首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated for their inhibitory activity against α-glucosidase and α-amylase. All synthesised compounds showed potential α-glucosidase and α-amylase inhibitory activities. Compounds 5 g (IC50: 7.54 ± 1.10 μM), 5e (IC50: 9.00 ± 0.97 μM), and 5 h (IC50: 9.57 ± 0.62 μM) presented strongest inhibitory activities against α-glucosidase, that were ∼ 30 times stronger than acarbose. Compounds 5 g (IC50: 32.18 ± 1.66 µM), 5 h (IC50: 31.47 ± 1.42 µM), and 5 s (IC50: 30.91 ± 0.86 µM) showed strongest inhibitory activities towards α-amylase, ∼ 2.5 times stronger than acarbose. The mechanisms and docking simulation of the compounds were also studied. Compounds 5 g and 5 h exhibited bifunctional inhibitory activity against these two enzymes. Furthermore, compounds showed no toxicity against 3T3-L1 cells and HepG2 cells.

Highlights

  1. A series of bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated inhibitory activities against α-glucosidase and α-amylase.
  2. Compound 5g exhibited promising activity (IC50 = 7.54 ± 1.10 μM) against α-glucosidase.
  3. Compound 5s exhibited promising activity (IC50 = 30.91 ± 0.86 μM) against α-amylase.
  4. In silico studies were performed to confirm the binding interactions of synthetic compounds with the enzyme active site.
  相似文献   

2.
3.
Hepatocellular carcinoma (HCC) progression is closely related to pathological fibrosis, which involves heterotypic intercellular interactions (HIIs) between liver cancer cells and fibroblasts. Here, we studied them in a direct coculture model, and identified fibronectin from fibroblasts and integrin-α5β1 from liver cancer cells as the primary responsible molecules utilizing CRISPR/Cas9 gene-editing technology. Coculture led to the formation of 3D multilayer microstructures, and obvious fibronectin remodeling was caused by upregulated integrin-α5β1, which greatly promoted cell growth in 3D microstructures. Integrin-α5 was more sensitive and specific than integrin-β1 in this process. Subsequent mechanistic exploration revealed the activation of integrin-Src-FAK, AKT and ERK signaling pathways. Importantly, the growth-promoting effect of HIIs was verified in a xenograft tumor model, in which more blood vessels were observed in bigger tumors derived from the coculture group than that derived from monocultured groups. Hence, we conducted triculture by introducing human umbilical vein endothelial cells, which aligned to and differentiated along multilayer microstructures in an integrin-α5β1 dependent manner. Furthermore, fibronectin, integrin-α5, and integrin-β1 were upregulated in 52 HCC tumors, and fibronectin was related to microvascular invasion. Our findings identify fibronectin, integrin-α5, and integrin-β1 as tumor microenvironment-related targets and provide a basis for combination targeted therapeutic strategies for future HCC treatment.  相似文献   

4.
Different oleanolic acid (OA) oxime ester derivatives (3a-3t) were designed and synthesised to develop inhibitors against α-glucosidase and α-amylase. All the synthesised OA derivatives were evaluated against α-glucosidase and α-amylase in vitro. Among them, compound 3a showed the highest α-glucosidase inhibition with an IC50 of 0.35 µM, which was ∼1900 times stronger than that of acarbose, meanwhile compound 3f exhibited the highest α-amylase inhibitory with an IC50 of 3.80 µM that was ∼26 times higher than that of acarbose. The inhibition kinetic studies showed that the inhibitory mechanism of compounds 3a and 3f were reversible and mixed types towards α-glucosidase and α-amylase, respectively. Molecular docking studies analysed the interaction between compound and two enzymes, respectively. Furthermore, cytotoxicity evaluation assay demonstrated a high level of safety profile of compounds 3a and 3f against 3T3-L1 and HepG2 cells.

Highlights

  1. Oleanolic acid oxime ester derivatives (3a–3t) were synthesised and screened against α-glucosidase and α-amylase.
  2. Compound 3a showed the highest α-glucosidase inhibitory with IC50 of 0.35 µM.
  3. Compound 3f presented the highest α-amylase inhibitory with IC50 of 3.80 µM.
  4. Kinetic studies and in silico studies analysed the binding between compounds and α-glucosidase or α-amylase.
  相似文献   

5.
The inhibition of α-glucosidase and DPP enzymes capable of effectively reducing blood glucose level in the management of type 2 diabetes. The purpose of the present study is to evaluate the inhibitory potential of α-glucosidase and DPP (IV) activity including with the 2-NBDG uptake assay and insulin secretion activities through in vitro studies. The selected of active compounds obtained from the screening of compounds by LC-MS were docked with the targeted enzyme that involved in the mechanism of T2DM. From the results, root extracts displayed a better promising outcome in α-glucosidase (IC50 2.72 ± 0.32) as compared with the fruit extracts (IC50 3.87 ± 0.32). Besides, root extracts also displayed a better activity in the inhibition of DPP (IV), enhance insulin secretion and glucose uptake activity. Molecular docking results revealing that phlorizin binds strongly with α-glucosidase, DPP (IV) and Insulin receptor (IR) enzymes with achieving the lowest binding energy value. The present work suggests several of the compounds have the potential that contribute towards inhibiting α-glucosidase and DPP (IV) and thus effective in lowering post-prandial hyperglycaemia.  相似文献   

6.
7.
Canonical Wnt signaling pathway plays a crucial role in cancer cell proliferation, which links by the growth of β-catenin in cell due to inactivation of glycogen synthetase kinase-3. Therefore, it is of interest to design novel candidates to bind with β-catenin. Hence, we document the molecular docking analysis data of aspirin analogues with β-catenin for further consideration.  相似文献   

8.
The interaction of cells with fibronectin generates a series of complex signaling events that serve to regulate several aspects of cell behavior, including growth, differentiation, adhesion, and motility. The formation of a fibronectin matrix is a dynamic, cell-mediated process that involves both ligation of the α5β1 integrin with the Arg-Gly-Asp (RGD) sequence in fibronectin and binding of the amino terminus of fibronectin to cell surface receptors, termed “matrix assembly sites,” which mediate the assembly of soluble fibronectin into insoluble fibrils. Our data demonstrate that the amino-terminal type I repeats of fibronectin bind to the α5β1 integrin and support cell adhesion. Furthermore, the amino terminus of fibronectin modulates actin assembly, focal contact formation, tyrosine kinase activity, and cell migration. Amino-terminal fibronectin fragments and RGD peptides were able to cross-compete for binding to the α5β1 integrin, suggesting that these two domains of fibronectin cannot bind to the α5β1 integrin simultaneously. Cell adhesion to the amino-terminal domain of fibronectin was enhanced by cytochalasin D, suggesting that the ligand specificity of the α5β1 integrin is regulated by the cytoskeleton. These data suggest a new paradigm for integrin-mediated signaling, where distinct regions within one ligand can modulate outside-in signaling through the same integrin.  相似文献   

9.
The FoF1 synthase produces ATP from ADP and inorganic phosphate. The γ subunit of FoF1 ATP synthase in photosynthetic organisms, which is the rotor subunit of this enzyme, contains a characteristic β-hairpin structure. This structure is formed from an insertion sequence that has been conserved only in phototrophs. Using recombinant subcomplexes, we previously demonstrated that this region plays an essential role in the regulation of ATP hydrolysis activity, thereby functioning in controlling intracellular ATP levels in response to changes in the light environment. However, the role of this region in ATP synthesis has long remained an open question because its analysis requires the preparation of the whole FoF1 complex and a transmembrane proton-motive force. In this study, we successfully prepared proteoliposomes containing the entire FoF1 ATP synthase from a cyanobacterium, Synechocystis sp. PCC 6803, and measured ATP synthesis/hydrolysis and proton-translocating activities. The relatively simple genetic manipulation of Synechocystis enabled the biochemical investigation of the role of the β-hairpin structure of FoF1 ATP synthase and its activities. We further performed physiological analyses of Synechocystis mutant strains lacking the β-hairpin structure, which provided novel insights into the regulatory mechanisms of FoF1 ATP synthase in cyanobacteria via the phototroph-specific region of the γ subunit. Our results indicated that this structure critically contributes to ATP synthesis and suppresses ATP hydrolysis.  相似文献   

10.
Pompe disease is an inherited metabolic disorder due to the deficiency of the lysosomal acid α-glucosidase (GAA). The only approved treatment is enzyme replacement therapy with the recombinant enzyme (rhGAA). Further approaches like pharmacological chaperone therapy, based on the stabilising effect induced by small molecules on the target enzyme, could be a promising strategy. However, most known chaperones could be limited by their potential inhibitory effects on patient’s enzymes. Here we report on the discovery of novel chaperones for rhGAA, L- and D-carnitine, and the related compound acetyl-D-carnitine. These drugs stabilise the enzyme at pH and temperature without inhibiting the activity and acted synergistically with active-site directed pharmacological chaperones. Remarkably, they enhanced by 4-fold the acid α-glucosidase activity in fibroblasts from three Pompe patients with added rhGAA. This synergistic effect of L-carnitine and rhGAA has the potential to be translated into improved therapeutic efficacy of ERT in Pompe disease.  相似文献   

11.
Carboxysome is an icosahedral self‐assembled microcompartment that sequesters RuBisCO and carbonic anhydrases within a selectively permeable protein shell. The scaffolding proteins, CcmM, and CcmN were proposed to act as adaptors that crosslink the enzymatic core to shell facets. However, the details of interaction pattern remain unknown. Here we obtained a stable heterotrimeric complex of CcmM γ‐carbonic anhydrase domain (termed CcmMNT) and CcmN, with a 1:2 stoichiometry, which interacts with the shell proteins CcmO and CcmL in vitro. The 2.9 Å crystal structure of this heterotrimer revealed an asymmetric bundle composed of one CcmMNT and two CcmN subunits, all of which adopt a triangular left‐handed β‐helical barrel structure. The central CcmN subunit packs against CcmMNT and another CcmN subunit via a wall‐to‐edge or wall‐to‐wall pattern, respectively. Together with previous findings, we propose CcmMNT‐CcmN functions as an adaptor to facilitate the recruitment of shell proteins and the assembly of intact β‐carboxysome.  相似文献   

12.
β-Glucosidases (Glu1 and Glu2) in maize specifically interact with a lectin called β-glucosidase aggregating factor (BGAF). We have shown that the N-terminal (Glu50–Val145) and the C-terminal (Phe466–Ala512) regions of maize Glu1 are involved in binding to BGAF. Sequence comparison between sorghum β-glucosidases (dhurrinases, which do not bind to BGAF) and maize β-glucosidases, and the 3D-structure of Glu1 suggested that the BGAF-binding site on Glu1 is much smaller than predicted previously. To define more precisely the BGAF-binding site, we constructed additional chimeric β-glucosidases. The results showed that a region spanning 11 amino acids (Ile72–Thr82) on Glu1 is essential and sufficient for BGAF binding, whereas the extreme N-terminal region Ser1–Thr29, together with C-terminal region Phe466–Ala512, affects the size of Glu1–BGAF complexes. The dissociation constants (Kd) of chimeric β-glucosidase–BGAF interactions also demonstrated that the extreme N-terminal and C-terminal regions are important but not essential for binding. To confirm the importance of Ile72–Thr82 on Glu1 for BGAF binding, we constructed a chimeric sorghum β-glucosidase, Dhr2 (C-11, Dhr2 whose Val72–Glu82 region was replaced with the Ile72–Thr82 region of Glu1). C-11 binds to BGAF, indicating that the Ile72–Thr82 region is indeed a major interaction site on Glu1 involved in BGAF binding.  相似文献   

13.
The molecular mechanisms underlying the anterograde surface transport of G protein–coupled receptors (GPCRs) after their synthesis in the endoplasmic reticulum (ER) are not well defined. In C. elegans, odorant response abnormal 4 has been implicated in the delivery of olfactory GPCRs to the cilia of chemosensory neurons. However, the function and regulation of its human homolog, C1orf27, in GPCR transport or in general membrane trafficking remain unknown. Here, we demonstrate that siRNA-mediated knockdown of C1orf27 markedly impedes the ER-to-Golgi export kinetics of newly synthesized α2A-adrenergic receptor (α2A-AR), a prototypic GPCR, with the half-time being prolonged by more than 65%, in mammalian cells in retention using the selective hooks assays. Using modified bioluminescence resonance energy transfer assays and ELISAs, we also show that C1orf27 knockdown significantly inhibits the surface transport of α2A-AR. Similarly, C1orf27 knockout by CRISPR-Cas9 markedly suppresses the ER–Golgi-surface transport of α2A-AR. In addition, we demonstrate that C1orf27 depletion attenuates the export of β2-AR and dopamine D2 receptor but not of epidermal growth factor receptor. We further show that C1orf27 physically associates with α2A-AR, specifically via its third intracellular loop and C terminus. Taken together, these data demonstrate an important role of C1orf27 in the trafficking of nascent GPCRs from the ER to the cell surface through the Golgi and provide novel insights into the regulation of the biosynthesis and anterograde transport of the GPCR family members.  相似文献   

14.
Amyloid fibrils, crystal-like fibrillar aggregates of proteins associated with various amyloidoses, have the potential to propagate via a prion-like mechanism. Among known methodologies to dissolve preformed amyloid fibrils, acid treatment has been used with the expectation that the acids will degrade amyloid fibrils similar to acid inactivation of protein functions. Contrary to our expectation, treatment with strong acids, such as HCl or H2SO4, of β2-microglobulin (β2m) or insulin actually promoted amyloid fibril formation, proportionally to the concentration of acid used. A similar promotion was observed at pH 2.0 upon the addition of salts, such as NaCl or Na2SO4. Although trichloroacetic acid, another strong acid, promoted amyloid fibril formation of β2m, formic acid, a weak acid, did not, suggesting the dominant role of anions in promoting fibril formation of this protein. Comparison of the effects of acids and salts confirmed the critical role of anions, indicating that strong acids likely induce amyloid fibril formation via an anion-binding mechanism. The results suggest that although the addition of strong acids decreases pH, it is not useful for degrading amyloid fibrils, but rather induces or stabilizes amyloid fibrils via an anion-binding mechanism.  相似文献   

15.
α1-Antitrypsin, α2-macroglobulin and low-molecular weight kininogen were isolated from human serum and kallikreins from human urine and saliva.α1-Antitrypsin and α2-macroglobulin inhibited the activity of trypsin in releasing kinin from low-molecular weight kininogen, due to their binding with the enzyme, but did non inhibit or bind with urinary and salivary kallikreins.  相似文献   

16.
17.
The voltage-dependent calcium channel (VDCC) in skeletal muscle probably plays a key role in transducing membrane charge movement to the calcium release channel. We report here that the expression of VDCC α1 and α2 mRNAs is developmentally regulated in differentiating C2Cl2 myogenic cells. The α1 mRNA is not detectable in the myoblast form of C2Cl2 cells while its expression is induced 20-fold in differentiated myotubes. In contrast, the α2 mRNA is weakly expressed in myoblasts but is also induced upon myogenic differentiation.  相似文献   

18.
Aims: Present report describes the in vitro antimalarial activity and docking analysis of seven 4‐aminoquinoline‐clubbed 1,3,5‐triazine derivatives on pf‐DHFR‐TS. Methods and Results: The antimalarial activity was evaluated in vitro against chloroquine‐sensitive 3D7 strain of Plasmodium falciparum. Compounds were docked onto the active site of pf‐DHFR‐TS using docking server to explicate necessary structural requirements for antimalarial activity. Conclusion: Title molecules demonstrated considerable bioactivity against the malaria parasite. Docking analysis revealed deep engulfment of the molecules into the inner groove of pf‐DHFR‐TS active site by making stable ligand–receptor posses. Hydrophobic interaction was identified as the only major interacting force playing a role between ligand–receptor interaction and minor with hydrogen bonds. Signi?cance and Impact of the study: The study provided the novel insight into the necessary structural requirement for rationale‐based antimalarial drug discovery.  相似文献   

19.
Type 2 diabetes mellitus (T2DM) is linked with Glycogen synthase kinase-3 β.Therefore, it is ofinterest to document molecular docking analysis data of compounds from Justica adhatoda L with glycogen synthase kinase-3 β. We report the binding features of ethambutol, pyrazinamide, stigmasterol and vasicoline with GSK-3 β.  相似文献   

20.
Receptors for α2-macroglobulin-proteinase complexes have been characterized in rat and human liver membranes. The affinity for binding of 125I-labelled α2-macroglobulin · trypsin to rat liver membranes was markedly pH-dependent in the physiological range with maximum binding at pH 7.8–9.0. The half-time for association was about 5 min at 37°C in contrast to about 5 h at 4°C. The half-saturation constant was about 100 pM at 4°C and 1 nM at 37°C (pH 7.8). The binding capacity was approx. 300 pmol per g protein for rat liver membranes and about 100 pmol per g for human membranes. Radiation inactivation studies showed a target size of 466 ± 71 kDa (S.D., n = 7) for α2-macroglobulin · trypsin binding activity. Affinity cross-linking to rat and human membranes of 125I-labelled rat α1-inhibitor-3 · chymotrypsin, a 210 kDa analogue which binds to the α2-macroglobulin receptors in hepatocytes (Gliemann, J. and Sottrup-Jensen, L. (1987) FEBS Lett. 221, 55–60), followed by SDS-polyacrylamide gel electrophoresis, revealed radioactivity in a band not distinguishable from that of cross-linked α2-macroglobulin (720 kDa). This radioactivity was absent when membranes with bound 125I-α1-inhibitor-3 complex were treated with EDTA before cross-linking and when incubation and cross-linking were carried out in the presence of a saturating concentration of unlabelled complex. The saturable binding activity was maintained when membranes were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]profane sulfonate (CHAPS) and the size of the receptor as estimated by cross-linking experiments was shown to be similar to that determined in the membranes. It is concluded that liver membranes contain high concentrations of an approx. 400–500 kDa α2-macroglobulin receptor soluble in CHAPS. The soluble preparation should provide a suitable material for purification and further characterization of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号