首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the relationship between growth rate, C:N:P stoichiometry, and nucleic acid content in Drosophila melanogaster. The "Growth Rate Hypothesis" predicts that N and P contents per unit body mass will be high during ontogenetic stages characterized by rapid growth, reflecting the large requirement for P-rich ribosomal RNA during these periods. The ratio of RNA:DNA also is predicted to change with changes in growth rate. Growth is rapid in early D. melanogaster larvae, slowing considerably just prior to pupation. As predicted, a positive relationship was found between growth rate and N and P content, but not C. Thus, body C:P and N:P ratios declined with increasing growth rate. The relationship between RNA content and growth rate also was positive. Additionally, the fraction of total body P contributed by ribosomal RNA increased with increasing growth rate.  相似文献   

2.
We conducted a field experiment simulating the warming and drought in a Mediterranean shrubland dominated by Erica multiflora and Globularia alypum with the aim to simulate the next future climate conditions predicted by the IPCC and ecophysiological models. As P is frequently a limiting nutrient in Mediterranean ecosystems, we investigated the drought and warming effects on soil phosphatases activities, soil P contents and availability, litter and leaf P concentration, and the capacity of this community to maintain soil P reserves and retain this nutrient in the ecosystem. Warming treatment increased soil and air temperature (an average of 1°C) and drought treatment decreased soil water content in one of the seasons analysed (28% in autum 2004). Warming increased (68%) the activities of soil acid phosphatases in summer and alkaline phosphatase activity (22%) in spring 2004, and increased P concentrations in E. multiflora. Instead, warming decreased P concentrations in litterfall of this same species, E. multiflora, and soil HCO3-extractable Pi (Olsen-Pi) in some seasons, decreasing total P soil concentration (37%) after 6 years of treatment. The drought treatment did not change soil phosphatase activities, nor available Pi. The effects of climate change on soil P dynamics in Mediterranean areas will thus be strongly dependent on whether the main variable involved in the local change is warming or drought. If warming is the main change without significant changes in water availability, the increases of biological activity can accelerate plant growth, P capture by plants and increase soil-phosphatase activity, altogether decreasing P contents in soil. If drought is the main change, a reduction in P demands by plants is expected, increasing P stocks in soils.  相似文献   

3.
分别对9年生与13年生刨花楠林木叶片氮磷养分之间关系及林木生物量相对生长速率与叶片碳氮磷化学计量比关系进行分析,探讨不同相对生长速率下的林木叶片N、P养分适应特征,并检验相对生长速率假说理论对刨花楠树种的适应性。结果表明:两种年龄刨花楠林木生物量相对生长速率、叶片C、N、P含量及其计量比值均存在显著差异;同一年龄的林木叶片N、P之间存在显著相关性,二者具有协同相关性;9年生林木叶片P含量及C∶P、N∶P与生物量相对生长速率呈二次曲线相关,而13年生林木叶片N、P含量及C∶N、C∶P、N∶P则与生物量相对生长速率均呈线性相关。研究表明,在能满足植物生长所需养分供给的土壤环境中,叶片N、P含量与林木相对生长速率间呈线性正相关,但当土壤中养分供应满足不了植物高速生长时,植物则会对有限的养分资源进行适应性调整。  相似文献   

4.
DeMott WR  Pape BJ 《Oecologia》2005,142(1):20-27
We used laboratory experiments with ten Daphnia taxa to test for links between Daphnia P-content, growth rate and habitat preference. The taxa represent a wide range of body sizes and most show distinct preferences for one of three habitats: shallow lakes, deep, stratified lakes or fishless ponds. Previous studies show that taxa from shallow lakes and fishless ponds experience high predation risk and rich food resources, whereas taxa from deep lakes experience low predation risk, strong food limitation and potentially P-deficient resources. Thus, we predicted higher P-content and higher maximal growth rates in taxa from ponds and shallow lakes and lower P-content, lower maximal growth but reduced sensitivity to P-limitation in taxa preferring stratified lakes. In each of 25 experiments, a clonal Daphnia cohort was cultured for 4 days on a P-sufficient (molar C:P ratio 70) or a P-deficient (C:P 1,000) diet of a green alga at a high concentration (1 mg C l–1). The P-content of adult Daphnia fed the P-sufficient diet ranged from 1.52 to 1.22% mass. Small-bodied taxa from shallow lakes had higher P-content than larger-bodied taxa from deep lakes or fishless ponds. However, we found a nonsignificant negative correlation between P-content and growth on the P-sufficient diet, rather than the positive relationship predicted by the growth rate hypothesis. The P-deficient diet resulted in declines in both growth rate and P-content compared with the P-sufficient controls and the extent of the declines differed between taxa. Taxa from ponds showed a marginally greater decline in growth with the P-deficient diet compared with taxa from shallow or deep lakes. However, contrary to stoichiometric theory, no relationship was found between a species P-content and growth depression on the P-deficient diet. Although we found evidence for habitat adaptations, our results show that factors other than Daphnia P-content are important in determining differences between Daphnia species in both maximal growth rate and sensitivity to P-limited growth.  相似文献   

5.
青藏高原草地植物群落冠层叶片氮磷化学计量学分析   总被引:28,自引:1,他引:28       下载免费PDF全文
叶片氮(N)和磷(P)的化学计量学研究涉及到植物生态学的众多领域与多个尺度, 然而各个尺度上的化学计量学研究并未同步展开。通过对青藏高原47个草地样地连续3年的调查, 分析了当地群落水平上的植物叶片N、P含量及其化学计量学特征, 并结合温度和降水气候数据研究了N、P含量及N:P比值与这两个气候因子的相关关系。研究结果显示: 青藏高原草地群落水平的叶片N含量变化范围为14.8-36.7 mg·g-1, 平均为23.2 mg·g-1; P含量变化范围为0.8-2.8 mg·g-1, 平均为1.7 mg·g-1; N:P比值变化范围为6.8-25.6, 平均为13.5。群落叶片N含量与P含量呈显著正相关关系, 叶片的N:P比值与P含量呈显著负相关关系, N:P比值的变化主要由P含量变化决定。另外发现: 群落水平叶片N、P含量及N:P比值存在着显著的年际变化, 叶片的N、P含量及N:P比值与年平均气温之间存在着极显著的相关关系。通过该研究结果推测: P含量较高的变异系数及其与环境因子表现出的显著相关性, 在一定程度上体现了植物群落对当地气候条件的一种适应。  相似文献   

6.
Dickman EM  Vanni MJ  Horgan MJ 《Oecologia》2006,149(4):676-689
The stoichiometric composition of autotrophs can vary greatly in response to variation in light and nutrient availability, and can mediate ecological processes such as C sequestration, growth of herbivores, and nutrient cycling. We investigated light and nutrient effects on phytoplankton stoichiometry, employing five experiments on intact phytoplankton assemblages from three lakes varying in productivity and species composition. Each experiment employed two nutrient and eight irradiance levels in a fully factorial design. Light and nutrients interactively affected phytoplankton stoichiometry. Thus, phytoplankton C:N, C:P, and N:P ratios increased with irradiance, and slopes of the stoichiometric ratio versus irradiance relationships were steeper with ambient nutrients than with nutrients added. Our results support the light–nutrient hypothesis, which predicts that phytoplankton C:nutrient ratios are functions of the ratio of available light and nutrients; however, we observed considerable variation among lakes in the expression of this relationship. Phytoplankton species diversity was positively correlated with the slopes of the C:N and C:P versus irradiance relationships, suggesting that diverse assemblages may exhibit greater flexibility in the response of phytoplankton nutrient stoichiometry to light and nutrients. The interactive nature of light and nutrient effects may render it difficult to generate predictive models of stoichiometric responses to these two factors. Our results point to the need for future studies that examine stoichiometric responses across a wide range of phytoplankton communities.  相似文献   

7.
Climate warming and increasing aridity may negatively impact forest productivity across southern Europe. A better understanding of growth responses to climate and drought in southernmost populations could provide insight on the vulnerability of those forests to aridification. Here we investigate growth responses to climate and drought in nine Pinus pinaster (maritime pine) stands situated in Andalusia, southern Europe. The effect of climatic variables (temperatures and precipitation) and drought on radial growth was studied using dendrochronology along biogeographic and ecological gradients. We analyzed old native stands with non-tapped and resin-tapped trees mixed, showing their usefulness in dendroclimatic studies. Our results indicate a high plasticity in the growth responses of maritime pine to climate and drought, suggesting that site aridity modulated these responses. The positive growth responses to spring precipitation and the negative responses to summer drought were stronger in the more xeric inland sites than in wet coastal ones, in particular from the 1980s onwards. The characterization of tree species’ responses to climate at the southern or dry limits in relation to site conditions allows improving conservation strategies in drought-prone forest ecosystems.  相似文献   

8.
测定了松嫩平原草甸3种主要植物羊草(Leymus chinensis)、芦苇(Phragmites communis)和尖叶胡枝子(Lespedeza hedysaroides)叶片全氮、全磷浓度,并分析了它们与土壤全氮、全磷浓度的关系.结果表明:3种植物叶片全氮浓度种间差异显著(P<0.05),而全磷浓度种间差异不显...  相似文献   

9.
Loehr VJ  Hofmeyr MD  Henen BT 《Oecologia》2007,153(2):479-488
Climate change models predict that the range of the world’s smallest tortoise, Homopus signatus signatus, will aridify and contract in the next decades. To evaluate the effects of annual variation in rainfall on the growth of H. s. signatus, we recorded annual growth rates of wild individuals from spring 2000 to spring 2004. Juveniles grew faster than did adults, and females grew faster than did males. Growth correlated strongly with the amount of rain that fell during the time just before and within the growth periods. Growth rates were lowest in 2002–2003, when almost no rain fell between September 2002 and August 2003. In this period, more than 54% of the tortoises had negative growth rates for their straight carapace length (SCL), shell height (SH), and shell volume (SV); maximum shrinking for SCL, SH, and SV was 4, 11, and 12%, respectively. The shell of H. s. signatus has some flexibility dorso-ventrally, so a reduction in internal matter due to starvation or dehydration may have caused SH to shrink. Because the length and width of the shell seem more rigid, reversible bone resorption may have contributed to shrinkage, particularly of the shell width and plastron length. Based on growth rates for all years, female H. s. signatus need 11–12 years to mature, approximately twice as long as would be expected allometrically for such a small species. However, if aridification lowers average growth rates to the level of 2002–2003, females would require 30 years to mature. Additionally, aridification would lower average and maximum female size, resulting in smaller eggs and hatchlings. These projected life history responses to aridification heighten the threat posed by the predicted range contraction of this red-listed species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Aims Recent theories indicate that N is more in demand for plant growth than P; therefore, N concentration and N : C and N : P ratios are predicted to be positively correlated with relative growth rate (RGR) in plants under nutrient-enriched conditions. This prediction was tested in this study.Methods We examined the whole-plant concentrations of C, N and P and RGR, as well as the relationship between RGR and the concentrations and the ratios of N : C, P : C and N : P, for different harvest stages (the days after seed germination) of the seedlings of seven shrub species and four herbaceous species grown in N and P non-limiting conditions. The relationships among plant size, nutrient concentrations and ratios were subsequently determined.Important findings RGR was positively correlated with N concentration and the ratios of N : P and N : C when the data were pooled for all species and for each shrub species, but not for individual herbaceous species. However, the relationship between RGR and P concentration and P : C was not significantly correlated for either shrubs or herbs. The variation of N among harvest stages and species was much greater than that of P, and the variation in N : P ratio was determined primarily by changes in N concentration. The shrub species differed from the herbaceous species in their N and P concentrations, nutrient ratios and in intraspecific relationships between RGR and nutrient ratios. These differences possibly reflect differences in the capacity for P storage and biomass allocation patterns. In general, our data support recent theoretical predictions regarding the relationship between RGR and C : N : P stoichiometry, but they also show that species with different life forms differ in the relationships among RGR and C : N : P stoichimetries.  相似文献   

11.
12.
以浙江天童常绿阔叶林、常绿针叶林和落叶阔叶林为对象, 通过对叶片和凋落物C:N:P比率与N、P重吸收的研究, 揭示3种植被类型N、P养分限制和N、P重吸收的内在联系。结果显示: 1)叶片C:N:P在常绿阔叶林为758:18:1, 在常绿针叶林为678:14:1, 在落叶阔叶林为338:11:1; 凋落物C:N:P在常绿阔叶林为777:13:1, 常绿针叶林为691:14:1, 落叶阔叶林为567:14:1; 2)常绿阔叶林和常绿针叶林叶片与凋落物C:N均显著高于落叶阔叶林; 叶片C:P在常绿阔叶林最高, 常绿针叶林中等, 落叶阔叶林最低, 常绿阔叶林和常绿针叶林凋落物C:P显著高于落叶阔叶林; 叶片N:P比也是常绿阔叶林最高、常绿针叶林次之, 落叶阔叶林最低, 但常绿阔叶林凋落物N:P最低; 3)植被叶片N、P含量间(N为x, P为y)的II类线性回归斜率显著大于1 (p < 0.05), 表明叶片P含量的增加可显著提高叶片N含量; 凋落物N、P含量的回归斜率约等于1, 反映了凋落物中单位P含量与单位N含量间的等速损耗关系; 4)常绿阔叶林N重吸收率显著高于常绿针叶林与落叶阔叶林, 落叶阔叶林P重吸收率显著高于常绿阔叶林和常绿针叶林。虽然植被的N:P指示常绿阔叶林受P限制, 落叶阔叶林受N限制, 常绿针叶林受N、P的共同限制, 但是N、P重吸收研究结果表明: 受N素限制的常绿阔叶林具有高的N重吸收率, 受P限制的落叶阔叶林并不具有高的P重吸收率。可见, 较高的N、P养分转移率可能不是植物对N、P养分胁迫的一种重要适应机制, 是物种固有的特征。  相似文献   

13.
湘潭锰矿区废弃地是一个典型的退化生态系统,针对矿区废弃地植被恢复中3个不同林龄的栾树林(3年生、5年生和9年生),测定了林木叶片以及相应土壤的N、P含量,综合分析了不同林龄土壤和林木叶片的化学计量特征。结果表明,随着年龄的增长土壤中N含量呈递增趋势,而P含量为递减趋势,在3个林龄中均表现出显著性差异;3个林龄叶片的N、P含量以及N∶P比值差异显著,N、P含量在年龄增长梯度上表现为降低,而N∶P比值却表现为升高;3个林龄叶片中N含量与N∶P比值之间表现出显著正相关,而P含量与N∶P比值之间却为显著负相关关系;土壤中N、P含量与叶片N∶P比值之间分别存在显著正相关和负相关关系。通过对3个林龄叶片和土壤N、P含量及化学计量特征研究,发现P很有可能成为湘潭锰矿退化生态系统植被恢复过程中植物生长的限制性因子。研究结果可为矿区废弃地植被恢复和经营管理以及森林可持续发展提供科学依据。  相似文献   

14.
Aims Biological and environmental factors determine geographic patterns of plant nutrient stoichiometry jointly. Unraveling the distribution pattern and the potential drivers of nutrient stoichiometry is therefore critical for understanding the adaptive strategies and biogeochemistry cycling. Aimed to determine how leaf nitrogen (N):phosphorus (P) stoichiometry is linked to biological and environmental factors, we investigated the patterns of psammophyte leaf N:P stoichiometry in sandy region, northern China, and the potential factors affecting leaf N:P stoichiometry were explored.Methods Based on 10 m × 10 m quadrates survey, the leaves of 352 dominant psammophyte samples belonging to 167 species were collected cross a 3000 km east-west transect in sandy environments, northern China. The samples were further classified into the following groups on the basis of plant life forms and functional groups (photosynthesis pathways and nitrogen fixation). The structural equation modeling was employed to clarify the importance of biological and environmental factors on leaf N:P stoichiometry.Important findings Generally, the higher leaf N and P concentrations, but lower N:P ratio were found in psammophyte compared with other ecosystems. Mean annual temperature (MAT) influenced the leaf N, P concentrations negatively, while mean annual precipitation (MAP) did positively. MAP played greater influence on leaf N, P concentrations than MAT did. MAP affected leaf N, P concentrations directly or indirectly through phylogeny, while MAT only shown direct effect on leaf N concentration. The psammophyte was more limited by N, rather P, in sandy region of northern China. These results suggest that phylogeny of psammophyte and climate jointly influence leaf N:P stoichiometry, and the results could be helpful in modeling biogeochemical nutrients cycling in vulnerable ecosystems like sandy environment.  相似文献   

15.
16.
Understanding the reciprocal interactions between the evolved characteristics of species and the environment in which each species is embedded is a major priority for evolutionary ecology. Here we use the perspective of ecological stoichiometry to test the hypothesis that natural selection on body growth rate affects consumer body stoichiometry. As body elemental composition (nitrogen, phosphorus) of consumers influences nutrient cycling and trophic dynamics in food webs, such differences should also affect biogeochemical processes and trophic dynamics. Consistent with the growth rate hypothesis, body growth rate and phosphorus content of individuals of the Daphnia pulex species complex were lower in Wisconsin compared to Alaska, where the brevity of the growing season places a premium on growth rate. Consistent with stoichiometric theory, we also show that, relative to animals sampled in Wisconsin, animals sampled in Alaska were poor recyclers of P and suffered greater declines in growth when fed low‐quality, P‐deficient food. These results highlight the importance of evolutionary context in establishing the reciprocal relationships between single species and ecosystem processes such as trophic dynamics and consumer‐driven nutrient recycling.  相似文献   

17.
There has been a considerable expansion of Moliniacaerulea after the cessation of cutting management of Nardus stricta sub-alpine grasslands in the Giant Mts. (Krkonoše/Karkonosze/Riesengebirge, the Czech Republic) in the last 50 years. The aim of this study was to investigate whether the reestablishment of traditional management (one cut per year in late July) could reverse Molinia encroachment and help to restore the original Nardus grassland.  相似文献   

18.
选择南亚热带森林演替过程3个阶段(初期、中期和后期)的典型森林生态系统为研究对象, 在测定植物与土壤中全N、全P含量的基础上, 阐明了森林演替过程中植物与土壤的N、P化学计量特征。结果显示: 1)土壤中全N含量随演替进行而增加, 马尾松(Pinus massoniana)林(初期)、混交林(中期)和季风林(后期) 0-10 cm土层中全N含量分别为0.440、0.843和1.023 g·kg-1; 混交林0-10 cm土层中全P的含量最为丰富, 为0.337 g·kg-1, 马尾松林和季风林土壤全P含量分别为0.190和0.283 g·kg-1。2)植物叶片中全N、全P的含量随演替呈减少的趋势, 但根系中全N、全P的含量都以马尾松林为最多, 混交林和季风林含量彼此相当。3)各土层中N:P随演替的进行呈现明显增加趋势, 马尾松林、混交林和季风林0-10 cm土层中N:P分别为2.3、2.5和3.6; 植物各器官中N:P随演替的进行也呈增加趋势, 且叶片和根系中的N:P相近, 马尾松林、混交林和季风林叶片中N:P分别为22.7、25.3和29.6。基于上述结果, 探讨了南亚热带森林生态系统植物与土壤中N:P特征、森林演替过程中植物与土壤中N:P变化规律以及P对南亚热带森林生态系统的限制作用。结果表明, P已经成为南亚热带森林生态系统生物生长和重要生态过程的限制因子。  相似文献   

19.
温带森林演替加剧了氮限制:来自叶片化学计量和养分重吸收的证据 森林生产力和碳汇功能在很大程度上取决于土壤氮和磷的有效性。然而,迄今为止,养分限制随森林演替的时间变化仍存在争议。叶片化学计量和养分重吸收是预测植物生长养分限制的重要指标。基于此,本研究测定了温带森林4个演替阶段所有木本植物叶片和凋落叶中氮和磷的含量,并分析了演替过程中非生物因子和生物因子如何影响叶片化学计量和养分重吸收。研究结果表明,在个体尺度上,叶片氮磷含量在演替末期显著增加,而叶片氮磷比无显著变化;氮的重吸收效率随演替显著增加,然而磷的重吸收效率先增加后减少;氮重吸收效率与磷重吸收效率的比值仅在演替末期显著增加。此外,植物氮素循环对土壤养分的响应比磷素循环更弱。在群落尺度上,叶片氮磷含量随森林演替呈现先降低后升高的趋势,主要受香农-维纳多样性指数和物种丰富度的影响;叶片氮磷比随演替而显著变化,主要由胸径的群落加权平均值决定;氮的重吸收效率增加,主要受物种丰富度和胸径的影响,而磷的重吸收效率相对稳定。因此,氮重吸收效率与磷重吸收效率的比值显著增加,表明随着温带森林演替,氮限制加剧。这些结果可能反映了较高生物多样性群落中物种间对有限资源的激烈竞争,强调了生物因子在驱动森林生态系统养分循环中的重要性,为中国温带和北方森林可持续经营的施肥管理提供了参考。  相似文献   

20.
Shimizu Y  Urabe J 《Oecologia》2008,155(1):21-31
Initial theories of ecological stoichiometry were based on the assumption that the mass-specific content of key nutrient elements (such as P), changes little within a consumer species. However, evidence has shown that this content changes substantially according to feeding conditions. To clarify how the specific P content (S P) of a consumer species depends on food conditions and relates to the growth rate, we constructed a multiple mass-balance model incorporating feeding and metabolic costs and stoichiometrically regulated releases for C and P. The validity of the model was then tested experimentally by examining the growth rates and S P of Daphnia pulicaria under various food conditions. The experimental observation agreed qualitatively well with the model, showing that the S P of consumers relates positively to growth rate at high food C:P ratios but negatively at low food C:P ratios. Thus, within a consumer species, individuals with high S P do not necessarily grow at high rates. The concordance in results between the model and our observation suggests that maintenance costs for both P and C are substantial regardless of food conditions and play crucial roles in determining the relationship between the S P and growth rate of consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号