首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of microRNAs (miRNAs) for improving the efficiency of recombinant protein production by CHO cells is gaining considerable interest for their ability to regulate entire molecular networks. Differential miRNA expression profiling and large-scale transient screening have been the prerequisite for the selection of miRNA candidates for stable manipulation, reported in CHO cells expressing a range of recombinant products. We selected a potent and well characterised tumour suppressor miRNA, miR-34a, as a high priority candidate for CHO cell engineering based on the conservation of both its sequence and function across species and cell type. Ectopic expression of miR-34a retained its functional conservation in CHO-SEAP cells by inhibiting growth by 90 % in addition to decreasing the viable cell population by 30 % when compared to controls. When the miR-34 family was stably depleted using a miRNA sponge decoy vector, the overall product yield was enhanced by ~2-fold in both fed-batch and small scale clonal batch cultures, despite having a negative impact on cell growth. These findings further strengthen the utility of miRNAs as engineering tools to modify and improve CHO cell performance.  相似文献   

2.
Chinese hamster ovary (CHO) cells with a high viable cell density (VCD), resilience to culture stress, and the capacity to continuously express recombinant proteins are highly desirable. Phosphatase and tension homology deleted on chromosome ten (PTEN) functions as a key negative regulator of the PI3K/Akt signaling pathway, mediating cell growth and survival. Its oncogenic mutant endows cells with an enhanced proliferation rate and resistance to death. In this study, the role of oncogenic PTEN C124S or G129E on the performance of CHO-K1 and CHO-IgG cells was investigated. Our results showed that CHO-K1 cells stably expressing PTEN C124S or G129E exhibited enhanced proliferation, reduced apoptosis rate, and increased transient expression of therapeutic antibodies compared to the control cells. Moreover, the stable overexpression of PTEN C124S or G129E endowed CHO-IgG cells with higher cell viability, VCD, and antibody titers (yield increased by approximately 0.77-fold) in the fed-batch culture process and enhanced their performance in response to the addition of sodium lactate. Moreover, the engineering of mutated PTEN in CHO-IgG cells did not alter antibody quality. Collectively, our data suggest that mutated PTEN is a potential target for improving the manufacture of therapeutic antibodies.  相似文献   

3.
Difficult-to-express (DTE) recombinant proteins such as multi-specific proteins, DTE monoclonal antibodies, and lysosomal enzymes have seen difficulties in manufacturability using Chinese hamster ovary (CHO) cells or other mammalian cells as production platforms. CHO cells are preferably used for recombinant protein production for their ability to secrete human-like recombinant proteins with posttranslational modification, resistance to viral infection, and familiarity with drug regulators. However, despite huge progress made in engineering CHO cells for high volumetric productivity, DTE proteins like recombinant lysosomal sulfatase represent one of the poorly understood proteins. Furthermore, there is growing interest in the use of microRNA (miRNA) to engineer CHO cells expressing DTE proteins to improve cell performance of relevant bioprocess phenotypes. To our knowledge, no research has been done to improve CHO cell production of DTE recombinant lysosomal sulfatase using miRNA. We identified miR-23a and miR-377 as miRNAs predicted to target SUMF1, an activator of sulfatases, using in silico prediction tools. Transient inhibition of CHO endogenous miR-23a/miR-377 significantly enhanced recombinant sulfatase enzyme-specific activity by ~15–21% compared to scramble without affecting cell growth. Though inhibition of miR-23a/miR-377 had no significant effect on the mRNA and protein levels of SUMF1, overexpression of miR-23a/377 caused ~30% and ~27–29% significant reduction in endogenous SUMF1 protein and mRNA expression levels, respectively. In summary, our data demonstrate the importance of using miRNA to optimize the CHO cell line secreting DTE recombinant lysosomal sulfatase.  相似文献   

4.
The steady improvement of mammalian cell factories for the production of biopharmaceuticals is a key challenge for the biotechnology community. Recently, small regulatory microRNAs (miRNAs) were identified as novel targets for optimizing Chinese hamster ovary (CHO) production cells as they do not add any translational burden to the cell while being capable of regulating entire physiological pathways. The aim of the present study was to elucidate miRNA function in a recombinant CHO‐SEAP cell line by means of a genome‐wide high‐content miRNA screen. This screen revealed that out of the 1, 139 miRNAs examined, 21% of the miRNAs enhanced cell‐specific SEAP productivity mainly resulting in elevated volumetric yields, while cell proliferation was accelerated by 5% of the miRNAs. Conversely, cell death was diminished by 13% (apoptosis) or 4% (necrosis) of all transfected miRNAs. Besides these large number of identified target miRNAs, the outcome of our studies suggest that the entire miR‐30 family substantially improves bioprocess performance of CHO cells. Stable miR‐30 over expressing cells outperformed parental cells by increasing SEAP productivity or maximum cell density of approximately twofold. Our results highlight the application of miRNAs as powerful tools for CHO cell engineering, identified the miR‐30 family as a critical component of cell proliferation, and support the notion that miRNAs are powerful determinants of cell viability.  相似文献   

5.
Selection of lead candidates in drug discovery is a complex and time-consuming process. Here, we describe an approach that allows prediction of the productivity and quality of recombinant proteins by stable producer cell clones with the help of transient transfection studies. This is exemplified for three distinct bispecific T cell engager (BiTE®)—a new class of single-chain antibody-based therapeutics showing very promising results in the treatment of cancer. BiTE® titers of transiently transfected HEK cells showed a striking correlation with titers of selected stable CHO cell clones. Likewise, the percentage of the monomeric BiTE® fraction in cell culture supernatants correlated well between transiently expressing HEK and stably expressing CHO cell clones. This validates the use of transient transfection studies for the selection of biopharmaceutical lead candidates with desired pharmaceutical properties.  相似文献   

6.
This paper describes the first miRNA analysis carried out on hamster cells specifically Chinese hamster ovary (CHO) cells which are the most important cell line for the manufacture of human recombinant biopharmaceutical products. During biphasic culture, an initial phase of rapid cell growth at 37 degrees C is followed by a growth arrest phase induced through reduction of the culture temperature. Growth arrest is associated with many positive phenotypes including increased productivity, sustained viability and an extended production phase. Using miRNA bioarrays generated with probes against human, mouse and rat miRNAs, we have identified 26 differentially expressed miRNAs in CHO-K1 when comparing cells undergoing exponential growth at 37 degrees C to stationary phase cells at 31 degrees C. Five miRNAs were selected for qRT-PCR analysis using specific primer sets to isolate and amplify mature miRNAs. During this analysis, two known growth inhibitory miRNAs, miR-21 and miR-24 were identified as being upregulated during stationary phase growth induced either by temperature shift or during normal batch culture by both bioarray and qRT-PCR. Sequence data confirmed the identity of cgr-miR-21, a novel Cricetulus griseus ortholog of the known miRNA miR-21. This study offers a novel insight into the potential of miRNA regulation of CHO-K1 growth and may provide novel approaches to rational engineering of both cell lines and culture processes to ensure optimal conditions for recombinant protein production.  相似文献   

7.
Chinese hamster ovary (CHO) cells are widely employed to produce glycosylated recombinant proteins. Our group as well as others have demonstrated that the sialylation defect of CHO cells can be corrected by transfecting the alpha2,6-sialyltransferase (alpha2,6-ST) cDNA. Glycoproteins produced by such CHO cells display both alpha2,6- and alpha2,3-linked terminal sialic acid residues, similar to human glycoproteins. Here, we have established a CHO cell line stably expressing alpha2,6-ST, providing a universal host for further transfections of human genes. Several relevant parameters of the universal host cell line were studied, demonstrating that the alpha2,6-ST transgene was stably integrated into the CHO cell genome, that transgene expression was stable in the absence of selective pressure, that the recombinant sialyltransferase was correctly localized in the Golgi and, finally, that the bioreactor growth parameters of the universal host were comparable to those of the parental cell line. A second step consisted in the stable transfection into the universal host of cDNAs for human glycoproteins of therapeutic interest, i.e. interferon-gamma and the tissue inhibitor of metalloproteinases-1. Interferon-gamma purified from the universal host carried 40.4% alpha2,6- and 59.6% alpha2,3-sialic acid residues and showed improved pharmacokinetics in clearance studies when compared to interferon-gamma produced by normal CHO cells.  相似文献   

8.
MicroRNA-223 is a key factor in osteoclast differentiation   总被引:3,自引:0,他引:3  
MicroRNAs (miRNAs) are a class of noncording RNAs that control gene expression by translational inhibition and messenger RNAs (mRNAs) degradation in plants and animals. Although miRNAs have been implicated in developmental and homeostatic events of vertebrates and invertebrates, the role of miRNAs in bone metabolism has not been explored. Here, we show that microRNA-223 (miR-223) is expressed in RAW264.7 cells, mouse osteoclast precursor cell lines, and plays a critical role in osteoclast differentiation. We constructed miR-223 short interfering RNA (siRNA) or precursor miR-223 (pre-miR-223) overexpression retroviral vectors, and established miR-223 knockdown by siRNA or pre-miR-223 overexpression in stably infected RAW264.7 cells. Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells were observed in miR-223 knockdown cells as well as control cells. In contrast, pre-miR-223 overexpression completely blocked TRAP-positive multinucleated cell formation compared with control cells. Apoptotic cells were not observed in this study. Our results indicate that miR-223 plays an essential role during osteoclast differentiation, and miR-223 might be a viable therapeutic target for a range of bone metabolic disorders with excess osteoclast activity.  相似文献   

9.
RNA interference (RNAi) has been recently applied to improve the yield and quality of recombinant proteins produced in Chinese hamster ovary (CHO) cells, the most commonly used mammalian cell line for production of complex biopharmaceuticals. Proteomic profiling of CHO cells undergoing gene amplification identified cofilin, a key regulatory protein of actin cytoskeletal dynamics, as a cellular target for genetic engineering studies. Transient reduction of cofilin by small interfering RNA (siRNA) enhanced specific productivity in recombinant CHO cells by up to 80%. CHO cell lines expressing cofilin-specific short hairpin RNA (shRNA) vectors showed up to a 65% increase in specific productivity. These results suggest that modulation of cofilin, and its regulatory pathways, may be a new approach to enhance recombinant protein productivity in CHO cells.  相似文献   

10.
The biopharmaceutical industry strives for improvement of their production processes. In recent years, miRNAs have been shown to positively impact the production capacity of recombinant CHO cells, especially with regard to difficult to express proteins. Effective and reliable gene regulation of process relevant target genes by miRNAs is a prerequisite for integrating them into the toolbox of industrial cell engineering strategies. However, most studies rely on transient transfection of miRNA mimics; there is low standardization in evaluation of miRNA function and little knowledge on transferability of effects found during transient expression to stable expression during industry relevant fed-batch cultivation. In order to provide more insight into this topic, we used the pcDNA6.2 vector for stable miRNA overexpression during batch and fed-batch cultivation in CHO DG44 cells, optimized the vector, and compared the miRNA levels and effects with those achieved by transfection of miRNA mimics. We found that miR-1 downregulated TWF1 mRNA in different recombinant CHO DG44 clones in a dose-dependent manner during transient batch cultivation. Cells stably overexpressing miR-1 also showed a TWF1 mRNA downregulation when cultivated in batch mode using in-house medium 1. However, when the cells stably overexpressing miR-1 were cultivated in fed-batch mode using in-house medium 2. Consequently, a change of cultivation mode and medium seems to have an impact on target gene regulation by miRNA. Taken together, our findings highlight the importance to standardize miRNA evaluations and test miRNAs in the final application environment.  相似文献   

11.
12.
Chinese hamster ovary (CHO) cells are widely employed to produce glycosylated recombinant proteins. Our group as well as others have demonstrated that the sialylation defect of CHO cells can be corrected by transfecting the α2,6-sialyltransferase (α2,6-ST) cDNA. Glycoproteins produced by such CHO cells display both α2,6- and α2,3-linked terminal sialic acid residues, similar to human glycoproteins. Here, we have established a CHO cell line stably expressing α2,6-ST, providing a universal host for further transfections of human genes. Several relevant parameters of the universal host cell line were studied, demonstrating that the α2,6-ST transgene was stably integrated into the CHO cell genome, that transgene expression was stable in the absence of selective pressure, that the recombinant sialyltransferase was correctly localized in the Golgi and, finally, that the bioreactor growth parameters of the universal host were comparable to those of the parental cell line. A second step consisted in the stable transfection into the universal host of cDNAs for human glycoproteins of therapeutic interest, i.e. interferon-γ and the tissue inhibitor of metalloproteinases-1. Interferon-γ purified from the universal host carried 40.4% α2,6- and 59.6% α2,3-sialic acid residues and showed improved pharmacokinetics in clearance studies when compared to interferon-γ produced by normal CHO cells.  相似文献   

13.
A potential producer clone was identified among recombinant, human vascular endothelial growth factor A (hVEGFA)-producing Chinese Hamster Ovary (CHO) K1 cells, using a recently established screening method. In batch spinner cultivations, the cells showed a maximum growth rate of 0.045 h(-1), a final total cell density of 5.3×10(6) mL(-1) (living cell density: 3.4×10(6) mL(-1)), and a final hVEGFA concentration of 207 μg L(-1). Living cell density and productivity in the spinner cultivations could be increased by glutamine feeding. Transfer of the process to the bioreactor (batch mode, control of pH, T, and O2) resulted in a reduction of the growth rate by roughly 50%, while overall living cell density and productivity increased, largely due to an extension of the production phase. When the bioreactor was run in the fed-batch mode, growth rates were further reduced, while productivity and living cell densities reached a maximum (hVEGFA: 358 μg L(-1), cells: 5.2×10(6) mL(-1)). In addition, the death rate of the hVEGFA-producing cells was considerably reduced compared with the parent cell line, most likely due to product-host-interaction. This hypothesis was corroborated when a second recombinant CHO cell line (antibody producer) was transfected with the hVEGFA gene and afterward consistently showed higher viable cell densities together with a significantly improved antibody titer.  相似文献   

14.
15.
16.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

17.
Transient gene expression (TGE) provides a method for quickly delivering protein for research using mammalian cells. While high levels of recombinant proteins have been produced in TGE experiments in HEK 293 cells, TGE efforts in the commercially prominent CHO cell line still suffer from inadequate protein yields. Here, we describe a cell-engineering strategy to improve transient production of proteins using CHO cells. CHO-DG44 cells were engineered to overexpress the anti-apoptotic protein Bcl-x(L) and transiently transfected using polyethylenimine (PEI) in serum-free media. Pools and cell lines stably expressing Bcl-x(L) showed enhanced viable cell density and increased production of a glycosylated, therapeutic fusion protein in shake flask TGE studies. The improved cell lines showed fusion protein production levels ranging from 12.6 to 27.0 mg/L in the supernatant compared to the control cultures which produced 6.3-7.3 mg/L, representing a 70-270% increase in yield after 14 days of fed-batch culture. All Bcl-xL-expressing cell lines also exhibited an increase in specific productivity during the first 8 days of culture. In addition to increased production, Bcl-x(L) cell lines maintained viabilities above 90% and less apoptosis compared to the DG44 host which had viabilities below 60% after 14 days. Product quality was comparable between a Bcl-xL-engineered cell line and the CHO host. The work presented here provides the foundation for using anti-apoptosis engineered CHO cell lines for increased production of therapeutic proteins in TGE applications.  相似文献   

18.
A perfused cell-culture process was developed to investigate the stability of IRF-1-mediated proliferation control in BHK cells and to evaluate the efficacy of a novel promoter in these cells. The cell density of proliferation-controlled producer cells was effectively regulated for over 7 weeks in a microcarrier-based continuously perfused bioreactor. An IRF-1-inducible promoter was employed to express a heterodimeric IgG antibody as a relevant model protein. Basal expression levels were equivalent to that of a highly active viral promoter, while productivity increased up to sixfold during growth arrest. However, no stably expressing clone was isolated in this study. Protein expression decreased gradually with time and could not be induced further in subsequent growth-repression cycles. The results demonstrate that the regulatory system is sufficiently stable to allow controlled growth in a continuous scalable reactor system and that productivity increases can be achieved in a proliferation controlled microcarrier culture.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号