首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5 km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators (R2 = 0.99 for streambed width, R2 = 0.82 for riparian zone width, R2 = 0.89 for PPC, R2 = 0.40 for bank stability). These research findings will be used in a 26,000 km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia.  相似文献   

2.
3.
《Ecological Indicators》2007,7(2):339-361
Indicators of riparian ecosystem condition for headwater coastal plain streams were identified from data obtained from a reference population of reaches ranging widely in ecological condition. Each indicator was associated with some facet of hydrologic, biogeochemical, and/or habitat functioning and to channel condition, riparian zone condition, or both. Variation in the condition of the indicators among reference reaches provided a framework for developing narratives that could be used to partition and score the condition of the indicators from 0 (severely altered) to 100 (relatively unaltered). The developed narratives were the basis for creating a scoring approach for assessing stream condition at the reach scale (100-m long × 60-m wide segment). This approach was designed to be a rapid, field-based assessment method (<1 h/site) that could be applied by resource professionals with several days of training in the method. Although most alterations to riparian reaches usually affect both channels and riparian zones together, the ability to score channel and riparian zone condition separately is useful for diagnosing problems and suggesting viable restoration options at the reach scale. The assessment method is also useful for comparing the condition of reaches relative to one another, thus offering guidance for prioritizing restoration efforts at a watershed scale.  相似文献   

4.
Vegetation biomass is a key biophysical parameter for many ecological and environmental models. The accurate estimation of biomass is essential for improving the accuracy and applicability of these models. Light Detection and Ranging (LiDAR) data have been extensively used to estimate forest biomass. Recently, there has been an increasing interest in fusing LiDAR with other data sources for directly measuring or estimating vegetation characteristics. In this study, the potential of fused LiDAR and hyperspectral data for biomass estimation was tested in the middle Heihe River Basin, northwest China. A series of LiDAR and hyperspectral metrics were calculated to obtain the optimal biomass estimation model. To assess the prediction ability of the fused data, single and fused LiDAR and hyperspectral metrics were regressed against field-observed belowground biomass (BGB), aboveground biomass (AGB) and total forest biomass (TB). The partial least squares (PLS) regression method was used to reduce the multicollinearity problem associated with the input metrics. It was found that the estimation accuracy of forest biomass was affected by LiDAR plot size, and the optimal plot size in this study had a radius of 22 m. The results showed that LiDAR data alone could estimate biomass with a relative high accuracy, and hyperspectral data had lower prediction ability for forest biomass estimation than LiDAR data. The best estimation model was using a fusion of LiDAR and hyperspectral metrics (R2 = 0.785, 0.893 and 0.882 for BGB, AGB and TB, respectively, with p < 0.0001). Compared with LiDAR metrics alone, the fused LiDAR and hyperspectral data improved R2 by 5.8%, 2.2% and 2.6%, decreased AIC value by 1.9%, 1.1% and 1.2%, and reduced RMSE by 8.6%, 7.9% and 8.3% for BGB, AGB and TB, respectively. These results demonstrated that biomass accuracies could be improved by the use of fused LiDAR and hyperspectral data, although the improvement was slight when compared with LiDAR data alone. This slight improvement could be attributed to the complementary information contained in LiDAR and hyperspectral data. In conclusion, fusion of LiDAR and other remotely sensed data has great potential for improving biomass estimation accuracy.  相似文献   

5.
The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spatial and temporal variability in the fluxes. Fluxes of CH4 were monitored in 12 wetland plots over a year using static chambers, yielding a dataset with more than 800 measured fluxes of CH4. Yearly emissions of CH4 ranged from −0.2 to 38.3 g CH4-C m−2 year−1, and significant effects of groundwater level, soil temperature (10 cm depth), peat depth, sulfate, nitrate, and soil carbon content were found. Two methods based on easily available environmental parameters to estimate yearly CH4 emissions from riparian wetlands are presented. The first uses a generalized linear model (GLM) to predict yearly CH4 emissions based on the humidity preference of vegetation (Ellenberg-F), peat depth and degree of humification of the peat (von Post index). The second method relies solely on plant species composition and uses weighted-average regression and calibration to link the vegetation assemblage to yearly CH4 emission. Both models gave reliable predictions of the yearly CH4 fluxes in riparian wetlands (modeling efficiency > 0.35). Our findings support the use of vegetation, possibly in combination with some soil parameters such as peat depth, as indicator of CH4 emission in wetlands.  相似文献   

6.
Trees are recognized as a carbon reservoir, and precise and convenient methods for forest biomass estimation are required for adequate carbon management. Airborne light detection and ranging (LiDAR) is considered to be one of the solutions for large-scale forest biomass evaluation. To clarify the relationship between mean canopy height determined by airborne LiDAR and forest timber volume and biomass of cool-temperate forests in northern Hokkaido, Japan, we conducted LiDAR observations covering the total area of the Teshio Experimental Forest (225 km2) of Hokkaido University and compared the results with ground surveys and previous studies. Timber volume and aboveground tree carbon content of the studied forest stands ranged from 101.43 to 480.40 m3 ha–1 and from 30.78 to 180.54 MgC ha–1, respectively. The LiDAR mean canopy height explained the variation among stands well (volume: r2 = 0.80, RMSE = 55.04 m3 ha–1; aboveground tree carbon content: r2 = 0.78, RMSE = 19.10 MgC ha–1) when one simple linear regression equation was used for all types (hardwood, coniferous, and mixed) of forest stands. The determination of a regression equation for each forest type did not improve the prediction power for hardwood (volume: r2 = 0.84, RMSE = 62.66 m3 ha–1; aboveground tree carbon content: r2 = 0.76, RMSE = 27.05 MgC ha–1) or coniferous forests (volume: r2 = 0.75, RMSE = 51.07 m3 ha–1; aboveground tree carbon content: r2 = 0.58, RMSE = 19.00 MgC ha–1). Thus, the combined regression equation that includes three forest types appears to be adequate for practical application to large-scale forest biomass estimation.  相似文献   

7.
Agricultural expansion across tropical regions is causing declines in biodiversity and altering ecological processes. However, in some tropical agricultural systems, conserving natural habitat can simultaneously protect threatened species and support important ecosystem services. Oil palm cultivation is expanding rapidly throughout the tropics but the extent to which non-crop habitat supports biodiversity and ecosystem services in these landscapes is poorly documented. We investigated whether riparian forest fragments (riparian reserves) provide a pest control service or increase pest activity (disservice) within oil palm dominated landscapes in Sabah, Malaysian Borneo. We assessed the activity of potential predators of pest herbivores using plasticine caterpillar mimics and quantified herbivory rates on oil palm fronds in areas with and without riparian reserves. We also manipulated the shape and colour of the mimics to assess the extent to which artificial pest mimics reflect a predatory response. The presence of riparian reserves increased the attack rate on mimics by arthropods, but not by birds. Our methodological study suggested attacks on artificial pest mimics provide a better indication of predatory activity for birds than for arthropod predators. Herbivory rates were also not significantly affected by the presence of a riparian reserve, but we found some evidence that herbivory rates may decrease as the size of riparian reserves increases. Overall, we conclude that riparian forest fragments of 30 – 50 m width on each side of the river are unlikely to provide a pest control service. Nevertheless, our results provide evidence that these riparian buffer strips do not increase the density of defoliating pests, which should reassure managers concerned about possible negative consequences of preserving riparian buffers.  相似文献   

8.
Due to deforestation, intact tropical forest areas are increasingly transformed into a mixture of remaining forest patches and human modified areas. These forest fragments suffer from edge effects, which cause changes in ecological and ecosystem processes, undermining habitat quality and the offer of ecosystem services. Even though detailed and long term studies were developed on the topic of edge effects at local scale, understanding edge effect characteristics in fragmented forests on larger scales and finding indicators for its impact is crucial for predicting habitat loss and developing management options. Here we evaluate the spatial and temporal dimensions of edge effects in large areas using remote sensing. First we executed a neighborhood pixel analysis in 11 LANDSAT Tree Cover (LTC) scenes (180 × 185 km each, 8 in the tropics and 3 in temperate forested areas) using tree cover as an indicator of habitat quality and in relation to edge distance. Second, we executed a temporal analysis of LTC in a smaller area in the Brazilian Amazon forest where one larger forest fragment (25,890 ha) became completely fragmented in 5 years. Our results show that for all 11 scenes pixel neighborhood variation of LTC is much higher in the vicinity of forest edges, becoming lower towards the forest interior. This analysis suggests a maximum distance for edge effects and can indicate the location of unaffected core areas. However, LTC patterns in relation to fragment edge distance vary according to the analyzed region, and maximum edge distance may differ according to local conditions. Our temporal analysis illustrates the change in tree cover patterns after 5 years of fragmentation, becoming on average lower close to the edge (between 50 and 100 m). Although it is still unclear which are the main causes of LTC edge variability within and between regions, LANDSAT Tree Cover could be used as an accessible and efficient discriminator of edge and interior forest habitats in fragmented landscapes, and become invaluable for deriving qualitative spatial and temporal information of ecological and ecosystem processes.  相似文献   

9.
Species Distribution Models (SDMs) may provide important information for the follow-up phase of reintroduction operations by identifying the main areas most likely to be colonized by the reintroduced species. We used SDMs to identify the potential distribution of Eurasian beavers (Castor fiber) reintroduced to Serbia and Bosnia and Herzegovina in 2004–2006 after being historically driven to extinction by overhunting. Models were also used to carry out a gap analysis to assess the degree of protection granted by the national reserve networks to the potentially expanding population. Distances from hydrographic network, broadleaved forest, main watercourses and farmland were the main factors influencing model performance. We estimated that suitable habitat covers 14.0% (31,000 km2) of the whole study area. In Serbia, in 2004–2013 beavers expanded their range at a mean colonization speed of 70.9 ± 12.8 km/year (mean ± SD). Only 2.89% of and 9.72% of beaver’s suitable habitat lie within the national network of protected areas of Bosnia and Serbia respectively. We detected new potential areas where beavers will likely settle in the near future, advising on where further monitoring should be carried out. We also identified low suitability areas to be targeted with appropriate management to improve their conditions as well as important regions falling outside reserve boundaries to which protection should be granted.  相似文献   

10.
Buffer zones along rivers and streams can provide water quality services by filtering nutrients, sediment and other contaminants from the surface. Redundancy analysis was used to determine the influence of the landscape pattern at the entire catchment scale and at multiple buffer zone scales (100 m, 300 m, 500 m, 1000 m and 1500 m) on the water quality in a highly urbanised watershed. Change-point analysis was further applied to estimate the specific locations along a gradient of landscape metric that result in a sudden change in the water quality variable. The landscape characteristics for 100 m buffer zones appeared to have a slightly greater influence on the water quality than the entire catchment. The patch density of urban land and the large patch index of water were recognised as the dominant variables influencing the water quality for a 100 m buffer zone. The result of change-point analysis indicated key interval values of the two landscape metrics within the 100 m buffer zone. When the patch density of urban land was >30–40 n/100 ha and the largest patch index of water was >2.5–3.5%, the watershed water quality appeared to be better protected.  相似文献   

11.
Carbon and nitrogen are important elements in biogeochemical studies of tidal wetlands. Three wetland zones in Luoyuan Bay in the Fujian province were chosen for this study; the Spartina alterniflora flat zone with Spartina alterniflora growing, the silt zone with no Spartina alterniflora growing and the Spartina alterniflora-silt flat zone – a transition zone between the two. The spatial and seasonal variations of total organic carbon (TOC), total nitrogen (TN), stable isotopes of organic material (δ13C, δ15N), C/N ratio, average particle size and sediment composition in surface and vertical sediments of different ecological zones were analyzed. Carbon and nitrogen accumulation and particle size effects in the different ecological zones were discussed and the indicators of δ13C and C/N ratios were also compared. TOC, TN, δ13C contents, C/N ratios, and average particle size varied within the ranges of 0.611–1.133%, 0.053–0.090%, ?22.60 to ?18.92‰, 12.3–15.7, and 6.4–8.7 μm, respectively. Sediments were mainly silt-sized. Besides δ15N values, the other parameters, such as TOC, TN, δ13C contents, C/N ratios, and average particle size showed an obvious zonal distribution in surface sediments. The distribution of TOC and TN contents reflected the distribution of Spartina alterniflora within the bay. The profile and seasonal variations of these parameters in different ecological zones indicated that variations in the Spartina alterniflora flat and transition zones were complex because of the effect of Spartina alterniflora. Vertical and seasonal variations were sampled in the silt flat area. The profile and seasonal variations of TOC, TN and δ13C were similar in the transition zone and the Spartina alterniflora flat zone. Seasonal concentrations of TOC, TN and δ13C decreased from autumn > spring > winter > summer. The seasonal variation of carbon and nitrogen in the sediments may be influenced by temperature, particle size, plankton and benthos. The particle size effect was significant in the surface sediments and profile sediments of the transition zone. However, other factors had a greater effect on the distributions of TOC and TN in the Spartina alterniflora flat and silt flat zones. C/N ratios in sediments of the Spartina alterniflora flat, transition zone and silt flat were close to or > 12, indicating that the organic material source was dominated by terrestrial inputs. However, δ13C values decreased from the Spartina alterniflora flat zone > transition zone > silt flat zone indicating that the organic material source was predominantly from marine inputs. Thus the indications from C/N ratios and δ13C were different. There was no clear relationship between C/N ratios and δ13C values and a better relationship between δ13C values and TOC concentrations suggested that δ13C values provided a better indication of the organic source. Limited amounts of organic material came from Spartina alterniflora. This study has provided basic data for researching biogeochemical processes of biogenic elements in tidal wetlands and vegetation restoration, and has also provided a reference for assessing and protecting the environment and ecological systems in wetlands.  相似文献   

12.
Understanding the factors driving the variation in urban green space and plant communities in heterogeneous urban landscapes is crucial for maintaining biodiversity and important ecosystem services. In this study, we used a combination of field surveys, remote sensing, census data and spatial analysis to investigate the interrelationships among geographical and social-economic variables across 328 different urban structural units (USUs) and how they may influence the distributions of urban forest cover, plant diversity and abundance, within the central urban area of Beijing, China. We found that the urban green space coverage varied substantially across different types of USUs, with higher in agricultural lands (N = 15), parks (N = 46) and lowest in utility zones (N = 36). The amount of urban green space within USUs declines exponentially with the distance to urban center. Our study suggested that geographical, social and economic factors were closely related with each other in urban ecological systems, and have important impacts on urban forest coverage and abundance. The percentage of forest as well as high and low density urban areas were mainly responsible for variations in the data across all USUs and all land use/land cover types, and thus are important constituents and ecological indicators for understanding and modeling urban environment. Herb richness is more strongly correlated with tree and shrub density than with tree and shrub richness (r = −0.472, p < 0.05). However, other geographic and socioeconomic factors showed no significant relationships with urban plant diversity or abundance.  相似文献   

13.
We analysed endemic threatened tree and reptile species of Socotra Island (Yemen), characterised by different ecological requirements and spatial distribution, in order to evaluate the usefulness of spatial ecological modelling in the estimation of species extent of occurrence (EOO) and area of occupancy (AOO). Point occurrences for the entire species range were used to model their spatial distribution by Random Forest (RF) and Generalised Linear Model (GLM). For each species the suitability area (SA) was obtained by applying the 0% omission error criterion on the probability map, and compared or integrated with EOO and AOO area obtained by topological methods such as the minimum convex polygon (MCP), α-hull and 2 km × 2 km grid.RF showed a lower prediction error than GLM. Higher accuracy was achieved for species with higher number of occurrences and narrower ecological niche. SA was always greater than AOO measured with the 2 km × 2 km grid method. SA was greater than EOO, measured by both MCP and α-hull methods, for species with localised distribution, while it was smaller for widely distributed species. EOO-α-hull area was equal or smaller than that calculated by MCP depending on the spatial distribution of species. AOO measured considering the SA within the EOO-MCP was greater than that measured using the standard 2 km × 2 km grid. Conversely, AOO calculated considering the suitable area within the EOO-α-hull showed variable results, being smaller or greater than the 2 km × 2 km grid AOO depending on the ecological niche and spatial distribution of species. According to our results, SEM does not provide an effective alternative to topological methods for the estimate of EOO and AOO. However, it may be considered a useful tool to estimate AOO within the boundaries of EOO measured by the α-hull method, because it reduces some potential sources of inconsistency and bias.  相似文献   

14.
The ecosystem service (ES) framework is gaining traction in ecosystem management as a means to recognize the multiple benefits that ecosystems provide. In forested ecosystems, many structural attributes (trees, understory plants and woody debris) create heterogeneous ecosystems that provide numerous ecosystem services, including many that are culturally important. However, application of the ES framework to forest management is challenged by difficulties measuring and comparing multiple ES across diverse and heterogeneous forest conditions. Indicators can help bring the ES approach to forest management by providing a means for accurate ES inventory and mapping. We measured 10 forest ES in contrasting forest types to investigate the effects of past forest harvesting in coastal temperate rainforest of Vancouver Island, BC, Canada. Our objectives were to build a systematic set of ES indicators for coastal temperate forests based on forest structural features, including trees, coarse woody debris, and understory plants. To achieve this, we 1) analyzed field data to compare the effects of forest age (old-growth vs. second-growth) and ecological site conditions (riparian vs. upland forest) on the bundle of ES provided by different forest types; and 2) worked with a local indigenous wood carver to identify attributes of cedar trees (Thuja plicata) essential for traditional uses, including canoe carving. Forest age and forest type had significant and major effects on bundles of ES. Old-growth forests provided three times higher carbon storage, nine times higher wood volume, and eighteen times higher canopy habitat services than recovering forests. Within old-growth forests, the proportion of trees suitable for traditional indigenous wood carving was significantly higher in riparian stands. Yet of 456 trees measured, only 17 were cedar with potential traditional uses. Of those, trees for canoe carving were the least frequent (n = 3), which we identified as large (>110 cm DBH) trees of exceptional quality. In general, old-growth riparian forests were a hotspot of ES, providing for example nearly three times as much carbon storage as old-growth forests on upland sites and 12 times the amount of carbon storage as found in second-growth forests on upland sites. These results indicate that typical inventories of forest ES, which usually generalize across heterogeneity, may oversimplify dramatic variations in ES bundles in forested landscapes. Our novel set of stand-level ES indicators can improve the accuracy of ES assessments, incorporate important cultural ES, and help address the role of landscape heterogeneity in influencing ES.  相似文献   

15.
Crop biomass is an important ecological indicator of growth, light use efficiency, and carbon stocks in agro-ecosystems. Light detection and ranging (LiDAR) or laser scanning has been widely used to estimate forest structural parameters and biomass. However, LiDAR is rarely used to estimate crop parameters because the short, dense canopies of crops limit the accuracy of the results. The objective of this study is to explore the potential of airborne LiDAR data in estimating biomass components of maize, namely aboveground biomass (AGB) and belowground biomass (BGB). Five biomass-related factors were measured during the entire growing season of maize. The field-measured canopy height and leaf area index (LAI) were identified as the factors that most directly affect biomass components through Pearson's correlation analysis and structural equation modeling (SEM). Field-based estimation models were proposed to estimate maize biomass components during the tasseling stage. Subsequently, the maize height and LAI over the entire study area were derived from LiDAR data and were used as input for the estimation models to map the spatial pattern of the biomass components. The results showed that the LiDAR-estimated biomass was comparable to the field-measured biomass, with root mean squared errors (RMSE) of 288.51 g/m2 (AGB), and 75.81 g/m2 (BGB). In conclusion, airborne LiDAR has great potential for estimating canopy height, LAI, and biomass components of maize during the peak growing season.  相似文献   

16.
The aim of this study was to determine the effects of catchment and riparian stream buffer-wide urban and non-urban land cover/land use (LC/LU) on total nitrogen (TN) and total phosphorus (TP) runoff to the Chesapeake Bay. The effects of the composition and configuration of LC/LU patches were explored in particular. A hybrid-statistical-process model, the SPAtially Referenced Regression On Watershed attributes (SPARROW), was calibrated with year 1997 watershed-wide, average annual TN and TP discharges to Chesapeake Bay. Two variables were predicted: (1) yield per unit watershed area and (2) mass delivered to the upper estuary. The 166,534 km2 watershed was divided into 2339 catchments averaging 71 km2. LC/LU was described using 16 classes applied to both the catchments and also to riparian stream buffers alone. Seven distinct landscape metrics were evaluated. In all, 167 (TN) and 168 (TP) LC/LU class metric combinations were tested in each model calibration run. Runs were made with LC/LU in six fixed riparian buffer widths (31, 62, 125, 250, 500, and 1000 meters (m)) and entire catchments. The significance of the non-point source type (land cover, manure and fertilizer application, and atmospheric deposition) and factors affecting land-to-water delivery (physiographic province and natural or artificial land surfaces) was assessed. The model with a 31 m riparian stream buffer width accounted for the highest variance of mean annual TN (r2 = 0.9366) and TP (r2 = 0.7503) yield (mass for a specified time normalized by drainage area). TN and TP loadings (mass for a specified time) entering the Chesapeake Bay were estimated to be 1.449 × 108 and 5.367 × 106 kg/yr, respectively. Five of the 167 TN and three of the 168 TP landscape metrics were shown to be significant (p-value  0.05) either for non-point sources or land-to-water delivery variables. This is the first demonstration of the significance of riparian LC/LU and landscape metrics on water quality simulation in a watershed as large as the Chesapeake Bay. Land cover metrics can therefore be expected to improve the precision of estimated TN and TP annual loadings to the Chesapeake Bay and may also suggest changes in land management that may be beneficial in control of nutrient runoff to the Chesapeake Bay and similar watersheds elsewhere.  相似文献   

17.
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters ≥13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration.  相似文献   

18.
Agricultural land abandonment is one of the main drivers of land use change, leading to various responses of farmland ecological communities. In an effort to better understand the effect of agricultural land abandonment on passerine bird communities, we sampled 20 randomly selected sites [1 km × 1 km] in remote Greek mountains, reflecting an abandonment gradient, in terms of forest encroachment. We sampled 169 plots using the point count method of fixed distance (47 passerine species), and we investigated bird diversity and community structure turnover along the gradient. We found that grazing intensity has a beneficial effect hampering forest encroachment that follows progressively land abandonment. Habitat composition changes gradually with forests developing at the expense of open meadows and heterogeneous grasslands. Forest encroachment has a significant negative effect on bird diversity and species richness, affecting in particular typical farmland and Mediterranean shrubland species. Birds form five distinct ecological clusters after land abandonment: species mostly found in pinewoods and cavity-dwelling species; species that prefer open forests forest edges or ecotones; species that prefer shrubland or open habitats with scattered woody vegetation; Mediterranean farmland birds that prefer semi-open habitats with hedges and/or woodlots; and, generalist forest-dwelling or shrubland species. We extracted a set of 22 species to represent the above ecological communities, as a new monitoring tool for agricultural land use change and conservation. We suggest that the maintenance of rural mosaics should be included in the priorities of agricultural policy for farmland bird diversity conservation.  相似文献   

19.
We examine lacustrine wetland plant assemblages in the Central Corn Belt Plain portion of the Lake Michigan basin and developed a multimetric plant index of biotic integrity (PIBI). Our objectives were to determine the structural and functional attributes of littoral zone plant assemblages of least-impacted lacustrine wetlands, establish and test candidate metrics, statistically test and calibrate metrics, and finally validate a PIBI along a disturbance gradient. Of 35 candidate metrics, we chose 11 metrics that were grouped into four categories: species richness and composition, species tolerance, guild structure, and vegetation abundance. Based on Spearman correlations, we identified a suite of metrics, particularly those related to species richness and tolerance that had a strong response to human-induced habitat change. The overall PIBI correlated strongly with independent measures of habitat quality (p < 0.001) using a qualitative habitat index developed for lacustrine habitats. We validated the lacustrine PIBI by comparing index response to various landuse, landcover, and management types. Least impacted lakes and lakes classified as recreational or undergoing ecological restoration were not statistically separable and received the highest index scores, while the lowest scores were associated with industrial and residential land use. Least-impacted sites differ significantly (p < 0.001) from both industrial and residential lakes.  相似文献   

20.
The EU 2020 Biodiversity Strategy requires the gathering of information on biodiversity to aid in monitoring progress towards its main targets. Common species are good proxies for the diversity and integrity of ecosystems, since they are key elements of the biomass, structure, functioning of ecosystems, and therefore of the supply of ecosystem services. In this sense, we aimed to develop a spatially-explicit indicator of habitat quality (HQI) at European level based on the species included in the European Common Bird Index, also grouped into their major habitat types (farmland and forest). Using species occurrences from the European Breeding Birds Atlas (at 50 km × 50 km) and the maximum entropy algorithm, we derived species distribution maps using refined occurrence data based on species ecology. This allowed us to cope with the limitations arising from modelling common and widespread species, obtaining habitat suitability maps for each species at finer spatial resolution (10 km × 10 km grid), which provided higher model accuracy. Analysis of the spatial patterns of local and relative species richness (defined as the ratio between species richness in a given location and the average richness in the regional context) for the common birds analysed demonstrated that the development of a HQI based on species richness needs to account for the regional species pool in order to make objective comparisons between regions. In this way, we proved that relative species richness compensated for the bias caused by the inherent heterogeneous patterns of the species distributions that was yielding larger local species richness in areas where most of the target species have the core of their distribution range. The method presented in this study provides a robust and innovative indicator of habitat quality which can be used to make comparisons between regions at the European scale, and therefore potentially applied to measure progress towards the EU Biodiversity Strategy targets. Finally, since species distribution models are based on breeding birds, the HQI can be also interpreted as a measure of the capacity of ecosystems to provide and maintain nursery/reproductive habitats for terrestrial species, a key maintenance and regulation ecosystem service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号