首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The demulsifying bacterium XH1 was identified as a Bacillus mojavensis by the 16S rDNA gene. The extracellular biodemulsifier produced by this species was purified by ethanol extraction and column chromatography through a sephadex and silicon gel column. Preliminary investigation using UV–vis and TLC indicated that the biodemulsifier had two components a protein and a lipopeptide. All major components of the medium, including the sources of soluble and insoluble carbon, nitrogen, phosphate, and metal ions were investigated to improve the biosynthesis and efficiency of the biodemulsifier. The optimal carbon sources were glucose and liquid paraffin. Glucose participated in the biosynthesis of the demulsifier, while liquid paraffin promoted the lipophilicity and secretion of biosurfactants. The absence of yeast extract, ammonium chloride or phosphate (K2HPO4/KH2PO4) had a negative effect on the production of the biodemulsifier and significantly inhibited its activity. To further enhance the biodemulsifier efficiency, the optimal medium composition was determined using the response surface methodology (RSM) based on the central composite rotation design (CCRD). Using the optimized biodemulsifier production medium: 8.5 g/l glucose; 3% (v/v) liquid paraffin; 1.5 g/l yeast extract; 3.36 g/l NH4Cl and15 g/l phosphate, the demulsifying ratio increased 35.5% and biodemulsifier yield increased to 2.07 g/l.  相似文献   

2.
This study was conducted to evaluate the importance of aeration in free and immobilized cell systems in an aerated bioreactor for xylitol production from an oat hull hemicellulosic hydrolysate using an integrated process. The aeration rate (AR) or oxygen mass transfer coefficient (kLa) demonstrated a significant role in controlling cell (Candida guilliermondii FTI 20037) regeneration and bioconversion performance in free and immobilized cell systems. In the free cell system, an aeration rate of 1.25 vvm corresponding to kLa of 15.8 1/h resulted in maximum values of product yield (Yp/s: 0.87 g/g), productivity (Qp: 0.57 g/l/h), and final xylitol concentration (Pf: 55 g/l) from the hydrolysate with a 74.5 g/l xylose concentration. However, in the aerated immobilized cell system, maximum and almost similar results (almost Pf: 54 g/l, Qp: 0.57 g/l/h and Yp/s: 0.84 g/g) were obtained with aeration rates from 1.25 to 1.5 vvm using composites based on polypropylene (PP) and partially delignified fiber (PDF). Composites based on acid treated fiber (ATF) containing a high amount of lignin showed some inhibitory impact on xylose uptake and xylitol formation (Pf: 47 g/l and Qp < 0.49 g/l/h) with the optimal aeration rate of 1.5 vvm in the initial cycle of the bioconversion; this inhibition impact could be resolved in the next consecutive cycles. The surface modifier polyethyleneimine (PEI) slightly enhanced cell retention in the immobilized form on the ATF-based cell support. This investigation helps fill in the knowledge gaps existing on the integrated processing of the lignocellulosic biomass for xylitol bioproduction and biorefinery industry; however, more scale-up studies are recommended for commercialization.  相似文献   

3.
4.
《Journal of Asia》2014,17(4):853-856
Water-distilled essential oil from the dried bulbs of Allium chinense (Liliaceae) was analyzed by gas chromatography–mass spectrometry (GC–MS). Eighteen compounds, accounting for 98.4% of the total oil, were identified and the main components of the essential oil of A. chinense were methyl allyl trisulfide (30.7%), dimethyl trisulfide (24.1%), methyl propyl disulfide (12.8%) and dimethyl disulfide (9.6%) followed by methyl allyl disulfide (3.4%) and methyl propyl trisulfide (3.6%). The essential oil exhibited contact toxicity against the booklice (Liposcelis bostrychophila) with an LC50 value of 441.8 μg/cm2 while the two major constituents, dimethyl trisulfide and methyl propyl disulfide had LC50 values of 153.0 μg/cm2 and 738.0 μg/cm2 against the booklice, respectively. The essential oil of A. chinense possessed strong fumigant toxicity against the booklice with an LC50 value of 186.5 μg/l while methyl allyl trisulfide (LC50 = 90.4 μg/l) and dimethyl trisulfide (LC50 = 114.2 μg/l) exhibited stronger fumigant toxicity than methyl propyl disulfide (LC50 = 243.4 μg/l) and dimethyl disulfide (LC50 = 340.8 μg/l) against the booklice. The results indicated that the essential oil and its major constituents have potential for development into natural insecticides or fumigants for control of insects in stored grains.  相似文献   

5.
Phenylacetaldehyde (PA) can be produced by the oxidation of 2-phenylethanol (PE) through biotransformation. In order to prevent substrate and product inhibitions and the transformation of the PA to phenylacetic acid (PAA), utilization of a two-phase system is very attractive. Gluconobacter oxydans B-72 was used as the microorganism and iso-octane as the solvent. The effect of initial substrate concentration on the PA production was investigated in single- and two-phase systems. In the single-phase system, substrate inhibition occurred above 5 g/l, and in the two-phase system, above 7.5 g/l. Substrate inhibition kinetics were also studied in the two-phase system and kinetic constants were determined as rmax=0.64 g/l min, KM=8.15 g/l, KPA=2.5 g/l. Because it was observed that two-phase system is insufficient to remove the substrate inhibition effect, fed-batch operation was utilised in this study. For 7.5 g/l of PE, 1.65, 3.85, and 7.35 g/l of PA were obtained in the single-phase, two-phase, and two-phase three fed-batch systems, respectively. Effect of biotransformation time, initial substrate concentration, agitation speed, and fed-batch number on the PA production was investigated in a two-phase fed-batch system by the response surface methodology (RSM). The optimum values were found as 3 fed-batch number, 2.75 g/l initial substrate concentration, 150 rpm agitation speed, and 65 min of one batch biotransformation time. In order to verify these results, an experiment was performed at these optimum conditions and 7.10 g/l of PA concentration was obtained.  相似文献   

6.
7.
This study examined the effect of different elicitors (seven, different concentrations) and environmental factors (water activity (aw), pH) on taxol production by strains of two endophytic fungi, Paraconiothyrium variabile and Epicoccum nigrum, isolated from temperate yew trees. A defined liquid broth medium was modified with elicitors, solute aw depressors at different pH values. For P. variabile, the best elicitor was salicylic acid at 50 mg/l which gave a taxol yield of 14.7 ± 4.8 μg/l. The study of synergistic effects between elicitor, aw and pH on taxol production showed that the highest yield of taxol (68.9 ± 11.9 μg/l) was produced under modified ionic stress of 0.98 aw (KCl) at pH 5 when supplemented with 20 mg/l of salicylic acid. For E. nigrum, serine was the best elicitor which increased yield significantly (29.6 fold) when KCL was used as the aw depressor (0.98 aw) at pH 5.0 with 30 mg/l of serine. The maximum taxol yield produced by E. nigrum was 57.1 ± 11.8 μg/l. Surface response models were used to build contour maps to determine the conditions for maximum and marginal conditions for taxol yield in relation to the best elicitor and aw, and the best pH for the first time. This will be beneficial for identifying key parameters for improvement of taxol yields by endophytic fungi.  相似文献   

8.
Terrein has potential application in the fields of medicine, cosmetology and agriculture, however, the chemical synthesis of terrein with single configuration is a difficult task, and the biosynthesis of terrein always results in low production (ca. 0.33–400 mg/L). In this study, we reported an Aspergillus terreus strain PF26 which could produce (+)-terrein on a high level. After the selection of a suitable basic medium, the component concentrations were optimized using Plackett–Burman design and response surface methodology. Consequently, an optimal medium containing 28.41 g glucose, 23.18 g maltose, 20.00 g mannitol, 8.52 g malt extract, 10.00 g monosodium glutamate 10.00 g NH4Cl in 1 L ASW was obtained, and a high (+)-terrein production of 3.71 g/L fermentation broth was achieved, which represents the highest fermentation production of (+)-terrein to date. The result highlighted the industry's potential of A. terreus strain PF26 in the production of bioactive (+)-terrein on a large-scale.  相似文献   

9.
《Process Biochemistry》2007,42(11):1530-1536
The transglycosylation activity of a novel α-glucosidase from the basidiomycetous yeast Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) was studied using maltose as glucosyl donor. The enzyme synthesized oligosaccharides with α-(1  2), α-(1  4) and α-(1  6) bonds. Using 200 g/l maltose, the yield of oligosaccharides was 53.8 g/l, with prebiotic oligosaccharides containing at least one α-(1  6) linkage (panose, 6-O-α-glucosyl-maltotriose and 6-O-α-isomaltosyl-maltose) being the major products (47.1 g/l). The transglycosylatying yield was 3.6 times higher than the observed with the α-glucosidase from Saccharomyces cerevisiae (53.8 vs. 14.7 g/l). Moreover, when increasing the maltose concentration up to 525 g/l, the maximum production of tri- and tetrasaccharides reached 167.1 g/l, without altering the percentage of oligosaccharides in the mixture. Compared with other microbial α-glucosidases in which the main transglycosylation product is a disaccharide, the enzyme from X. dendrorhous yields a final product enriched in trisaccharides and tetrasaccharides.  相似文献   

10.
Oreochromis niloticus, weighing 36.45 ± 1.12 g were exposed to 10%, 20% and 30% of the LC50 of CdCl2 which represents treatments (T1)1.68, (T2)3.36 and (T3)5.03 mg/l, respectively, for a period of 10, 20 and 30 days. It was found that, compared to a control group reading of 0.19 ± 0.03 μg/g dry weight, accumulation of Cd in the gills was significantly (p < 0.05) increased in samples ranging between 7.64 ± 0.86 and 61.73 ± 0.82 μg/g dry weight from T1 at 10 days to T3 at 30 days. The accumulation of Cd in the liver, meanwhile, was also observed to significantly increase (p < 0.05) with increasing time and concentrations with results ranging between 3.21 ± 0.12 and 181.61 ± 1.32 compared to the control group results of 0.29 ± 0.04 μg/g dry weight. Although muscles exhibited lower levels of accumulation than the gills and liver they still showed the same pattern of increase compared to the control group, with a significant difference ranging between 0.32 ± 0.02 and 2.16 ± 0.08 compared to the control group results of 0.03 ± 0.001 μg/g dry weight. Also, haematological parameters such as red blood cells (RBCs), haemoglobin (Hb) and haematocrit (Hct) were reduced in fish exposed to Cd at all periods, with significant differences (p < 0.05). Plasma glucose concentration showed a significant increase. Total protein levels of fish showed a significant reduction (p > 0.05) for all exposed treatments. Also, the total lipid level increased significantly as fish were exposed to increasing cadmium concentrations, compared to control fish. Finally, the activities of aspartate aminotransferase (AST IU/l) and alanine aminotransferase (ALT IU/l) showed a significant increase (p < 0.05) with increasing time and concentrations.  相似文献   

11.
Chitin, which is a polymer of β-(1–4) linked N-acetyl-d-glucosamine (GlcNAc) residues, is one of the most abundant renewable resources in nature, after cellulose. In this study, we found some native Mucor strains, which can use GlcNAc and chitin substrates as carbon sources for growth and ethanol production. One of these strains, M. circinelloides NBRC 6746 produced 18.6 ± 0.6 g/l of ethanol from 50 g/l of GlcNAc after 72 h and the maximum ethanol production rate was 0.75 ± 0.1 g/l/h. Furthermore, M. circinelloides NBRC 4572 produced 6.00 ± 0.22 and 0.46 ± 0.04 g/l of ethanol from 50 g/l of colloidal chitin and chitin powder after 16 and 12 days, respectively. We also found an extracellular chitinolytic enzyme producing strain M. ambiguus NBRC 8092, and successfully improved ethanol productivity of NBRC 4572 from colloidal chitin using crude chitinolytic enzyme derived from NBRC 8092. The ethanol titer reached 9.44 ± 0.10 g/l after 16 days. These results were the first bioethanol production from GlcNAc and chitin substrates by native organisms, and also suggest that these Mucor strains have great potential for the simultaneous saccharification and fermentation (SSF) of chitin biomass.  相似文献   

12.
Alkanes of defined carbon chain lengths can serve as alternatives to petroleum-based fuels. Recently, microbial pathways of alkane biosynthesis have been identified and enabled the production of alkanes in non-native producing microorganisms using metabolic engineering strategies. The chemoautotrophic bacterium Cupriavidus necator has great potential for producing chemicals from CO2: it is known to have one of the highest growth rate among natural autotrophic bacteria and under nutrient imbalance it directs most of its carbon flux to the synthesis of the acetyl-CoA derived polymer, polyhydroxybutyrate (PHB), (up to 80% of intracellular content). Alkane synthesis pathway from Synechococcus elongatus (2 genes coding an acyl-ACP reductase and an aldehyde deformylating oxygenase) was heterologously expressed in a C. necator mutant strain deficient in the PHB synthesis pathway. Under heterotrophic condition on fructose we showed that under nitrogen limitation, in presence of an organic phase (decane), the strain produced up to 670 mg/L total hydrocarbons containing 435 mg/l of alkanes consisting of 286 mg/l of pentadecane, 131 mg/l of heptadecene, 18 mg/l of heptadecane, and 236 mg/l of hexadecanal. We report here the highest level of alka(e)nes production by an engineered C. necator to date. We also demonstrated the first reported alka(e)nes production by a non-native alkane producer from CO2 as the sole carbon source.  相似文献   

13.
《Endocrine practice》2018,24(3):288-293
Objective: The total cortisol (TC) response may be measured during the glucagon stimulation test (GST) for growth hormone (GH) reserve in order to assess the integrity of the hypothalamic-pituitary-adrenal (HPA) axis. Measurements of TC are unreliable in conditions of albumin and cortisol-binding globulin (CBG) alterations (e.g., hypoproteinemia or CBG deficiency). We aimed to measure the serum free cortisol (sFC) response to the GST in children and adolescents and determine whether it could predict the GH response to glucagon stimulation.Methods: Infants and children with either short stature or growth attenuation who were referred for evaluation of GH reserve underwent the GST.Results: The study population consisted of 103 subjects (62 females), median age 3.9 years (range, 0.5–14). The mean basal and peak TC levels were 13.3 ± 6.7 μg/dL and 29.6 ± 8.8 μg/dL, respectively. The mean basal and peak sFC levels were 0.7 ± 0.8 μg/dL and 1.7 ± 1.1 μg/dL, respectively. There was a negative correlation between peak TC and age (r = -0.3, P = .007) but not between peak sFC and age (r = -0.09, P = .36). Ninety-five percent of the patients had peak TC levels >15.8 μg/dL and peak sFC levels >0.6 μg/dL.Conclusion: Our results on a cohort of healthy short-statured children can serve as reference values for the sFC response during GST. Based on these results, we propose peak TC levels >15.8 μg/dL and peak sFC levels >0.6 μg/dL for defining normalcy of the HPA axis during the GST in children and adolescents.Abbreviations:ACTH = adrenocorticotrophic hormoneBMI = body mass indexCBG = cortisol-binding globulinGH = growth hormoneGST = glucagon stimulation testHPA = hypothalamic-pituitary-adrenalSDS = standard deviation scoresFC = serum free cortisolTC = total cortisol  相似文献   

14.
The current work aims to stimulate the production of rhoifolin and tiliroside as two valuable phytochemicals from Chorisia chodatii Hassl. and Chorisia speciosa A. St.-Hil. callus cultures. A comparison between three explants from the in vitro germinated seedlings of both species for callus induction and accumulation of both flavonoids was carried out. Highly efficient calluses were induced from the leaves, stems and roots of C. chodatii seedlings on Gamborg’s B5 (B5) and Murashige and Skoog (MS) media containing 2.0 mg/l β-naphthalene acetic acid (NAA) and 0.5 mg/l 6-benzyladenin (BA) or kinetin (Kn), while those of C. speciosa seedlings efficiently produced calluses on both media supplemented with 0.5 or 1.0 mg/l NAA and 0.5 mg/l BA. Besides, the highest contents of rhoifolin (1.927 mg/g DW) and tiliroside (1.776 mg/g DW) from C. speciosa cultures were obtained from the calluses of seedlings’ roots and stems maintained on B5 medium containing 1.0 mg/l NAA and 0.5 mg/l BA, respectively. On the other hand, the maximum rhoifolin content (0.555 mg/g DW) from C. chodatii cultures was obtained from the calluses of seedlings’ stems grown on B5 medium supplemented with 2.0 mg/l NAA and 0.5 mg/l BA, whereas the highest tiliroside content (0.547 mg/g DW) was provided by the root explants on B5 medium containing 2.0 mg/l NAA and 0.5 mg/l Kn. Both flavonoids were bioaccumulated in greater amounts than the wild and cultivated intact plants, which provides a promising tool for their future commercial production under a controlled environment, independent of climate and soil conditions.  相似文献   

15.
Hydrolysis of corn cob performed for 6 h with 0.5 N NaOH at solid/liquid ratio of 0.084 g/g allowed obtaining a hydrolyzate containing 1171 ± 34 mg/l ferulic acid and 2156 ± 63 mg/l p-coumaric acid that was used as a medium for vanillin bioproduction by the engineered strain Escherichia coli JM109/pBB1. Aiming at maximizing vanillin bioproduction, the effects of medium heat sterilization, one-stage or two-stage pre-cultivation, adaptation of the microorganism to the hydrolyzate and inoculum biomass level were investigated. Biomass pre-cultivated once in unsterilized hydrolyzate was able to effectively convert ferulic and p-coumaric acids to a mixture of vanillin, vanillic acid and vanillyl alcohol provided with the typical vanilla flavor. At initial biomass concentration of 0.5 gDM/l, maximum values of vanillin concentration (239 ± 15 mg/l), vanillin yield on consumed ferulic acid (0.66 ± 0.03 mol/mol) and vanillin volumetric productivity (10.9 ± 0.7 mg/lh) were obtained after 22 h.  相似文献   

16.
This work optimized the novel biotransformation process of podophyllotoxin to produce podophyllic acid by Pseudomonas aeruginosa CCTCC AB93066. Firstly, the biotransformation process was significantly affected by medium composition. 5 g/l of yeast extract and 5 g/l of peptone were favorable for podophyllic acid production (i.e. 25.3 ± 3.7 mg/l), while not beneficial for the cell growth of P. aeruginosa. This indicated that the accumulation of podophyllic acid was not corresponded well to the cell growth of P. aeruginosa. 0 g/l of sucrose was beneficial for podophyllic acid production (i.e. 34.3 ± 3.9 mg/l), which led to high podophyllotoxin conversion (i.e. 98.2 ± 0.1%). 1 g/l of NaCl was the best for podophyllic acid production (i.e. 47.6 ± 4.0 mg/l). Secondly, the production of podophyllic acid was significantly enhanced by fed-batch biotransformation. When each 100 mg/l of podophyllotoxin was added to the biotransformation system after 4, 10 and 25 h of culture, respectively, podophyllic acid concentration reached 99.9 ± 12.3 mg/l, enhanced by 284% comparing to one-time addition (i.e. 26.0 ± 2.1 mg/l). The fundamental information obtained in this study provides a simple and efficient way to produce podophyllic acid.  相似文献   

17.
The conversion of glycerol to 1,3-propanediol (1,3-PD) using Klebsiella pneumoniae CGMCC 1.6366 under aerobic condition was scaled up from scale 5 to 50,000 l in series. Several parameters including power input P/Vl, agitation rate n, impeller tip speed nD, superficial gas velocity us, and Res were investigated as the criteria for scaling up. Impeller tip speed was chosen as the main criterion. It was also noticed less aeration was favored in that less electron will be shunted to electron transfer chain. The fermentation in 500 l bioreactor produced 66.8 g 1,3-PD with the yield of 0.55 mol mol?1 at agitation rate and aeration of 130 rpm and 0.14 vvm air flow. Using these empirically obtained control concepts we successfully scaled up in 500–50,000 l pilot-scale reactors. The final 1,3-PD concentrations in 50,000 l bioreactor amounted to 63.3 g l?1 with the yield of 0.5 mol mol?1.  相似文献   

18.
《Ecological Indicators》2007,7(2):371-386
Aquatic macroinvertebrates have been among the principal biological communities used for freshwater monitoring and assessment for several decades, but macroinvertebrate biomonitoring has not incorporated nutrient measures into assessment strategies. Two nutrient biotic indices were developed for benthic macroinvertebrate communities, one for total phosphorus (NBI-P), and one for nitrate (NBI-N). Weighted averaging was used to assess the distributions of 164 macroinvertebrate taxa across TP and NO3 gradients and to establish nutrient optima and subsequent nutrient tolerance values. Both the NBI-P and NBI-N were correlated with increasing mean TP and NO3 values (r = 0.68 and r = 0.57, respectively, p < 0.0001). A three-tiered scale of eutrophication for TP and NO3 (oligotrophic: ≤0.0175 mg/l TP, ≤0.24 mg/l NO3, mesotrophic: >0.0175 to ≤0.065 mg/l TP, >0.24 to ≤0.98 mg/l NO3, eutrophic: >0.065 mg/l TP, >0.98 mg/l NO3) was also established through cluster analysis of invertebrate communities using Bray–Curtis (quantitative) similarity. Significant differences (p < 0.0001) were detected between median NBI-P and NBI-N scores among the three trophic states. Therefore, the nutrient biotic indices (NBIs) appear to accurately reflect changes in stream trophic state. Multimetric water quality assessments were also used to identify thresholds of impairment among the three trophic states. Hodges-Lehman estimation indicated that the greatest change in assessment results occurred between the mesotrophic and eutrophic states. The eutrophic state also represented the highest percentage of overall impairment. Therefore, the suggested threshold for nutrient impairment is the boundary between mesotrophic and eutrophic (0.065 mg/l TP and 0.98 mg/l NO3). The corresponding NBI-P score (6.1) and NBI-N score (6.0) for this threshold incorporate predictive capabilities into the NBIs. The NBI and index score thresholds of impairment will provide monitoring programs with a robust measure of stream nutrient status and serve as a useful tool in enforcing regional nutrient criteria.  相似文献   

19.
Kinetics of cellulose hydrolysis with halostable cellulase from a marine Aspergillus niger was analyzed at different salinities. Cellulase activity in 8% NaCl solution was 1.43 folds higher than that in NaCl free solution. Half saturation constant, Km (15.6260 g/L) and the rate constant of deactivation, Kde (0.3369 g/L h) in 8% NaCl solution was lower than that (18.6364 g/L), 0.3754 (g/L h) in NaCl free solution. The maximum initial hydrolysis velocity, Vmax (25.5295 g/L h), in 8% NaCl solution was higher than that in NaCl free solution (25.0153 g/L h). High salinity increased affinity to the cellulase to the substrate and thermostability. Halostable cellulase from a marine Aspergillus niger was valuable for cellulose hydrolysis under high salinity conditions.  相似文献   

20.
Sheep (BW = 39.9 kg, n = 16) and goats (BW = 32.8 kg, n = 16) were used in a completely randomized design to determine the effect of short-term pre-slaughter diet and feed deprivation (FD) time on pH and microbial loads in the gastrointestinal tract (GIT) contents. In a 2 × 2 × 2 factorial treatment arrangement, the main effects of species, diet, and FD time prior to slaughter and their interactions were studied. Animals were fed either a hay or concentrate diet for 4 d and then feed deprived for either 12 or 24-h prior to slaughter. The pH of rumen and colon contents as well as weight of GIT was measured. The contents of rumen and rectum were also sampled for microbial analysis. The GIT of sheep (1.82 kg) was heavier (P < 0.05) than that of goats (1.46 kg). The 12-h FD group (1.74 kg) had a higher (P < 0.05) GIT weight than the 24-h FD group (1.53 kg). Hay-fed animals had higher (P < 0.05) rumen (7.08 vs. 6.43) and colon pH values (7.02 vs. 6.56) than those of the concentrate-fed animals. The 24-h FD group (3.39 ± 0.272 log10CFU/g) contained more (P < 0.05) Escherichia coli in the rumen than did the 12-h FD (2.17 ± 0.272 log10CFU/g) group. The concentrate-fed animals (3.49 ± 0.289 log10CFU/g) had higher (P < 0.05) coliform counts in the rumen than the hay-fed animals (2.43 ± 0.289 log10CFU/g). The 24-h FD group (3.42 ± 0.289 log10CFU/g) had a higher (P < 0.05) concentration of coliform than did the 12-h FD group (2.50 ± 0.289 log10CFU/g). The 24-h FD group (3.31 ± 0.259 log10CFU/g) also had higher (P < 0.05) Enterobacteriaceae counts in the rumen than did in the 12-h FD group (2.47 ± 0.259 log10CFU/g). Goats (5.71 ± 0.158 log10CFU/g) had lower (P < 0.05) total plate counts in the rumen compared to sheep (6.27 ± 0.158 log10CFU/g). The concentrate-fed animals had higher (P < 0.05) E. coli (6.44 vs. 4.01 ± 0.468 log10CFU/g), total coliform (6.74 vs. 4.16 ± 0.469 log10CFU/g), Enterobacteriaceae (6.93 vs. 3.83 ± 0.651 log10CFU/g), and total plate counts (7.79 vs. 7.28 ± 0.170 log10CFU/g) in the rectum than the hay-fed animals. The results indicate that microbial loads in the GIT of small ruminants may be reduced by either feeding hay for 4 d or depriving feed for 12-h prior to slaughter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号