首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial artificial chromosomes (BACs) are capable of propagating large fragments of DNA and have become an invaluable tool for studying genome biology. To fill a phylogenetic gap in available genomic sequence and to complement ongoing molecular and genetic studies, we have generated a BAC library for the marine amphipod crustacean, Parhyale hawaiensis. The library was generated from genomic DNA isolated from whole adult animals and comprises 129,024 individual clones. The median insert size is ~ 140 kb and the genomic coverage is approximately five genome equivalents. We have screened the Parhyale BAC library for developmentally relevant genes and characterized the genomic organization of four genes: a hedgehog ortholog, and three Pax3/7 paralogs. Preliminary analysis suggests that introns are larger and more prevalent in Parhyale than in other arthropods whose genomes have been sequenced, which may partly account for the large genome size in Parhyale.  相似文献   

2.
Chitin, which is a polymer of β-(1–4) linked N-acetyl-d-glucosamine (GlcNAc) residues, is one of the most abundant renewable resources in nature, after cellulose. In this study, we found some native Mucor strains, which can use GlcNAc and chitin substrates as carbon sources for growth and ethanol production. One of these strains, M. circinelloides NBRC 6746 produced 18.6 ± 0.6 g/l of ethanol from 50 g/l of GlcNAc after 72 h and the maximum ethanol production rate was 0.75 ± 0.1 g/l/h. Furthermore, M. circinelloides NBRC 4572 produced 6.00 ± 0.22 and 0.46 ± 0.04 g/l of ethanol from 50 g/l of colloidal chitin and chitin powder after 16 and 12 days, respectively. We also found an extracellular chitinolytic enzyme producing strain M. ambiguus NBRC 8092, and successfully improved ethanol productivity of NBRC 4572 from colloidal chitin using crude chitinolytic enzyme derived from NBRC 8092. The ethanol titer reached 9.44 ± 0.10 g/l after 16 days. These results were the first bioethanol production from GlcNAc and chitin substrates by native organisms, and also suggest that these Mucor strains have great potential for the simultaneous saccharification and fermentation (SSF) of chitin biomass.  相似文献   

3.
4.
The perennial herbaceous crop Arundo donax is a potential feedstock for second-generation bioethanol production. In the present work, two different process options were investigated for the conversion of two differently steam-pretreated batches of A. donax. The pretreated raw material was converted to ethanol with a xylose-consuming Saccharomyces cerevisiae strain, VTT C-10880, by applying either separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF). The highest overall ethanol yield and final ethanol concentration were achieved using SHF (0.27 g g?1 and 20.6 g L?1 compared to 0.24 g g?1 and 19.0 g L?1 when SSF was used). The performance of both SHF and SSF was improved by complementing the cellulolytic enzymes with hemicellulases. The higher amount of acetic acid in one of the batches was shown to strongly affect xylose consumption in the fermentation. Only half of the xylose was consumed when batch 1 (high acetic acid) was fermented, compared to that 94% of the xylose was consumed in fermentation of batch 2 (lower acetic acid). Furthermore, the high amount of xylooligomers present in the pretreated materials considerably inhibited the enzymatic hydrolysis. Both the formation of xylooligomers and acetic acid thus need to be considered in the pretreatment process in order to achieve efficient conversion of A. donax to ethanol.  相似文献   

5.
We previously reported a metabolic engineering strategy to develop an isopropanol producing strain of Cupriavidus necator leading to production of 3.4 g L−1 isopropanol. In order to reach higher titers, isopropanol toxicity to the cells has to be considered. A toxic effect of isopropanol on the growth of C. necator has been indeed observed above a critical value of 15 g L−1. GroESL chaperones were first searched and identified in the genome of C. necator. Native groEL and groES genes from C. necator were over-expressed in a strain deleted for PHA synthesis. We demonstrated that over-expressing groESL genes led to a better tolerance of the strain towards exogenous isopropanol. GroESL genes were then over-expressed within the best engineered isopropanol producing strain. A final isopropanol concentration of 9.8 g L−1 was achieved in fed-batch culture on fructose as the sole carbon source (equivalent to 16 g L−1 after taking into account evaporation). Cell viability was slightly improved by the chaperone over-expression, particularly at the end of the fermentation when the isopropanol concentration was the highest. Moreover, the strain over-expressing the chaperones showed higher enzyme activity levels of the 2 heterologous enzymes (acetoacetate carboxylase and alcohol dehydrogenase) of the isopropanol synthetic operon, translating to a higher specific production rate of isopropanol at the expense of the specific production rate of acetone. Over-expressing the native chaperones led to a 9–18% increase in the isopropanol yield on fructose.  相似文献   

6.
《Process Biochemistry》2014,49(1):25-32
The compound 1,2,4-butanetriol (BT) is a valuable chemical used in the production of plasticizers, polymers, cationic lipids and other medical applications, and is conventionally produced via hydrogenation of malate. In this report, BT is biosynthesized by an engineered Escherichia coli from d-xylose. The pathway: d-xylose  d-xylonate  2-keto-3-deoxy-d-xylonate  3,4-dihydroxybutanal  BT, was constructed in E. coli by recruiting a xylose dehydrogenase and a keto acid decarboxylase from Caulobacter crescentus and Pseudomonas putida, respectively. Authentic BT was detected from cultures of the engineered strain. Further improvement on the strain was performed by blocking the native d-xylose and d-xylonate metabolic pathways which involves disruption of xylAB, yjhH and yagE genes in the host chromosome. The final construct produced 0.88 g L−1 BT from 10 g L−1 d-xylose with a molar yield of 12.82%. By far, this is the first report on the direct production of BT from d-xylose by a single microbial host. This may serve as a starting point for further metabolic engineering works to increase the titer of BT toward industrial scale viability.  相似文献   

7.
The aim of the present work is to develop an osmotolerant yeast strain with high lactose utilization and further use it to ferment lactose rich whey permeate for high ethanol titer and to reduce energy consumption. Ethanol production and growth rate of selected MTCC 1389 strain were quite high in whey containing lactose up to 150 g/L but it remains constant in lactose concentration (200 g/L) as cells encountered osmotic stress. Thus, strain MTCC 1389 was used for an adaptation to lactose concentration 200 g/L for 65 days and used further for fermentation of lactose rich whey. Fermentation with an adapted K. marxianus MTCC 1389 strain in laboratory fermenter resulted in ethanol titer of 79.33 g/L which is nearly 17.5% higher than the parental strain (66.75 g/L). Expression analysis of GPD1, TPS1and TPS2 found upregulated in lactose adapted K. marxianus strain as compared to the parental strain. These results suggest that an adapted K. marxianus strain accumulates glycerol and trehalose in response to lactose stress and improve osmotolerance in K. marxianus cells. Thus, the study illustrates that evolutionary engineering is an efficient strategy to obtain a superior biofuel yeast strain, which efficiently ferments four-fold concentrated cheese whey.  相似文献   

8.
《Process Biochemistry》2010,45(7):1196-1200
A process for conversion of cassava flour to ethanol was developed. This involved direct inoculation of Aspergillus awamori spores into a cassava flour paste and incubation for some period during which hydrolytic enzymes are produced (solid state culture or koji production) and subsequent addition of water and yeast cells, during which there is simultaneous hydrolysis and ethanol production (submerged culture). When cassava flour alone was used for the solid state phase, the paste was very sticky, making mixing and aeration difficult. However, addition of rice bran improved the texture and enzyme production. The optima rice bran concentration, spore inoculum concentration, and duration of solid state culture before submerged culture were 20%, 6.16 × 106 spores/100 g, and 2 days, respectively. Under these optimum conditions, a high ethanol concentration of 120 g/L and ethanol yield of 0.309 g-ethanol/g-cassava flour were obtained. This ethanol yield corresponds to 0.44 g-ethanol/g-cassava starch.  相似文献   

9.
During pyruvate production, ethanol is produced as a by-product, which both decreases the amount of pyruvate and makes the recovery of pyruvate more difficult. Pyruvate decarboxylase (PDC, EC 4.1.1.1), which degrades pyruvate to acetaldehyde and ultimately to ethanol, is a key enzyme in the pyruvate metabolism of yeast. Therefore, to order to increase the yield of pyruvate in Torulopsis glabrata, targeted PDC-disrupted strains were metabolically engineered. First, T. glabrata ura3 strains that were suitable for genetic transformation were isolated and identified through ethyl methansulfonate mutagenesis, 5-fluoroortic acid media selection, and Sacchramyces cerevisiae URA3 complement. Next, the PDC gene in T. glabrata was specifically disrupted through homologous recombinant with the S. cerevisiae URA3 gene as the selective marker. The PDC activity of the disruptants was about 33% that of the parent strain. Targeted PDC gene disruption in T. glabrata was also confirmed by PCR amplification and sequencing of the PDC gene and its mutants, PDC activity staining, and PDC Western blot. The disruptants displayed higher pyruvate accumulation and less ethanol production. Under basal fermentation conditions (see Section 2), the disruptants accumulated about 20 g/L of pyruvate with 4.6 g/L of ethanol, whereas the parental strain (T. glabrata IFO005) only accumulated 7–8 g/L of pyruvate with 7.4 g/L of ethanol. Under favorable conditions in jar fermentation, the disruptants accumulated 82.2 g/L of pyruvate in 52 h.  相似文献   

10.
Processes for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low yields and product titers. Recently, Clostridium acetobutylicum fermentation products acetone, butanol, and ethanol (ABE) were shown to serve as precursors for catalytic upgrading to higher chain-length molecules that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol:acetone ratio of fermentation products needs to be increased to 2–2.5:1, while ethanol production is minimized. Here we show that the overexpression of selected proteins changes the ratio of ABE products relative to the wild type ATCC 824 strain. Overexpression of the native alcohol/aldehyde dehydrogenase (AAD) has been reported to primarily increase ethanol formation in C. acetobutylicum. We found that overexpression of the AADD485G variant increased ethanol titers by 294%. Catalytic upgrading of the 824(aadD485G) ABE products resulted in a blend with nearly 50 wt%≤C9 products, which are unsuitable for diesel. To selectively increase butanol production, C. beijerinckii aldehyde dehydrogenase and C. ljungdhalii butanol dehydrogenase were co-expressed (strain designate 824(Cb ald-Cl bdh)), which increased butanol titers by 27% to 16.9 g L−1 while acetone and ethanol titers remained essentially unaffected. The solvent ratio from 824(Cb ald-Cl bdh) resulted in more than 80 wt% of catalysis products having a carbon chain length≥C11 which amounts to 9.8 g L−1 of products suitable as kerosene or diesel blendstock based on fermentation volume. To further increase solvent production, we investigated expression of both native and heterologous chaperones in C. acetobutylicum. Expression of a heat shock protein (HSP33) from Bacillus psychrosaccharolyticus increased the total solvent titer by 22%. Co-expression of HSP33 and aldehyde/butanol dehydrogenases further increased ABE formation as well as acetone and butanol yields. HSP33 was identified as the first heterologous chaperone that significantly increases solvent titers above wild type C. acetobutylicum levels, which can be combined with metabolic engineering to further increase solvent production.  相似文献   

11.
The hyperthermophilic archaeon, Pyrococcus furiosus, grows optimally near 100 °C by fermenting sugars to acetate, carbon dioxide and molecular hydrogen as the major end products. The organism has recently been exploited to produce biofuels using a temperature-dependent metabolic switch using genes from microorganisms that grow near 70 °C. However, little is known about its metabolism at the lower temperatures. We show here that P. furiosus produces acetoin (3-hydroxybutanone) as a major product at temperatures below 80 °C. A novel type of acetolactate synthase (ALS), which is involved in branched-chain amino acid biosynthesis, is responsible and deletion of the als gene abolishes acetoin production. Accordingly, deletion of als in a strain of P. furiosus containing a novel pathway for ethanol production significantly improved the yield of ethanol. These results also demonstrate that P. furiosus is a potential platform for the biological production of acetoin at temperatures in the 70–80 °C range.  相似文献   

12.
《Process Biochemistry》2007,42(7):1090-1100
Genes encoding an esterase (EstA) and lipase (LipA) from Geobacillus thermoleovorans YN, a strain isolated from Egyptian desert soil, were cloned and the respective proteins were expressed in Escherichia coli and characterized. Whereas LipA was cloned directly by PCR amplification from genomic DNA, a genomic library composed of 3000 clones was screened on tributyrin agar plates to find EstA. An open reading frame of 744 bps encoding a polypeptide of 247 amino acid residues was identified as esterase due to its conserved GXSXG motif and its high similarity toward other carboxyl esterases. LipA (416 aa residues) is encoded by an ORF of 1251 bps and constitutes a pre-protein with a calculated molecular mass of 46 kDa including a signal sequence of 28 aa resulting in a mature lipase of 43 kDa. Both, LipA and EstA were sub-cloned and expressed under control of the temperature-inducible λ-promoter and purified by IMAC and gel filtration. The molecular mass of the purified EstA was 29 kDa. Both enzymes were most active at pH ∼9.5 and remarkably stable at pH 5 and 10.5. Temperature optima and stabilities (up to 70 °C) of both enzymes as well as their reaction kinetics and substrate spectra were determined.  相似文献   

13.
Flocculating yeast strains with good fermentation ability are desirable for brewing industry as well as for fuel ethanol production, however, the genetic diversity of the flocculating genes from natural yeast strains is largely unexplored. In this study, FLO1, FLO5, FLO9, FLO10 and FLO11 PCR products were obtained from 16 yeast strains from various sources, and the PCR product amplified from FLO1 of the self-flocculating yeast strain SPSC01 was used for the construction of expression cassette flanked by homologous fragments of the endonuclease gene HO for chromosome integration. A genetically engineered flocculating yeast BHL01 with good fermentation performance was obtained by transforming an industrial strain Saccharomyces cerevisiae 4126 with the expression cassette. The fermentation performances of SPSC01 and BHL01 in flask fermentation were compared using 208 g/L glucose. BHL01 completed the fermentation 8 h earlier than SPSC01, while no significant difference between BHL01 and S. cerevisiae 4126 was observed. In very high gravity repeated batch ethanol fermentation using 255 g/L glucose, BHL01 maintained stable flocculation for at least over 24 batches, while SPSC01 displayed severe deflocculation under the same conditions. The natural reservoir of flocculating genes from yeast strains may represent an unexplored gene source for the construction of new flocculating yeast strains for improved ethanol production.  相似文献   

14.
L-serine is a promising building block biochemical with a high theoretical production yield from glucose. Toxicity of L-serine is however prohibitive for high-titer production in E. coli. Here, E. coli lacking L-serine degradation pathways was evolved for improved tolerance by gradually increasing L-serine concentration from 3 to 100 g/L using adaptive laboratory evolution (ALE). Genome sequencing of isolated clones revealed multiplication of genetic regions, as well as mutations in thrA, thereby showing a potential mechanism of serine inhibition. Additional mutations were evaluated by MAGE combined with amplicon sequencing, revealing role of rho, lrp, pykF, eno, and rpoB on tolerance and fitness in minimal medium. Production using the tolerant strains resulted in 37 g/L of L-serine with a 24% mass yield. The resulting titer is similar to the highest production reported for any organism thereby highlighting the potential of ALE for industrial biotechnology.  相似文献   

15.
2016, was the 100 years anniversary from launching of the first industrial acetone-butanol-ethanol (ABE) microbial production process. Despite this long period and also revival of scientific interest in this fermentative process over the last 20 years, solventogenic clostridia, mainly Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharoperbutylacetonicum and Clostridium pasteurianum, still have most of their secrets. One such poorly understood mechanism is butanol tolerance, which seems to be one of the most significant bottlenecks obstructing industrial exploitation of the process because the maximum achievable butanol concentration is only about 21 g/L. This review describes all the known cellular responses elicited by butanol, such as modifications of cell membrane and cell wall, formation of stress proteins, extrusion of butanol by efflux pumps, response of regulatory pathways, and also maps both random and targeted mutations resulting in high butanol production phenotypes. As progress in the field is inseparably associated with emerging methods, enabling a deeper understanding of butanol tolerance and production, progress in these methods, including genome mining, RNA sequencing and constructing of genome scale models are also reviewed. In conclusion, a comparative analysis of both phenomena is presented and a theoretical relationship is described between butanol tolerance/high production and common features including efflux pump formation/activity, stress protein production, membrane modifications and biofilm growth.  相似文献   

16.
Molasses fermentation performance by both a cryotolerant and a thermophilic yeast (strain AXAZ-1) isolated from grapes in Greece was evaluated in an extremely wide temperature range (3–40 °C). Sequence analysis of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions assigned isolate to Saccharomyces cerevisiae. Restriction fragment length polymorphism of the mitochondrial DNA showed that strain AXAZ-1 is genetically divergent compared to other wild strains of Greek origin or commercial yeast starters. Yeast cells growing planktonically were capable of fermentation in a wide temperature spectrum, ranging from 3 °C to 38 °C. Immobilization of yeast on brewer’s spent grains (BSG) improved the thermo-tolerance of the strain and enabled fermentation at 40 °C. Time to complete fermentation with the immobilized yeast ranged from 20 days at 3 to 38 h at 40 °C. The daily ethanol productivity reached maximum (58.1 g/L) and minimum (2.5 g/L) levels at 30 and 3 °C, respectively. The aroma-related compounds’ profiles of immobilized cells at different fermentation temperatures were evaluated by using solid phase microextraction (SPME) gas chromatography–mass spectrometry (GC–MS). Molasses fermentation resulted in a high quality fermentation product due to the low concentrations of higher and amyl alcohols at all temperatures tested. Strain AXAZ-1 is very promising for the production of ethanol from low cost raw materials, as it was capable to perform fermentations of high ethanol concentration and productivities in both low and high temperatures.  相似文献   

17.
Conversion of xylose to ethanol by yeasts is a challenge because of the redox imbalances under oxygen-limited conditions. The thermotolerant yeast Kluyveromyces marxianus grows well with xylose as a carbon source at elevated temperatures, but its xylose fermentation ability is weak. In this study, a combination of the NADPH-preferring xylose reductase (XR) from Neurospora crassa and the NADP+-preferring xylitol dehydrogenase (XDH) mutant from Scheffersomyces stipitis (Pichia stipitis) was constructed. The xylose fermentation ability and redox balance of the recombinant strains were improved significantly by over-expression of several downstream genes. The intracellular concentrations of coenzymes and the reduced coenzyme/oxidized coenzyme ratio increased significantly in these metabolic strains. The byproducts, such as glycerol and acetic acid, were significantly reduced by the disruption of glycerol-3-phosphate dehydrogenase (GPD1). The resulting engineered K. marxianus YZJ088 strain produced 44.95 g/L ethanol from 118.39 g/L xylose with a productivity of 2.49 g/L/h at 42 °C. Additionally, YZJ088 realized glucose and xylose co-fermentation and produced 51.43 g/L ethanol from a mixture of 103.97 g/L xylose and 40.96 g/L glucose with a productivity of 2.14 g/L/h at 42 °C. These promising results validate the YZJ088 strain as an excellent producer of ethanol from xylose through the synthetic xylose assimilation pathway.  相似文献   

18.
A β-glucosidase gene from Putranjiva roxburghii (PRGH1) was heterologously expressed in Saccharomyces cerevisiae to enable growth on cellobiose. The recombinant enzyme was secreted to the culture medium, purified and biochemically characterized. The enzyme is a glycoprotein with a molecular weight of ∼68 kDa and exhibited enzymatic activity with β‐linked aryl substrates like pNP-Fuc, pNP-Glc, pNP-Gal and pNP-Cel with catalytic efficiency in that order. Significant enzyme activity was observed for cellobiose, however the enzyme activity was decreased with increase in chain length of glycan substrates. Using cellobiose as substrate, the enzyme showed optimal activity at pH 5.0 and 65 °C. The enzyme was thermostable up to 75 °C for 60 min. The enzyme showed significant resistance towards both glucose and ethanol induced inhibition. The recombinant S. cerevisiae strain showed advantages in cell growth, glucose and bio-ethanol production over the native strain with cellobiose as sole carbon source. In simultaneous saccharification and fermentation (SSF) experiments, the recombinant strain was used for bio-ethanol production from two different cellulosic biomass sources. At the end of the SSF, we obtained 9.47 g L−1 and 14.32 g L−1 of bio-ethanol by using carboxymethyl cellulose and pre-treated rice straw respectively. This is first report where a β-glucosidase gene from plant origin has been expressed in S. cerevisiae and used in SSF.  相似文献   

19.
《Process Biochemistry》2007,42(9):1352-1356
Gentamicin producing strain of Micromonospora echinospora was treated with chemical mutagens like EtBr and MNNG and physical mutagens such as UV was carried out to obtain a mutant with enhanced production of gentamicin. After inducing mutations screening for penicillin and kanamicin resistant mutants was done. M. echinospora EtBr-22 strain was obtained by mutations and its gentamicin production in shake flask reaches 1354 mg l−1 which is 1.53-fold higher than that of the parent strain. Application of different stress conditions like heat shock, feeding high ethanol and high NaCl concentrations during fermentation has found to be effective for the increased production of gentamicin. Production of gentamicin was increased to 1.26-fold in medium supplemented with 0.6% NaCl to 48-h-old culture.  相似文献   

20.
《Process Biochemistry》2014,49(8):1238-1244
PH is an essential factor for acetone/butanol/ethanol (ABE) production using Clostridium spp. In this study, batch fermentations by Clostridium beijerinckii IB4 at various pH values ranging from 4.9 to 6.0 were examined. At pH 5.5, the ABE production was dominant and maximum ABE concentration of 24.6 g/L (15.7 g/L of butanol, 8.63 g/L of acetone and 0.32 g/L of ethanol) was obtained with the consumption of 60 g/L of glucose within 36 h. However, in the control (without pH control), an ABE concentration of 14.1 g/L (11.0 g/L of butanol, 3.01 g/L of acetone and 0.16 g/L of ethanol) was achieved with the consumption of 41 g/L of glucose within 40 h. A considerable improvement in the productivity of up to 93.8% was recorded at controlled pH in comparison to the process without pH control. To better understand the influence of pH on butanol production, the reducing power capability and NADH-dependent butanol dehydrogenase activity were investigated, both of which were significantly improved at pH 5.5. Thus, the pH control technique is a convenient and efficient method for high-intensity ABE production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号