首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At present, the frequent occurrence of haze in China has attracted extensive attention around the world. However, there are few researches based on simultaneous equation model to evaluate the relationship among clean energy consumption, haze pollution and economic growth. Whether the relationship among clean energy consumption, haze pollution and economic growth can be clarified correctly is the core issue to achieve the goal of both haze control and high-quality economic development. The innovation of this study is to further explore the interaction mechanism among the three variables, simultaneous equation model is used to analyze the relationship of clean energy development, haze pollution and economic growth of 27 cities in the central area of Yangtze River Delta from 2006 to 2016. The estimation results show that:(i) The development of clean energy has reduced regional haze pollution and the level of economic development significantly; (ii) During the study period of this paper, haze pollution has significantly increased the consumption of clean energy, but it has hindered the level of economic development seriously. (iii) The level of economic development has increased clean energy consumption at a 1% level of significance, while also exacerbated the degree of haze pollution. Moreover, as a core variable of this paper, coal consumption has restrained clean energy development and played a positive role in accelerating economic development and haze pollution reduction.  相似文献   

2.
In this paper, we address some modelling issues related to biological growth. Our treatment is based on a formulation for growth that was proposed within the context of mixture theory (J Mech Phys Solids 52:1595–1625, 2004). We aim to make this treatment more appropriate for the physics of porous soft tissues, paying particular attention to the nature of fluid transport, and mechanics of fluid and solid phases. The interactions between transport and mechanics have significant implications for growth and swelling. We also reformulate the governing differential equations for reaction-transport of solutes to represent the incompressibility constraint on the fluid phase of the tissue. This revision enables a straightforward implementation of numerical stabilisation for the advection-dominated limit of these equations. A finite element implementation with operator splitting is used to solve the coupled, non-linear partial differential equations that arise from the theory. We carry out a numerical and analytic study of the convergence of the operator splitting scheme subject to strain- and stress-homogenisation of the mechanics of fluid–solid interactions. A few computations are presented to demonstrate aspects of the physical mechanisms, and the numerical performance of the formulation.  相似文献   

3.
Water scarcity, energy consumption, and air temperature regulation are three critical resource and environmental challenges linked to urban population growth. While appliance efficiency continues to increase, today’s homes are larger and residents are using more energy-consuming devices. Recent research has often described the energy–water nexus as a “tradeoff” between energy and water due to reduced temperatures resulting from irrigated vegetation. Accordingly, some arid cities have implemented landscape-conversion programs that encourage homeowners to convert their yards from grass (mesic) to drought-tolerant (xeric) landscapes to help conserve water resources. We investigated these relationships in Phoenix, Arizona by examining energy and water data for the summer months of June–September 2005 while temperature variability was analyzed from a local heat wave. Results show parallel consumption patterns with energy and water use strongly correlated and newer homes using more of both. The counterintuitive findings show that “drought-resistant” models may not be beneficial for community health, environment, or economics and that this issue is further complicated by socio-economic variables.  相似文献   

4.
With the most recent statistics available, a concrete emissions inventory is compiled for an input–output analysis to investigate the embodied CO2 emissions induced by fossil fuel combustion of Beijing economy in 2007. Results show that the total direct CO2 emissions amount to 9.45E + 07 t, within which 56.81% are released from coal combustion, 11.50% from coke combustion, 9.03% from kerosene combustion, 8.70% from natural gas and 6.40% from diesel, respectively. The average intensity of secondary industries (3.12 t/1E + 4 Yuan) is 0.65 times larger than that of primary industries (1.89 t/1E + 4 Yuan) and 1.58 times larger than that of tertiary industries (1.21 t/1E + 4 Yuan). The sector of Construction Industry contributes the largest share (21.98%) of CO2 emissions embodied in final demand for Beijing due to its considerable capital investment. Beijing is a net importer of embodied CO2 emissions with total import and export of 3.06E + 08 and 2.00E + 08 t, respectively. Results of this study provide a sound scientific database for effective policy making in Beijing to reduce CO2 emissions.  相似文献   

5.
Obesity is a worldwide disease that is accompanied by several metabolic abnormalities such as hypertension, hyperglycemia and dyslipidemia. The accelerated adipose tissue growth and fat cell hypertrophy during the onset of obesity precedes adipocyte dysfunction. One of the features of adipocyte dysfunction is dysregulated adipokine secretion, which leads to an imbalance of pro-inflammatory, pro-atherogenic versus anti-inflammatory, insulin-sensitizing adipokines. The production of renin–angiotensin system (RAS) components by adipocytes is exacerbated during obesity, contributing to the systemic RAS and its consequences. Increased adipose tissue RAS has been described in various models of diet-induced obesity (DIO) including fructose and high-fat feeding. Up-regulation of the adipose RAS by DIO promotes inflammation, lipogenesis and reactive oxygen species generation and impairs insulin signaling, all of which worsen the adipose environment. Consequently, the increase of circulating RAS, for which adipose tissue is partially responsible, represents a link between hypertension, insulin resistance in diabetes and inflammation during obesity. However, other nutrients and food components such as soy protein attenuate adipose RAS, decrease adiposity, and improve adipocyte functionality. Here, we review the molecular mechanisms by which adipose RAS modulates systemic RAS and how it is enhanced in obesity, which will explain the simultaneous development of metabolic syndrome alterations. Finally, dietary interventions that prevent obesity and adipocyte dysfunction will maintain normal RAS concentrations and effects, thus preventing metabolic diseases that are associated with RAS enhancement.  相似文献   

6.
In a recent work on the Tzotzil (Maya) of Chiapas, Mexico, George Collier has suggested that indigenous groups frequently employ agricultural practices which are in obvious disequilibrium with their environment. As a result, he claims, such groups bring about the permanent destruction of their lands and forests. In this article, historical and demographic evidence is presented to demonstrate that the development of commencal agriculture outside of native communities, not overpopulation or technological conservatism within them, lies at the heart of such destruction. Finally, it is argued that anthropologists must consider the evolution of social classes in rural areas if they are to understand the difficulties which economic development entails.  相似文献   

7.
Most bird species endure a high mortality at fledging, and selection should favour parental behaviour diminishing these costs. Post-fledging parental care varies greatly among species and is often linked to parent–offspring recognition. In the Black-legged Kittiwake (Rissa tridactyla), fledglings need to return to the natal nest to be fed by their parents until independence. Rejections of fledglings by non-parent adults may be fairly violent, and parents are expected to recognize and help their chicks at the time of first return. However, previous cross-fostering experiments pointed out that parents are not able to recognize their chicks up to 15 days before fledging. In this paper, we study the behaviour of both parents and juveniles at fledging. We found that parents answered significantly more to their fledgling's calls than to those of others. Compared to silent juveniles, juveniles that called before landing were more likely to be accepted by their parents. No such pattern was observed with foreign juveniles, indicating that fledglings’ voice may carry individual identity. Furthermore, fledglings found their way back to the natal nest faster when parents attended the natal nest and reacted to their offspring's calls than when they were absent or inactive. Such interactions may therefore diminish juvenile mortality at fledging.  相似文献   

8.
During episodes of hypoxia and inflammation, polymorphonuclear leukocytes (PMN) move into underlying tissues by initially passing between endothelial cells that line the inner surface of blood vessels (transendothelial migration, TEM). TEM creates the potential for disturbances in vascular barrier and concomitant loss of extravascular fluid and resultant edema. Recent studies have demonstrated a crucial role for nucleotide metabolism and nucleoside signaling during inflammation. These studies have implicated multiple adenine nucleotides as endogenous tissue protective mechanisms invivo. Here, we review the functional components of vascular barrier, identify strategies for increasing nucleotide generation and nucleoside signaling, and discuss potential therapeutic targets to regulate the vascular barrier during inflammation.  相似文献   

9.
Embryonic hair follicle induction and formation are regulated by mesenchymal–epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal–epithelial interactions during hair follicle morphogenesis and cycling.  相似文献   

10.
Invasive plant species can alter belowground microbial communities. Simultaneously, the composition of soil microbial communities and the abundance of key microbes can influence invasive plant success. Such reciprocal effects may cause plant–microbe interactions to change rapidly during the course of biological invasions in ways that either inhibit or promote invasive species growth. Here we use a space-for-time substitution to illustrate how effects of soil microbial communities on the exotic legume Vicia villosa vary across uninvaded sites, recently invaded sites, and sites invaded by V. villosa for over a decade. We find that soil microorganisms from invaded areas increase V. villosa growth compared to sterilized soil or live soils collected from uninvaded sites, likely because mutualistic nitrogen-fixing rhizobia are not abundant in uninvaded areas. Notably, the benefits resulting from inoculation with live soils were higher for soils from recently invaded sites compared to older invasions, potentially indicating that over longer time scales, soil microbial communities change in ways that may reduce the success of exotic species. These findings suggest that short-term changes to soil microbial communities following invasion may facilitate exotic legume growth likely because of increases in the abundance of mutualistic rhizobia, but also indicate that longer term changes to soil microbial communities may reduce the growth benefits belowground microbial communities provide to exotic species. Our results highlight the changing nature of plant–microbe interactions during biological invasions and illustrate how altered biotic interactions could contribute to both the initial success and subsequent naturalization of invasive legume species.  相似文献   

11.
A total of 748 Salmonella strains (97 serovars) isolated from human (291), animal (119), environmental (141), food (102) and animal feed (95) sources were examined for resistance to 9 antimicrobial agents. Most of the human isolates were from hospitalized patients (282). An overall resistance rate of 98.8% was determined with 100% for human and environmental isolates. Resistance to sulfadiazine (87.7%) was most common, followed by streptomycin (61.2%), ampicillin (39%) and trimethoprim-sulphamethoxazole (37.9%). Fifty one different resistance patterns were identified with Su (164 strains), Su-Sm (122) and Su-Sm-Tc-Cm-Km-Ap-Nx-Gm-Tm (95) predominating, the latter occurring only in human isolates. Multiple resistance was most frequently found among human isolates, particularly in S. derby and S. typhimurium strains. The relationship between antibiotic resistance, serovar and source of isolation of the Salmonella strains is discussed.  相似文献   

12.
STBD1 (starch-binding domain-containing protein 1) belongs to the CBM20 (family 20 carbohydrate binding module) group of proteins, and is implicated in glycogen metabolism and autophagy. However, very little is known about its regulation or interacting partners. Here, we show that the CBM20 of STBD1 is crucial for its stability and ability to interact with glycogen-associated proteins. Mutation of a conserved tryptophan residue (W293) in this domain abolished the ability of STBD1 to bind to the carbohydrate amylose. Compared with the WT (wild-type) protein, this mutant exhibited rapid degradation that was rescued upon inhibition of the proteasome. Furthermore, STBD1 undergoes ubiquitination when expressed in COS cells, and requires the N-terminus for this process. In contrast, inhibition of autophagy did not significantly affect protein stability. In overexpression experiments, we discovered that STBD1 interacts with several glycogen-associated proteins, such as GS (glycogen synthase), GDE (glycogen debranching enzyme) and Laforin. Importantly, the W293 mutant of STBD1 was unable to do so, suggesting an additional role for the CBM20 domain in protein–protein interactions. In HepG2 hepatoma cells, overexpressed STBD1 could associate with endogenous GS. This binding increased during glycogenolysis, suggesting that glycogen is not required to bridge this interaction. Taken together, our results have uncovered new insights into the regulation and binding partners of STBD1.  相似文献   

13.
Protein–protein interactions mediate essentially all biological processes. Despite the quality of these data being widely questioned a decade ago, the reproducibility of large-scale protein interaction data is now much improved and there is little question that the latest screens are of high quality. Moreover, common data standards and coordinated curation practices between the databases that collect the interactions have made these valuable data available to a wide group of researchers. Here, I will review how protein–protein interactions are measured, collected and quality controlled. I discuss how the architecture of molecular protein networks has informed disease biology, and how these data are now being computationally integrated with the newest genomic technologies, in particular genome-wide association studies and exome-sequencing projects, to improve our understanding of molecular processes perturbed by genetics in human diseases. This article is part of a Special Issue entitled: From Genome to Function.  相似文献   

14.

Aim

Spatial diversity patterns are linked to energy availability, but how the diversity–energy relationship changes in space and time is unclear. There are three possible scenarios: (a) equilibrium dynamics, where diversity is always positively related to energy availability in both time and space; (b) out-of-equilibrium dynamics, where diversity is determined by energy availability in equilibrium, but diversity variation lags behind changes in energy availability, leading to a mismatch between temporal and spatial diversity–energy relationships; and (c) disequilibrium dynamics where the equilibrium does not exist or is irrelevant. We attempt to distinguish these scenarios using spatio-temporal palaeoecological data.

Location

USA and Canada.

Time period

21,000–1,000 years before present.

Major taxa studied

Woody plants.

Methods

We tested for the strength and direction of temporal and spatial relationships between pollen type diversity of woody species and energy availability (estimated from temperature and precipitation) in 1,000-year time steps.

Results

Whereas the temporal diversity–energy relationship appears only when energy levels rapidly change, the spatial diversity–energy relationship is pronounced only when these levels stabilize.

Main conclusions

Our findings are consistent with the out-of-equilibrium scenario – diversity equilibria do exist and act as attractors of diversity dynamics, but diversity is often out of equilibrium. Consequently, current rapid climate changes can disrupt spatially consistent diversity–energy relationships. To understand diversity dynamics, it is crucial to simultaneously consider both the spatial and temporal dimensions of diversity variation.  相似文献   

15.
Based on the two-level Logarithmic Mean Divisia Index (LMDI) method and Tapio index, this paper constructed an expanded decomposition model for decoupling elasticity and effort index of industrial carbon emissions, and further quantitatively analyzed the delinking indicators on industry growth and environmental pressures in Beijing–Tianjin–Hebei (BTH) economic band from 1996 to 2010. The results indicate that: (1) together with the rapid economic growth, industrial energy-related carbon emissions in BTH region rose from 44477.43 × 104 t in 1996 to 105602.33 × 104 t in 2006 and then declined to 64426.71 × 104 t in 2010, with an average annual growth rate of 2.94%. Our results also show that carbon emissions in BTH region were dominated by the secondary industry, which accounted for about 80% of total carbon emissions. (2) “Weak decoupling” was the main characteristic during the 9th Five-Year Plan period (1996–2000) and 11th Five-Year Plan period (2006–2010), particularly “strong decoupling” in 2007; while “weak coupling” was the main characteristic during the 10th Five-Year Plan period (2001–2005). (3) The rapid economic growth was the main factor responsible for industrial decoupling blocking. The energy structure and energy intensity made significant contributions to the industrial decoupling progress. The industrial structure effect had varied considerably over the years without showing a clear trend.  相似文献   

16.
17.
This paper proposes an approach to calculate the time series of cumulative carbon dioxide (CO2) emissions between 1995 and 2014 based on industrial energy consumption data in three Eastern China jurisdictions in Shanghai, Jiangsu and Zhejiang during these two decades. Using the Hodrick-Prescott filter, the fluctuation components of the cumulative CO2-emission time-series data in the three provinces are obtained. Subsequently, a grey correlation-based change-point search algorithm is used to determine change-points in these data. Additionally, the CO2-emission time-series is divided into stages based on the change-points. The cycle characteristics of national energy policies, laws, and regulations are compared with those of the cumulative CO2-emission cycle of the three provinces to analyse the impact of energy policies on CO2 emissions. This study shows that, although the industrial structure and trends in the CO2 emission time-series data of the three provinces are different, their cumulative CO2-emission cycle remains the same from 1995 to 2014. The variation characteristics of the cumulative CO2 emissions for each cycle during this period are well aligned with the stage characteristics of energy policies, laws, and regulations, indicating that energy policies play a consistent role in regulating such emissions. This study examines low-carbon production and sustainable energy development, and offers suggestions for issuing and perfecting energy policies, laws, and regulations, considering the indicators of energy consumption and CO2 emissions.  相似文献   

18.
Rapid urbanization has exerted substantial pressure on China’s energy system and contributed to climate change. To find the key drivers of urban residential energy consumption and CO2 emissions, this paper uses an extended Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) model that employs city-level data to examine the influences of population scale, income level, population compactness and price on house-based residential energy consumption, energy-related CO2 emissions and private vehicle ownership. The empirical results indicate that factors such as population scale, affluence, and population compactness can lead to increases in residential energy consumption and CO2 emissions. In terms of transportation, income and population scale positively drive the growth of private vehicle ownership, while the fuel price negatively influences private vehicle ownership. Moreover, population scale is the most important factor in residential energy consumption and CO2 emissions. Finally, policy recommendations are suggested for China’s urban development strategy and urban design and to encourage technology innovations that reduce residential energy consumption and CO2 emissions.  相似文献   

19.
Early development of protein biotherapeutics using recombinant DNA technology involved progress in the areas of cloning, screening, expression and recovery/purification. As the biotechnology industry matured, resulting in marketed products, a greater emphasis was placed on development of formulations and delivery systems requiring a better understanding of the chemical and physical properties of newly developed protein drugs. Biophysical techniques such as analytical ultracentrifugation, dynamic and static light scattering, and circular dichroism were used to study protein–protein interactions during various stages of development of protein therapeutics. These studies included investigation of protein self-association in many of the early development projects including analysis of highly glycosylated proteins expressed in mammalian CHO cell cultures. Assessment of protein–protein interactions during development of an IgG1 monoclonal antibody that binds to IgE were important in understanding the pharmacokinetics and dosing for this important biotherapeutic used to treat severe allergic IgE-mediated asthma. These studies were extended to the investigation of monoclonal antibody–antigen interactions in human serum using the fluorescent detection system of the analytical ultracentrifuge. Analysis by sedimentation velocity analytical ultracentrifugation was also used to investigate competitive binding to monoclonal antibody targets. Recent development of high concentration protein formulations for subcutaneous administration of therapeutics posed challenges, which resulted in the use of dynamic and static light scattering, and preparative analytical ultracentrifugation to understand the self-association and rheological properties of concentrated monoclonal antibody solutions.  相似文献   

20.
Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail–tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号