identical to native hPTH and exhibited full biological activity in an adenylate cyclase assay.  相似文献   

2.
A recombinant fusion protein system for the production, oxidation, and purification of short peptides containing a single disulfide bond is described. The peptides are initially expressed in Escherichia coli as a fusion to an engineered mutant of the N-terminal SH2 domain of the intracellular phosphatase, SHP-2. This small protein domain confers several important properties which facilitate the production of disulfide-containing peptides: (i) it is expressed at high levels in E. coli; (ii) it can be purified via a hexahistidine tag and reverse-phase HPLC; (iii) it contains no endogenous cysteine residues, allowing the formation of an intrapeptide disulfide bond while still attached to the fusion partner; (iv) it is highly soluble in native buffers, facilitating the production of very hydrophobic peptides and the direct use of fusion products in biochemical assays; (v) it contains a unique methionine residue at the junction of the peptide and fusion partner to facilitate peptide cleavage by treatment with cyanogen bromide (CNBr). This method is useful for producing peptides, which are otherwise difficult to prepare through traditional chemical synthesis approaches, and this has been demonstrated by preparing a number of hydrophobic disulfide-containing peptides derived from phage-display libraries.  相似文献   

3.
A magainin derivative, designated MSI-344, was produced in Escherichia coli as fusion protein, by utilizing a truncated amidophsphoribosyltransferase of E. coli as a fusion partner. Bacterial cells transformed with the gene encoding the fusion protein were grown to a high cell density and induced with isopropyl-1-thio-b-D-galatoside (IPTG) to initiate product expression. The fusion protein was accumulated into cytoplasmic inclusion body and recombinant MSI-344 was released from the fusion partner by hydroxylamine treatment. Following cleavage of the fusion protein with hydroxylamine, the released MSI-344 was purified to homogeneity by cationic exchange chromatography. The final purity was at least 95% by reversed-phase high performance liquid chromatography (RP-HPLC). Purified recombinant MSI-344 was found to be indistinguishable from the synthetic peptide determined by amino acid sequences and antimicrobial activity assay.  相似文献   

4.
Human insulin-like growth factor I, IGF-I, was produced in Escherichia coli fused to a synthetic IgG-binding peptide The fusion protein is secreted into the medium during fermentation and was initially purified on an IgG-Sepharose column. After hydroxylamine cleavage, IGF-I was purified to homogeneity. During purification, impurities in the form of modified variants of IGF-I were detected and characterized. The closely related impurities were identified to be a misfolded form of IGF-I, having mismatched disulphide bonds, a form with the single methionine residue in IGF-I oxidized to methionine sulphoxide and a variant in which the methionine residue was substituted by a norleucine residue during protein synthesis. A form proteolytically cleaved between two arginine residue was also detected. These impurities were separated from the major component, native IGF-I, by using reverse-phase h.p.l.c. The modified molecules as well as native IGF-I were characterized both as intact molecules and as fragments, after pepsin digestion, using the techniques of plasma desorption m.s., N-terminal sequencing and amino acid analysis. The oxidized form was 90%, and the norleucine analogue was 70%, as potent as native IGF-I in a biological radioreceptor assay, and the form having mismatched disulphides lacked receptor affinity.  相似文献   

5.
Human insulin-like growth factor II (IGF-II) was produced in an Escherichia coli ompT strain as a 22.5-kDa fusion protein. IGF-II was fused to the carboxy-terminal of a synthetic 15-kDa IgG-binding protein, originating from staphylococcal protein A, via a unique methionine linker. During fermentation, the fusion protein was exported to the growth medium at levels exceeding 900 mg/liter and subsequently affinity purified on IgG Sepharose followed by ion exchange on S Sepharose. After chemical cleavage with CNBr, yielding an authentic IGF-II molecule, the recombinant IGF-II was purified to homogeneity by a two step procedure involving ion-exchange and reverse-phase HPLC. A substantial fraction of the secreted protein was found to be biologically active, eliminating the need for complex refolding procedures. The yield of highly purified and biologically active IGF-II was 5-7 mg/liter of fermenter broth. The IGF-II produced by this method displayed biochemical, immunological, receptor binding, and biological activity properties equal to those of native IGF-II isolated from human serum.  相似文献   

6.
The enzyme peptide methionine sulfoxide reductase catalyzes the conversion of methionine sulfoxide residues in proteins to methionine. The 636 nucleotide coding region of the peptide methionine sulfoxide reductase gene has been amplified from a genomic clone using the polymerase chain reaction and the product was subcloned into plasmid pGEX-2T downstream of the glutathione S-transferase gene under control of the tac promoter. Escherichia coli XL1-Blue cells transformed with this plasmid and induced with isopropylthio-beta-galactoside expressed high levels of the fusion protein. The protein was soluble and was purified to homogeneity by affinity binding to a glutathione-agarose resin followed by cleavage of the fusion protein with thrombin. Both the fusion protein and the purified peptide methionine sulfoxide reductase protein showed high peptide methionine sulfoxide reductase activity.  相似文献   

7.
The production of bioactive peptides and small protein fragments is commonly achieved via solid-phase chemical synthesis. However, such techniques become unviable and prohibitively expensive when the peptides are large (e.g., >30 amino acids) or when isotope labeling is required for NMR studies. Expression and purification of large quantities of unfolded peptides in E. coli have also proved to be difficult even when the desired peptides are carried by fusion proteins such as GST. We have developed a peptide expression system that utilizes a novel fusion protein (SFC120) which is highly expressed and directs the peptides to inclusion bodies, thereby minimizing in-cell proteolysis whilst maintaining high yields of peptide expression. The expressed peptides can be liberated from the carrier protein by CNBr cleavage at engineered methionine sites or through proteolysis by specific proteases for peptides containing methionine residues. In the present systems, we use CNBr, due to the absence of methionine residues in the target peptides, although other cleavage sites can be easily inserted. We report the production of six unfolded protein fragments of different composition and lengths (19 to 48 residues) derived from the virulent effector kinases, Cla4 and Ste20 of Candida albicans. All six peptides were produced with high yields of purified material (30–40 mg/l in LB, 15–20 mg/l in M9 medium), pointing to the general applicability of this expression system for peptide production. The enrichment of these peptides with 15N, 15N/13C and even 15N/13C/2H isotopes is presented allowing speedy assignment of poorly-resolved resonances of flexible peptides.  相似文献   

8.
Thymidylate synthetase from Lactobacillus casei was S-carboxymethylated and degraded by treatment with cyanogen bromide. Although the protein contains 6 methionine residues, only 5 cyanogen bromide peptides were obtained due to the presence of 1 methionine on the NH2 terminus and another adjacent to a threonine residue which was resistant to cleavage. The peptides were isolated by differential extraction, first with ammonium acetate, then pyridine acetate, and finally the residue was solubilized with 50% acetic acid. Each peptide was further purified to homogeneity by Bio-Gel chromatography. The size of the peptides from the amino to carboxyl end of the enzyme subunit was CNBr 1, 4,100; CNBr 2, 10,300; CNBr 3, 8,100; CNBr 4, 11,800; CNBr 5, 2,200. The sum of the amino acid residues of the peptides is equal to the sum of the residues in an enzyme subunit, indicating that all of the CNBr peptides have been isolated. The CNBr-resistant methionine was located in CNBr 2 and the 5-fluoro-2'-deoxyuridine 5'-monophosphate binding site in CNBr 4. The holoenzyme molecular weight, based on the residue weights of the amino acids in the two equivalent subunits, is equal to 73,176. The complete sequence of each of the CNBr peptides, except for CNBr 4, which is presented in the following paper, is described.  相似文献   

9.
A biologically active semisynthetic hybrid of horse heart cytochrome c has been prepared by combining the heme peptide 1 through 65 (HP 1-65), prepared by CNBr cleavage of natural cytochrome c, with a semisynthetic peptide corresponding to positions 66 through 104. A fully protected synthetic peptide 66--79 was prepared by a modified solid phase peptide synthesis procedure and was converted to its N-hydroxysuccinimide ester. A peptide corresponding to residues 81--104 of cytochrome c was also isolated from the CNBr cleavage mixture and its epsilon-amino groups and tyrosyl hydroxyl group were protected selectively with the t-butyloxycarbonyl group. This partially protected peptide was reacted with t-butyloxycarbonyl methionine N-hydroxysuccinimide ester to give a derivative having methionine at position 80. This product was deprotected, purified and then t-butyloxycarbonyl groups were again introduced specifically on the epsilon-amino groups to give the peptide, Boc(Lys,Tyr)80--104. A semisynthetic peptide corresponding to residues 66 through 104 of cytochrome c was prepared by condensing the synthetic peptide 66--79 N-hydroxysuccinimide ester with t-butyloxycarbonyl (Lys,Tyr)80--104. The semisynthetic product was deprotected, purified and combined under anaerobic conditions with a heme peptide, HP 1-65, that was isolated from the products of CNBr cleavage of native cytochrome c. The reconstituted semisynthetic cytochrome c was purified by ion exchange chromatography and was shown to have the same oxygen uptake as native cytochrome c when assayed in the succinate oxidase system.  相似文献   

10.
Calf lens fiber plasma membranes, containing only the intrinsic membrane protein MP26 and its maturation product MP22 were treated with proteolytic enzymes such as trypsin, protease V8 from S. aureus or with chemical agents as CNBr in formic acid. The cleavage products, purified by electrophoresis, were analysed for their amino acid composition and N-terminal sequences. Proteolysis gave rise to peptides which were mainly shortened at the C-terminal end of the molecules. While the V8 protease produced a fragment with a similar N-terminal sequence as the maturation product MP22, trypsin yielded another cleavage product. Chemical hydrolysis yielded large fragments (11-15 kDa) with hydrophobic N-terminal sequences. Our results suggest that MP26 is characterised by an N-terminal signal sequence and possesses other hydrophobic domains which could function as untranslocated insertion sequences.  相似文献   

11.
A fusion protein was genetically engineered that contains an antimicrobial peptide, designated P2, at its carboxy terminus and bovine prochymosin at its amino terminus. Bovine prochymosin was chosen as the fusion partner because of its complete insolubility in Escherichia coli, a property utilized to protect the cells from the toxic effects of the antimicrobial peptide. This fusion protein was purified by centrifugation as an insoluble inclusion body. A methionine linker between prochymosin and the P2 peptide enabled P2 to be released by digestion with cyanogen bromide. Cation exchange HPLC followed by reversed-phase HPLC were used to purify the P2 peptide. The recombinant P2 peptide's molecular mass was confirmed by mass spectrometry to within 0.1% of the theoretical value (2480.9 Da), and the antimicrobial activity of the purified recombinant P2 against E. coli D31 was determined to be identical to that of the chemically synthesized peptide (minimal inhibitory concentration of 5 mg/mL). Although the yield of the fusion protein after expression by the cells was high (16% of the total cell protein), the percentage recovery of the P2 peptide in the inclusion bodies was relatively low, which appears to be due to losses in the cyanogen bromide digestion step.  相似文献   

12.
A vector system has been designed for obtaining high yields of polypeptides synthesized in Escherichia coli. Multiple copies of a synthetic gene encoding the neuropeptide substance P (SP) (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2) have been linked and fused to the lacZ gene. Each copy of the SP gene was flanked by codons for methionine to create sites for cleavage by cyanogen bromide (CNBr). The isolated multimeric SP fusion protein was converted to monomers of SP analog, each containing a carboxyl-terminal homoserine lactone (Hse-lactone) residue (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Hse-lactone), upon treatment with CNBr in formic acid. The Hse-lactone moiety was subjected to chemical modifications to produce an SP Hse amide. This method permits synthesis of peptide amide analogs and other peptide derivatives by combining recombinant DNA techniques and chemical methods.  相似文献   

13.
Insulin-like growth factor-I (IGF-I), a single-chain polypeptide consisting of 70 amino acids and 3 disulfide bridges, is a member of a class of growth factors that are involved in many proliferative and metabolic processes. To assist in solving the crystallographic three-dimensional structure, we have expressed a recombinant fusion protein precursor of IGF-I in a methionine auxotrophic strain ofEscherichia coligrown in the presence of selenomethionine. An homogeneous preparation of selenomethionyl-IGF-I was then obtained by chemical cleavage of the fusion protein. The selenomethionine analogue of IGF-I was characterized by electrospray mass spectrometry, peptide mapping, analytical chromatography, and electrophoresis as well as by biological assays. The final preparation of IGF-I was found to incorporate about 90% of selenium and fully retained the functional activity.  相似文献   

14.
High-Level Production of Recombinant Human Parathyroid Hormone 1-34   总被引:4,自引:1,他引:3       下载免费PDF全文
Expression of the synthetic human parathyroid hormone 1-34 [hPTH(1-34)] gene by a gene fusion strategy was demonstrated. hPTH(1-34) was produced at the C terminus of the partner peptides involving amino acids 1 to 97, 1 to 117, or 1 to 139 of a modified Escherichia coli β-galactosidase by linker peptides containing oligohistidine of different lengths. The fusion proteins in the inclusion bodies were rendered soluble with urea and subjected to site-specific cleavage with the secretory type yeast Kex2 protease. Optimal expression and enzymatic processing were achieved in the fusion protein βG-117S4HPT, constructed from amino acids 1 to 117 of β-galactosidase and the linker of HHHHPGGSVKKR. The fusion protein accumulated more than 20% of the E. coli total protein. The hPTH(1-34) was purified up to 99.5% with a good yield of 0.5 g/liter of culture. The purified product was identified as intact hPTH(1-34) by amino acid analysis and N-terminal sequencing.  相似文献   

15.
Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.  相似文献   

16.
A recombinant plasmid has been constructed to direct the synthesis of Leu27GRF(1-44)OH in Escherichia coli as a fusion protein containing a hexa-His tail followed by amino acids 1-99 of interferon-gamma and a methionine residue at the N-terminal. The expression of the 18-kDa fusion protein (H6GAMGRF) was induced by isopropylthiogalactoside treatment and the protein accumulated as insoluble aggregates in inclusion bodies. The protein aggregates were solubilized in 6 M guanidine-HCl and purified directly by affinity chromatography on a Nichelate column. The growth hormone-releasing factor (GRF) moiety was released from the fusion protein by cyanogen bromide cleavage and purified to homogeneity by anion-exchange chromatography followed by reverse-phase chromatography. The identity of the GRF peak was determined by comparing its retention time with that of synthetic Leu27GRF(1-44)OH. The purified material was further characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal sequencing, and amino-acid analysis. The recombinant-derived product and the synthetic compound showed identical reactivities toward anti-GRF polyclonal antibodies and were essentially equipotent as determined by an in vitro biological assay for growth hormone-releasing activity.  相似文献   

17.
A Ca2+-dependent sialic acid-binding protein was purified on fetuin-Sepharose from various types of human tissue. The molecular mass was determined to be 10,315 Da by laser desorption mass spectrometry. Partial sequence analysis after cyanogen bromide cleavage that yielded one N-terminus accessible for Edman degradation revealed an identity to an internal stretch following the only methionine residue within a putative amino acid sequence (Mr 10,048), deduced from the cDNA of a cell cycle-specific gene. The reported biochemical identification is a prerequisite to infer the biological role of the so far undetected gene product. Initial glycohistochemical studies with sialic acid-(BSA-biotin) raised evidence for nuclear localization of sialic acid-binding sites that might reflect, at least in part, detection of this protein.  相似文献   

18.
A lambda gt11 expression library containing cDNA from total chick embryo was screened with S103L, a rat monoclonal antibody which reacts specifically with the core protein of the chick cartilage chondroitin sulfate proteoglycan. One clone was identified which produced a 220-kDa beta-galactosidase/S103L-binding fusion protein. Sequencing the entire 1.5-kilobase cDNA insert showed that it contained a single open reading frame, which encoded a portion of the proteoglycan core protein from the chondroitin sulfate domain. This was confirmed by comparison with amino acid sequence data from peptide CS-B, which was derived from the chondroitin sulfate domain (Krueger, R.C., Jr., Fields, T. A., Hildreth, J., IV, and Schwartz, N.B. (1990) J. Biol. Chem. 265, 12075-12087). Furthermore, the 3' end of the insert overlapped with 23 bases at the 5' end of the published sequence for the C-terminal globular domain (Sai, S., Tanaka, T., Kosher, R. A., and Tanzer, M. L. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 5081-5085), which oriented this clone, as well as the CS peptide, along the protein core. The cDNA insert hybridized with a 9-kilobase mRNA from sternal chondrocytes as well as a similar sized message in brain but did not hybridize to any message from rat chondrosarcoma or from undifferentiated limb bud mesenchyme. In further studies, the fusion protein as well as a cyanogen bromide fragment (70 kDa) derived from it were isolated and shown to react with S103L, indicating that cleavage at methionine residues does not disrupt the antibody recognition site. Purification and N-terminal sequencing of the antigenic CNBr fragment derived from the fusion protein revealed that its N terminus is preceded by a methionine in the fusion protein and overlaps with the N terminus of peptide CS-B. As peptide CS-B is not recognized by S103L and the C terminus of peptide CS-B lies beyond the proteoglycan portion of the antigenic CNBr fragment, the S103L epitope is either contained within the 11 amino acids preceding the N terminus of peptide CS-B or it spans the clostripain cleavage site at the origin of the N terminus of peptide CS-B.  相似文献   

19.
The carboxypeptidase Y (CPY) propeptide from Saccharomyces cerevisiae was developed as a fusion partner for the efficient expression of small polypeptides in Escherichia coli. Six consecutive histidine residues (6xHis) were fused to the N-terminus of the CPY propeptide for the facilitated purification of fusion proteins using immobilized metal ion affinity chromatography. In addition, a methionine or the pentapeptide (Asp)(4)-Lys linker was inserted at the junction between the CPY propeptide and the target polypeptide to release the target polypeptide by digestion with cyanogen bromide or enterokinase. Therapeutically valuable peptide hormones, such as salmon calcitonin precursor (sCAL-Gly), a fragment of human parathyroid hormone (hPTH(1-34)), and human glucagon were successfully expressed in E. coli as fusion polypeptides with the fusion partner. SDS-PAGE analyses showed that the majority of the expressed fusion sCAL-Gly and fusion hPTH(1-34) were present in the form of inclusion bodies, whereas about 66% of the expressed human glucagon was in a soluble form. Almost complete cleavage of the fusion polypeptides was obtained by digestion with enterokinase. Reverse-phase HPLC analyses showed that the target polypeptides released from the fusion proteins were identical to their native forms.  相似文献   

20.
Primary structure of glycolate oxidase from spinach   总被引:1,自引:0,他引:1  
The primary structure of glycolate oxidase from spinach has been determined. Six different types of peptide digest were investigated, utilizing CNBr, proteolytic enzymes, and chemical modifications to change a specificity of cleavage. In total, 90 peptides were purified and analyzed. The studies were aimed at correlation with crystallographic analysis of the same protein carried through in parallel and with cDNA studies which utilized initially determined amino acid sequences for synthesis of oligonucleotide probes. Continuous comparisons with the results from the crystallographic studies helped at an early stage to secure peptide overlaps, at the same time as the peptide data secured residue assignments in the electron density maps. In the end, all data agree and regions from all parts of the molecule have been checked by independent methods of analysis. The primary structure establishes the type of N-terminal post-translational processing, and yields information on segments not fully defined in electron density maps. Combined, the chemical, crystallographic, and cDNA data give extensive reliability. The peptide analysis shows that the N-terminus is blocked by acylation of the initiator methionine, which is in a primary structure typical for non-removal of the methionine in the processing events of the nascent protein chain. The molecule is comparatively rich in menthionine and some other generally less common residues, but has only one cysteine residue and no extensive hydrophobic segment. An amino acid sequence homology with flavocytochrome b2 from yeast, as expected from known similarities in tertiary structure, is observed (33% residue identities).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号