首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diazomethane reacted with methyl 3,6-dideoxy-3-nitro-α-l-glucopyranoside (1) under catalysis by boron trifluoride to give the 2-O-methyl and the 2,4-di-O-methyl derivative (2 and 3). Similarly, the 4-acetate (4) of 1 afforded the 4-acetate (5) of 2. Boron trifluoride-catalyzed acetylation of 2 at about ?60° gave 5 whereas, at 0°, acetolysis took place producing 1,4-di-O-acetyl-3,6-dideoxy-2-O-methyl-3-nitro-α-l-glucopyranose (6). Diazomethane treatment of methyl 3,4,6-trideoxy-3-nitro-α-l-erythro- and -α-l-threo-hex-3-enopyranosides 7 and 8 furnished the corresponding 2-O-methyl derivatives 9 and 10. With triphenylphosphine and carbon tetrachloride, 2 yielded methyl 4-chloro-3,4,6-trideoxy-2-O-methyl-3-nitro-α-l-galactopyranoside (11) which was dehydrochlorinated to 9. Borohydride reduction of 9 gave methyl 3,4,6-trideoxy-2-O-methyl-3-nitro-α-l-xylo-hexopyranoside (12). Catalytic hydrogenation of 3 and 12 afforded the corresponding amino sugar hydrochlorides 13 and 15. Treatment of 5 with ammonia gave a 4-amino-3-nitro glycoside (isolated as the hydrochloride 17) hydrogenation of which led to methyl 3,4-diamino-3,4,6-trideoxy-2-O-methyl-α-l-glucopyranoside dihydrochloride (19). The N-acetyl derivatives (14, 16, 18, and 20) of the four new amino sugars were prepared.  相似文献   

2.
Methyl 2,3-O-benzylidene-6-deoxy-α-L-mannopyranoside (2) reacted with butyllithium to give a mixture of 1,5-anhydro-3-C-butyl-1,2,6-trideoxy-L-ribo-hex-1-enitol (3) and its L-arabino analogue (4), together with methyl 2,3,6-trideoxy-α-L-erythro-hex-2-enopyranoside (5). In contrast, the 4-O-methyl analogue (8) of 2 was converted by butyllithium into methyl 2,6-dideoxy-4-O-methyl-α-L-erythro-hexo-pyranosid-3-ulose (9), which was further characterized as its oxime 10. The 4-O-benzyl analogue of 8, obtained as two separate diastereoisomers (6 and 7) differing in configuration at C-2 of the dioxolane ring, gave a complex mixture of products on treatment with butyllithium.  相似文献   

3.
A series of thieno[2,3-d]pyrimidine alkyne Mannich base derivatives (7a-e, 8a-e) and thieno[2,3-d]pyrimidine 1,3,4-oxadiazole derivatives (9a-e, 10a-e) have been synthesized and evaluated for their neuroprotective and neurotoxicity activities where 9a, 10d displayed good neuroprotection 10.6 and 11.88?µg/mL respectively against the H2O2 induced cell death at the EC50 values and 9b, 9d showed respective toxic effects on PC12 cells at CC50 86.12 and 94.16?µg/mL. Compounds 9a, 9e, 10a and 10b showed strong antibacterial activity against two gram positive (S. aureus, B. subtilis) and two gram-negative strains (E. coli, P. aeruginosa) and showed good binding affinities with C(30) carotenoid dehydrosqualene synthase, Gyrase A and LpxC. This is the first report for the demonstration of thieno[2,3-d] pyrimidine derivatives as promising neuroprotective agents against H2O2 induced neurotoxicity on PC12 cells.  相似文献   

4.
Partial p-nitrobenzoylation of methyl (methyl 2-O-methyl-α-d-galactopyranosid)uronate (1) gave the 3-p-nitrobenzoate 2 in good yield. Treatment of 2 or methyl (methyl 2,3-di-O-benzoyl-α-d-galactopyranosid)uronate (11) with diazomethane-BF3-etherate gave, in addition to the expected 4-methyl ethers, by-products resulting from lengthening of the carbon chain. The by-products were formulated as derivatives of methyl 4,7-anhydro-α-d-galacto-heptopyranosid-6-ulose dimethy acetal on the basis of p.m.r. and i.r. spectral data, by analysis of their mass-spectral fragmentation pattern, and by chemical transformations.  相似文献   

5.
Acetaminophen, also called paracetamol, is found in Tylenol, Excedrin and other products as over–the‐counter medicines. In this study, acetaminophen as a luminol signal enhancer was used in the chemiluminescence (CL) substrate solution of horseradish peroxidase (HRP) for the first time. The use of acetaminophen in the luminol–HRP–H2O2 system affected not only the intensity of the obtained signal, but also its kinetics. It was shown that acetaminophen was to be a potent enhancer of the luminol–HRP–H2O2 system. A putative enhancement mechanism for the luminol–H2O2–HRP–acetaminophen system is presented. The resonance of the nucleophilic amide group and the benzene ring of acetaminophen structure have a great effect on O‐H bond dissociation energy of the phenol group and therefore on phenoxyl radical stabilization. These radicals act as mediators between HRP and luminol in an electron transfer reaction that generates luminol radicals and subsequently light emission, in which the intensity of CL is enhanced in the presence of acetaminophen. In addition, a simple method was developed to detect acetaminophen by static injection CL based on the enhanced CL system of luminol–H2O2–HRP by acetaminophen. Experimental conditions, such as pH and concentrations of substrates, have been examined and optimized. The proposed method exhibited good performance, the linear range was from 0.30 to 7.5 mM, the relative standard deviation was 1.86% (n = 10), limit of detection was 0.16 mM and recovery was 99 ± 4%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
《Luminescence》2003,18(4):203-206
A method for reactivation of inactivated horseradish peroxidase (HRP) was studied and exploited in an assay for hydrogen peroxide (H2O2). Addition of imidazole into a mobile phase made continuous determination of hydrogen peroxide (H2O2) possible by micro?ow injection based on horseradish‐catalysed luminol chemiluminescence. For reproducible determination of H2O2 with HRP, the inactivation of HRP via protonation of the active sites of HRP caused by reaction with H2O2 must be avoided. We successfully reactivated protonated HRP (inactive HRP) with exogenous imidazole in the mobile phase of the micro?ow injection system. The imidazole successfully removed the attached proton from the inactive sites of the HRP. This assay was reproducible (within‐run reproducibility, CV = 4.0%) and the detection limit for H2O2 was 5 pmol. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Reinvestigation of the reaction of methyl 2,3-O-isopropylidene-4-O-toluene-p-sulphonyl-α-d-lyxopyranoside (4) with azide ion has shown that methyl 4-deoxy-2,3-O-isopropylidene-β-l-erythro-pent-4-enopyranoside (8, ~51.5%) is formed, as well as the azido sugar 7 (~48.5%) of an SN2 displacement. The unsaturated sugar 8 was more conveniently prepared by heating the sulphonate 4 with 1,5-diazabicyclo-[5.4.0]undec-5-ene. An azide displacement on methyl 2,3-O-isopropylidene-4-O-toluene-p-sulphonyl-β-l-ribopyranoside (12) furnished methyl 4-azido-4-deoxy-2,3-O-isopropylidene-α-d-lyxopyranoside (13, ~66%) and the unsaturated sugar 14 (~28.5%), which was also prepared by heating the sulphonate with 1,5-diazabicyclo[5.4.0]undec-5-ene. Deamination of methyl 4-amino-4-deoxy-2,3-O-isopropylidene-α-d-lyxopyranoside (5), prepared by reduction of 13, with sodium nitrite in 90% acetic acid at ~0°, yielded methyl 2,3-O-isopropylidene-α-d-lyxopyranoside (10a, 26.2%), methyl 2,3-O-isopropylidene-β-l-ribofuranoside (21a, 18.4%), and the corresponding acetates 10b (34.5%) and 21b (21.3%). These products are considered to arise by solvolysis of the bicyclic oxonium ion 29, formed as a consequence of participation by the ring-oxygen atom in the deamination reaction. Similar deamination of methyl 4-amino-4-deoxy-2,3-O-isopropylidene-β-l-ribopyranoside (6) afforded, exclusively, the products 10a (34.4%) and 10b (65.6%) of inverted configuration. Deamination of methyl 5-amino-5-deoxy-2,3-O-isopropylidene-β-d-ribofuranoside (20) gave 22ab, but no other products. An alternative synthesis of the amino sugars 5 and 6 is available by conversion of 10a into methyl 2,3-O-isopropylidene-β-l-erythro-pentopyranosid-4-ulose (11), followed by reduction of the derived oxime 15 with lithium aluminium hydride.  相似文献   

8.
Deamination of methyl 5-amino-5,6-dideoxy-2,3-O-isopropylidene-α-L-talofuranoside (6) with sodium nitrite in 90% acetic acid at ≈0° gave methyl 6-deoxy-2,3-O-isopropylidene-α-L-talofuranoside (8a) and methyl 6-deoxy-2,3-O-isopropylidene-β-D-allofuranoside (9a) (combined yield, 12.3%), the corresponding 5-acetates 8b (2.9%) and 9b (26.4%), and the unsaturated sugar methyl 5,6-dideoxy-2,3-O-isopropylidene-β-D-ribo-hex-5-enofuranoside (10) (43.5%). Similar deamination of methyl 5-amino-5,6-dideoxy-2,3-O-isopropylidene-β-D-allofuranoside (7) gave 8a and 9a (combined yield, 20.4%), 8b (12.5%), 9b (25.8%), 10 (7.7%), and the rearranged products 6-deoxy-2,3-O-isopropylidene-5-O-methyl-L-talofuranose (13a, 17.5%) and the corresponding 1-acetate 13b (14.1%). A synthesis of 13a was accomplished by successive methylation and debenzylation of the conveniently prepared benzyl 6-deoxy-2,3-O-isopropylidene-α-L-talofuranoside (15b). Differences between the two sets of deamination products can be rationalized by assuming that the carbonium-ion intermediate reacts in the initial conformation assumed, before significant interconversion to other conformations occurs.  相似文献   

9.
Vegetative growth and reproductive growth strongly competes with each other during panicle development in litchi (Litchi chinensis Sonn.). We herein investigated the roles of hydrogen peroxide and nitric oxide in the competition between growth of rudimentary leaves and panicle development. The results show that the chilling-induced flowering increased H2O2 and NO contents in the mixed buds. Treatments with sodium nitroprusside (SNP), the NO donor, and methyl viologen dichloride hydrate (MV), the superoxide generator, increased NO and H2O2 contents in the mixed buds. MV and SNP treatments promoted abscission of rudimentary leaves and encouraged panicle development before or at the stage of panicle emergence. The nitric oxide synthase inhibitor N ω -nitro-L-arginine methyl ester (L-NAME) and the H2O2 trapper dimethylthiourea (DMTU) inhibited a chilling-induced flowering. SNP promoted the expression of litchi LEAFY homolog (LcLFY). These promotive effects were suppressed by the NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide (PTIO) and the H2O2 trapper, DMTU. The results suggest that H2O2 and NO promote reproductive growth by inhibiting the growth of rudimentary leaves as well as by promoting the expression of the flower related gene, LcLFY.  相似文献   

10.
The synthesis of the fully benzylated α- and β-d-glucopyranosyluronic esters of 1-benzyl N-benzyloxycarbonyl-l-aspartic and -glutamic acids and N-(tert-butoxycarbonyl)-l-phenylalanine, followed by hydrogenolysis, afforded the respective anomers of the 1-O-acyl-d-glucopyranuronic acids 2, 7, and 12. Esterification of both anomers of the N-acetylated derivatives of 2 and 7 by diazomethane was accompanied by glycosyl-bond cleavage, and, in the case of the α anomers, with concomitant 1→2 acyl migration to give, after O-acetylation, the 2-O-acyl O-acetyl methyl ester derivatives 5 and 10, respectively. Similarly, 12α yielded methyl 1,3,4-tri-O-acetyl-2-O-[N-(tert-butoxycarbonyl)-l-phenylalanyl]-d-glucopyranuronate and an analogue having a furanurono-6,3-lactone structure. Esterification of the C-5 carboxyl group, in 1-O-acyl-α-d-glucopyranuronic acids by methanol in the presence of the BF3?-MeOH reagent (1–1.5 equiv.) proceeded without acyl migration. By using this procedure, followed by acetylation, the N-acetylated derivative of afforded methyl 2,3,4-tri-O-acetyl-1-O-(1-methyl N-acetyl-l-glutam-5-oyl)-α-d-glucopyranuronate, and 12α gave methyl 2,3,4-tri-O-acetyl-1-O-(N-acetyl-l-phenylalanyl)-α-d-glucopyranuronate; the formation of the latter involved cleavage of the tert-butoxycarbonyl group by BF3, followed by N-acetylation in the next step.  相似文献   

11.
The possibility of mutual effects of 2,4-D and horseradish (Armoracia lapathifolia L.) peroxidase on each other has been explored by four procedures. (i) Compounds I, II, and III of horseradish peroxidase (HRP) and H2O2 were exposed to 2,4-D. (ii) Extracts from batchwise operations of HRP + H2O2 and 2,4-D were analyzed for oxidation products by means of thin layer chromatography. (iii) The velocity of the IAA oxidase reaction with HRP as catalyst, and (iv) Km and Vs of the overall peroxidation of guaiacol by HRP + H2O2, were determined in the absence and presence of 2,4-D. The results failed to show any effect of 2,4-D; only at very high concentrations did 2,4-D slightly inhibit the oxidation of IAA by one isoperoxidase. It is concluded that 2,4-D does not promote growth in plants by hampering a peroxidase-catalyzed IAA oxidation. It seems probable that 2,4-D perturbs the isoperoxidase pattern by acting at some step prior to the release of the enzyme from its site of synthesis.  相似文献   

12.
Reaction of [Co(CO)3(NO)] with [2-NMe3-closo-2-CB10H10] in refluxing CH2Cl2 affords the mono- and di-cobalt complexes [1-NMe3-2-CO-2-NO-closo-2,1-CoCB10H10] (3) and [2,7-{Co(CO)(NO)}-7-(μ-H)-1-NMe3-2-CO-2-NO-closo-2,1-CoCB10H9] (4), respectively, of which 4 contains formally both Co(I) and Co(-I) centers. Compound 4 reacts with CO to give 3, or with donor ligands L in the presence of Me3NO to afford simple substituted species, [1-NMe3-2-L-2-NO-closo-2,1-CoCB10H10] (compounds 5; L = PEt3, PPh3, CNBut).  相似文献   

13.
Inorganic nitrite, derived from the reduction of nitrate in saliva, has recently emerged as a protagonist in nitric oxide (?NO) biology as it can be univalently reduced to ?NO, in the healthy human stomach. Important physiological implications have been attributed to nitrite-derived ?NO in the gastrointestinal tract, namely modulation of host defense, blood flow, mucus formation and motility. At acidic pH, nitrite generates different nitrogen oxides depending on the local microenvironment (redox status, gastric content, pH, inflammatory conditions), including ?NO, nitrogen dioxide (?NO2), dinitrogen trioxide (N2O3), and peroxynitrite. Thus, the gastric environment is a significant source of nitrating and nitrosating agents, especially in individuals consuming a nitrate/nitrite-rich diet on a daily basis. Both, the gastric lumen and mucosa contain putative targets for nitration, not only proteins and lipids from ingested aliments but also endogenous proteins secreted by the oxyntic glands. The physiological and functional consequences of nitration of gastric mediators will impact on local processes including food digestion and ulcerogenesis. Additionally, gastric nitration products (such as nitrated lipids) may be absorbed and affect systemic pathways. Thus, dietary ingestion of nitrate will have direct consequences for endogenous protein nitration, as indicated by our preliminary data.  相似文献   

14.
A new procedure for fluorescent detection of intracellular H2O2 in cells transiently expressing the catalyst Horseradish Peroxidase (HRP) is setup and validated. More specific reaction with HRP largely amplifies oxidation of the redox probes used (2′,7′-dichlorodihydrofluorescein and dihydrorhodamine). Expression of HRP does not affect cell viability. The procedure reveals MAO activity, a primary intracellular H2O2 source, in monolayers of intact transfected cells. The probes oxidation rate responds specifically to the MAO activation/inhibition. Their oxidation by MAO-derived H2O2 is sensitive to intracellular H2O2 competitors: it decreases when H2O2 is removed by pyruvate and it increases when the GSH-dependent removal systems are impaired. Specific response was also measured after addition of extracellular H2O2. Oxidation of the fluorescent probes following reaction of H2O2 with endogenous HRP overcomes most criticisms in their use for intracellular H2O2 detection. The method can be applied for direct determination in plate reader and is proposed to detect H2O2 generation in physio-pathological cell models.  相似文献   

15.
Heat shock (HS, 40°C, 10 min) induces hypericin production, nitric oxide (NO) generation, and hydrogen peroxide (H2O2) accumulation of Hypericum perforatum suspension cells. Catalase (CAT) and NO specific scavenger 2–4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) suppress not only the HS-induced H2O2 generation and NO burst, but also the HS-triggered hypericin production. Hypericin contents of the cells treated with both NO and H2O2 are significantly higher than those of the cells treated with NO alone, although H2O2 per se has no effects on hypericin production of the cells, which suggests the synergistic action between H2O2 and NO on hypericin production. NO treatment enhances H2O2 levels of H. perforatum cells, while external application of H2O2 induces NO generation of cells. Thus, the results reveal a mutually amplifying action between H2O2 and NO in H. perforatum cells. CAT treatment inhibits both HS-induced H2O2 accumulation and NO generation, while cPTIO can also suppress H2O2 levels of the heat shocked cells. The results imply that H2O2 and NO may enhance each other’s levels by their mutually amplifying action in the heat shocked cells. Membrane NAD(P)H oxidase inhibitor diphenylene iodonium (DPI) and nitric oxide synthase (NOS) inhibitor S,S′-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea (PBITU) not only inhibit the mutually amplifying action between H2O2 and NO but also abolish the synergistic effects of H2O2 and NO on hypericin production, showing that the synergism of H2O2 and NO on secondary metabolite biosynthesis might be dependent on their mutual amplification. Taken together, data of the present work demonstrate that both H2O2 and NO are essential for HS-induced hypericin production of H. perforatum suspension cells. Furthermore, the results reveal a special interaction between the two signal molecules in mediating HS-triggered secondary metabolite biosynthesis of the cells.  相似文献   

16.
A sensitive and noble amperometric horseradish peroxidase (HRP) biosensor is fabricated via the deposition of gold nanoparticles (AuNPs) onto a three-dimensional (3D) porous carbonized chicken eggshell membrane (CESM). Due to the synergistic effects of the unique porous carbon architecture and well-distributed AuNPs, the enzyme-modified electrode shows an excellent electrochemical redox behavior. Compared with bare glass carbon electrode (GCE), the cathodic peak current of the enzymatic electrode increases 12.6 times at a formal potential of −100mV (vs. SCE) and charge-transfer resistance decreases 62.8%. Additionally, the AuNPs-CESM electrode exhibits a good biocompatibility, which effectively retains its bioactivity with a surface coverage of HRP 6.39×10−9 mol cm−2 (752 times higher than the theoretical monolayer coverage of HRP). Furthermore, the HRP-AuNPs-CESM-GCE electrode, as a biosensor for H2O2 detection, has a good accuracy and high sensitivity with the linear range of 0.01–2.7 mM H2O2 and the detection limit of 3μM H2O2 (S/N = 3).  相似文献   

17.
18.
Treatment of methyl 4,6-O-benzylidene-2,3-dideoxy-3-nitro-β-D-erythro-hex-2-enopyranoside (2) with nitrous acid afforded the title 2-nitro sugar (4). The same product was also prepared by heterogeneous reaction of methyl 2-O-acetyl-4,6-O-benzylidene-3-deoxy-3-nitro-β-D-glucopyranoside (1) with sodium nitrite in the presence of a phase-transfer catalyst. Acid hydrolysis of 4 gave methyl 2-deoxy-2-nitro-β-D-glucopyranoside (7). Acetylation of 4, followed by elimination of acetic acid, afforded a 2-nitroalkene (6). 71e 3-acetate 5 reacted with ammonia, dimethylamine, and 2,4-pentanedione to give the products 8, 9, and 10, respectively, having the gluco configuration.  相似文献   

19.
A panel of six complementary monodeoxy and mono-O-methyl congeners of methyl β-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (1) were synthesized by stereoselective glycosylation of monodeoxy and mono-O-methyl monosaccharide acceptors with a 2-O-acetyl-glucosyl trichloroacetimidate donor, followed by a two-step oxidation-reduction sequence at C-2′. The β-manno configuration of the final deprotected congeners 2-7 was confirmed by measurement of 1JC1,H1 heteronuclear and 3J1′,2′ homonuclear coupling constants. These disaccharide derivatives will be used to map the epitope recognized by a protective anti-Candida albicans monoclonal antibody C3.1 (IgG3) and to determine its key polar contacts with the binding site.  相似文献   

20.
Inhibition of terminal oxidases by nitric oxide (NO) has been extensively investigated as it plays a role in regulation of cellular respiration and pathophysiology. Cytochrome bd is a tri-heme (b558, b595, d) bacterial oxidase containing no copper that couples electron transfer from quinol to O2 (to produce H2O) with generation of a transmembrane protonmotive force. In this work, we investigated by stopped-flow absorption spectroscopy the reaction of NO with Escherichia coli cytochrome bd in the fully oxidized (O) state. We show that under anaerobic conditions, the O state of the enzyme binds NO at heme d with second-order rate constant kon = 1.5 ± 0.2 × 102 M−1 s−1, yielding a nitrosyl adduct (d3+–NO or d2+–NO+) with characteristic optical features (an absorption increase at 639 nm and a red shift of the Soret band). The reaction mechanism is remarkably different from that of O cytochrome c oxidase in which the heme–copper binuclear center reacts with NO approximately three orders of magnitude faster, forming nitrite. The data allow us to conclude that in the reaction of NO with terminal oxidases in the O state, CuB is indispensable for rapid oxidation of NO into nitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号