首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples from stone surfaces were collected in pools within four unpolluted hillstreams (two shaded and two unshaded) in monsoonal Hong Kong (lat. 23°N) to elucidate the extent of spatial (within and among streams) and temporal (seasonal) variations in algal biomass and assemblage composition. Sampling continued for over 12 months, incorporating the dry season when streams were at baseflow, and the wet season when spates were frequent. We anticipated that algal biomass would be lower in shaded streams and during the wet season, with associated seasonal differences in assemblage composition or relative abundance of different growth forms (e.g. erect versus prostrate). Benthic chlorophyll a (a proxy for algal biomass) varied among streams from an annual mean of 11.0–22.3 mg m−2. Dry-season standing stocks were 18% higher than during the wet season when spate-induced disturbance reduced algal standing stocks. Algal biomass varied significantly at the stream scale, but not at the pool scale, and was lower in unshaded streams, where standing stocks may have been limited by high densities of algivorous balitorid loaches (mainly Pseudogastromyzon myersi). An overriding effect of grazers on algal biomass could also have reduced variations resulting from spate-induced disturbance. Significant differences in assemblage composition among streams, which were dominated by diatoms and cyanobacteria (totally 82 taxa) were not systematically related to shading conditions. Seasonal variations in algal assemblages were statistically significant but rather minor, and did not involve major shifts in composition or growth form caused by spate-induced disturbance. The abundance of filamentous cyanobacteria in all the streams may have been due to ‘gardening’ by balitorid loaches that removed erect or stalked diatoms and favoured cyanobacteria that persist through basal regeneration of filaments. This explanation requires validation through manipulative experiments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: Luis Mauricio Bini  相似文献   

2.
Stressor-response models offer guidance for concentration-based nutrient criteria in lakes under human intervention. Diatom-based statistics from biological responses were incorporated to derive taxon-specific and community-level change points (thresholds) of phosphorous and nitrogen in 77 Yangtze floodplain lakes. Diatom metrics relating with conductivity were adopted as response variables, since conductivity explained the maximum variation (38.1%) in diatom assemblages via Bootstrapped regression trees. Nonparametric change-point analysis and Threshold Indicator Taxa ANalysis showed threshold responses of diatom community structure at 0.05–0.08 mg TP/L in connected lakes and 0.02–0.04 mg TP/L in isolated lakes. Distinct community change points of sensitive diatoms occurred at 0.96–1.63 mg TN/L in connected lakes and 0.52–0.63 mg TN/L in isolated lakes. Diatom community structures of tolerant taxa were substantially altered beyond 0.22–0.23 mg/L in connected lakes and 0.52–0.69 mg NOx/L in isolated lakes. Hydrological river-lake connectivity differed significantly in ecological nutrient criteria with more TN/TP criteria and less NOx criteria in connected lakes. Given the ecological significance and biological integrity, diatom-based statistics can provide more reliable change points (thresholds) for nutrient criteria than Chl a-nutrient relationships.  相似文献   

3.
4.
We investigated scale dependence of landscape metrics and the relationship between land use parameters and FRAGSTATS-based landscape metrics (edge density (ED), patch density (PD), mean shape index (SHAPE_MN), mean euclidean nearest neighbor index (ENN_MN), contagion (CONTAG), patch richness density (PRD), and Shannon's diversity index (SHDI)) and nutrient/organic-matter-based water quality indicators (BOD7 and CODKMnO4 values, total-N and total-P concentrations in water) in 24 catchments with various land use patterns in Estonia. We used the Basic Map of Estonia (1:10,000), the Base Map of Estonia (1:50,000) and the CORINE Land Cover Map (1:100,000). In scale analysis, we calculated landscape metrics on artificial and real landscapes. Scale analysis showed that responses of landscape metrics to changing grain size vary among landscapes and metrics. Analysis of artificial landscapes showed that mean euclidean nearest neighbor distance and contagion are directly dependent on grain size and should therefore be used carefully. When finding relationships between landscape metrics and water quality indicators, significant differences between the relationships derived from the Base Map and the CORINE Land Cover Map were found. In the case of the Base Map, landscape metrics correlated strongly with land use and showed no expected relationships with water quality data. This underlines the importance of land use classification in such kind of analysis. Correlation between the landscape metrics calculated on the basis of the CORINE Land Cover Map and water quality data was stronger than in the case of the Base Map. The CODKMnO4 value significantly correlated with all land use types. For instance, the CODKMnO4 values are higher when fens and natural areas form a higher proportion of the catchments’ land use. Except for the BOD7 value, all the water quality indicators showed significant correlation with urban land use proportions. Strong relationship between the patch density and the CODKMnO4 value is most likely caused by the fact that both parameters were significantly correlated with the proportion of natural areas. As the landscape metrics depend on pixel size, topographic scale, and land use classification, and as the effect of land use on water quality in catchments is the most significant of the factors, it was impossible to separate the influence of land use pattern from the influence of FRAGSTATS-based landscape metrics.  相似文献   

5.
This study documents regional patterns in stream nitrogen and phosphorus concentrations in the Brazilian state of Rondônia in the southwestern Amazon basin, and interprets the patterns as functions of watershed soil properties, deforestation extent, and urban population density. The survey includes 77 different locations sampled in the dry and wet seasons, with a watershed size range from 1.8 to 33,000km2 over a total area of approximately 140,000km2. A sequential regression technique is used to separate the effects of natural watersheds properties and anthropogenic disturbance on nutrients and chloride. Natural variation in soil texture explains most of the variance in stream nitrate concentrations, while deforestation extent and urban population density explain most of the variance in stream chloride (Cl) and total dissolved nitrogen (TDN) concentrations. Stream TDN, total dissolved phosphorus (TDP), particulate phosphorus (PP) and Cl concentrations all increase non-linearly with deforestation extent in the dry season after controlling for natural variability due to soil type. Stream nutrient and Cl disturbances are observed only in watersheds more than 66–75% deforested (watershed area range 2–300km2), suggesting stream nutrient concentrations are resistant to perturbation from vegetation conversion below a 66–75% threshold. In heavily deforested watersheds, stream Cl shows the largest changes in concentration (12±6 times forested background), followed by TDP (2.3±1.5), PP (1.9±0.8) and TDN (1.7±0.5). Wet season signals in Cl and TDP are diluted relative to the dry season, and no land use signal is observed in wet season TDN, PN, or PP. Stream TDN and TDP concentrations in non-urban watersheds both correlate with stream Cl, suggesting that sources other than vegetation and soil organic matter contribute to enhanced nutrient concentrations. Small, urbanized watersheds (5–20km2) have up to 40 times the chloride and 10 times the TDN concentrations of forested catchments in the dry season. Several large watersheds (1000–3000km2) with urban populations show higher Cl, TDN and TDP levels than any small pasture watershed, suggesting that human impacts on nutrient concentrations in large river systems may be dominated by urban areas. Anthropogenic disturbance of dry-season stream Cl and TDN is detectable in large streams draining deforested and urbanized watersheds up to 33,000km2. We conclude that regional deforestation and urbanization result in changes in stream Cl, N and P concentrations at wide range of scales, from small pasture streams to large river systems.  相似文献   

6.
Elevated CO2 can increase fine root biomass but responses of fine roots to exposure to increased CO2 over many years are infrequently reported. We investigated the effect of elevated CO2 on root biomass and N and P pools of a scrub-oak ecosystem on Merritt Island in Florida, USA, after 7 years of CO2 treatment. Roots were removed from 1-m deep soil cores in 10-cm increments, sorted into different categories (<0.25 mm, 0.25–1 mm, 1–2 mm, 2 mm to 1 cm, >1 cm, dead roots, and organic matter), weighed, and analyzed for N, P and C concentrations. With the exception of surface roots <0.25 mm diameter, there was no effect of elevated CO2 on root biomass. There was little effect on C, N, or P concentration or content with the exception of dead roots, and <0.25 mm and 1–2 mm diameter live roots at the surface. Thus, fine root mass and element content appear to be relatively insensitive to elevated CO2. In the top 10 cm of soil, biomass of roots with a diameter of <0.25 mm was depressed by elevated CO2. Elevated CO2 tended to decrease the mass and N content of dead roots compared to ambient CO2. A decreased N concentration of roots <0.25 mm and 1–2 mm in diameter under elevated CO2 may indicate reduced N supply in the elevated CO2 treatment. Our study indicated that elevated CO2 does not increase fine root biomass or the pool of C in fine roots. In fact, elevated CO2 tends to reduce biomass and C content of the most responsive root fraction (<0.25 mm roots), a finding that may have more general implications for understanding C input into the soil at higher atmospheric CO2 concentrations.  相似文献   

7.
We measured tributary inputs, algal nutrient demand and excretion rates of consumers (gizzard shad and zooplankton) at a eutrophic river impoundment. During two summers with contrasting flow regimes, tributary inputs accounted for 38% (1998) and 3% (1999) of algal N demand and 95% (1998) and 17% (1999) of algal P demand. Gizzard shad contributions averaged 14% and 20% of algal demand for N whereas P contributions were 31% and 58% (1998, 1999; respectively). Zooplankton recycling accounted for a comparable fraction of algal P demand (47%) but a larger fraction of N demand (43%) because their excretia were N rich (N:P = 13:1) compared to fish (7:1). Nutrient release by one of the consumers (gizzard shad) was compared with tributary loading over a nine-year period to assess inter-annual variation in their relative importance. Historical records of inflow chemistry, discharge and gizzard shad biomass showed that variation in tributary inputs was the primary determinant of seasonal and inter-annual variation in nutrient loading. Consumer-derived nutrients were important in late-summer and during years when tributary inputs were low. We propose a conceptual model in which primary production is regulated by external nutrient loading and consumer recycling acts to stabilize and sustain production during periods of diminished external inputs.  相似文献   

8.
Ecological engineering was carried out in Meiliang Bay of Lake Taihu beginning in 2003 in order to improve water quality. There were two main objectives: to improve the growth environment for macrophytes, and to restore macrophyte assemblages. We examined surface sediments once per month beginning in April 2005 to study the response of sediment nutrient content to the ecological engineering. Average total nitrogen (TN) and total phosphorus (TP) concentrations in the surface sediments were 7043 and 1370 mg kg−1, respectively, in May 2005, while after 1 year, TN concentration was reduced to 2929 mg kg−1 and TP concentration was reduced to 352 mg kg−1. We conclude that ecological engineering can lower the nutrient content in surface sediments when it is used to improve water quality.  相似文献   

9.
1. Urbanisation is an important cause of eutrophication in waters draining urban areas. We determined whether benthic algal biomass in small streams draining urban areas was explained primarily by small‐scale factors (benthic light, substratum type and nutrient concentrations) within a stream, or by catchment‐scale variables that incorporate the interacting multiple impacts of urbanisation (i.e. variables that describe urban density and the intensity of drainage or septic tank systems). 2. Benthic algal biomass was assessed as chlorophyll a density (chl a) in 16 streams spanning a rural–urban gradient, with both a wide range of urban density and of piped stormwater infrastructure intensity on the eastern fringe of metropolitan Melbourne, Australia. The gradient of urban density among streams was broadly correlated with catchment imperviousness, drainage connection (proportion of impervious areas connected to streams by stormwater pipes), altitude, longitude and median phosphorus concentration. Catchment area, septic tank density, median nitrogen concentration, benthic light (photosynthetically active radiation) and substratum type were not strongly correlated with the urban gradient. 3. Variation in benthic light and substratum type within streams explained a relatively small amount of variation in log chl a (3–11 and 1–13%, respectively) compared with between‐site variation (39–54%). 4. Median chl a was positively correlated with catchment urbanisation, with a large proportion of variance explained jointly (as determined by hierarchical partitioning) by those variables correlated with urban density. Independent of this correlation, the contributions of drainage connection and altitude to the explained variance in chl a were significant. 5. The direct connection of impervious surfaces to streams by stormwater pipes is hypothesised as the main determinant of algal biomass in these streams through its effect on the supply of phosphorus, possibly in interaction with stormwater‐related impacts on grazing fauna. Management of benthic algal biomass in streams of urbanised catchments is likely to be most effective through the application of stormwater management approaches that reduce drainage connection.  相似文献   

10.
Dynamics of greenhouse gases, CH4, CO2 and N2O, and nutrients, NO 2 + NO 3 , NH 4 + and P, were studied in the sediments of the eutrophic, boreal Lake Kevätön in Finland. Undisturbed sediment cores taken in the summer, autumn and winter from the deep and shallow profundal and from the littoral were incubated in laboratory microcosms under aerobic and anaerobic water flow conditions. An increase in the availability of oxygen in water overlying the sediments reduced the release of CH4, NH 4 + and P, increased the flux of N2O and NO 2 + NO 3 , but did not affect CO2 production. The littoral sediments produced CO2 and CH4 at high rates, but released only negligible amounts of nutrients. The deep profundal sediments, with highest carbon content, possessed the greatest release rates of CO2, CH4, NH 4 + and P. The higher fluxes of these gases in summer and autumn than in winter were probably due to the supply of fresh organic matter from primary production. From the shallow profundal sediments fluxes of CH4, NH4 + and P were low, but, in contrast, production of N2O was the highest among the different sampling sites. Due to the large areal extension, the littoral and shallow profundal zones had the greatest importance in the overall gas and nutrient budgets in the lake. Methane emissions, especially the ebullition of CH4 (up to 84% of the total flux), were closely related to the sediment P and NH 4 + release. The high production and ebullition of CH4, enhances the internal loading of nutrients, lake eutrophication status and the impact of boreal lakes to trophospheric gas budgets.  相似文献   

11.
1. Algal-community metrics were calculated for periphyton samples collected from 976 streams and rivers by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Programme during 1993–2001 to evaluate national and regional relations with water chemistry and to compare whether algal-metric values differ significantly among undeveloped and developed land-use classifications.
2. Algal metrics with significant positive correlations with nutrient concentrations included indicators of trophic condition, organic enrichment, salinity, motility and taxa richness. The relative abundance of nitrogen-fixing algae was negatively correlated with nitrogen concentrations, and the abundance of diatom species associated with high dissolved oxygen concentrations was negatively correlated with both nitrogen and phosphorus concentrations. Median algal-metric values and nutrient concentrations were significantly lower at undeveloped sites than those draining agricultural or urban catchments.
3. Total algal biovolume did not differ significantly among major river catchments or land-use classifications, and was only weakly correlated with nitrate (positive) and suspended-sediment (negative) concentrations. Estimates of periphyton chlorophyll a indicated an oligotrophic–mesotrophic boundary of about 21 mg m−2 and a mesotrophic–eutrophic boundary of about 55 mg m−2 based on upper and lower quartiles of the biovolume data distribution.
4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.  相似文献   

12.
We demonstrate the use of multiple indicators to characterize the ecological integrity of a coastal plain stream system in the New Jersey Pinelands in relation to human-induced watershed alterations. The individual indicators include pH, specific conductance, stream vegetation and stream-fish, impoundment-fish, and anuran assemblages. We evaluate and compare the utility of the individual and multiple environmental and biological indicators and present a relatively straightforward method for ranking sites. Specific conductance and pH measured at 88 monitoring sites varied in relation to the percentage of altered land (developed land and upland agriculture) within the associated watersheds. All three environmental variables were associated with variations in the composition of stream vegetation and stream fish, impoundment fish, and anuran assemblages. With the exception of impoundment fish, the association between altered land and the multiple-indicator scores based on the two water-quality indicators and the four biological indicators was stronger than that displayed by any of the individual variables.  相似文献   

13.
Summary Samples of peat and mor humus were treated with CHCl3 to kill microbial cells and the amounts of C as CO2, N as soluble- and mineral-N, and P as inorganic-P released by the treatment were compared with estimates of the microbial biomass by the Anderson and Domsch test and ATP determination. Increased amounts of soluble-N and inorganic-P, extracted with 1M KCl and 0.01M CaCl2 respectively, were detected immediately after the fumigation treatment. However, the subsequent rates of production of CO2–C and mineral-N measured during a 10-day incubation period at 25°C were low and variable, resulting in anomalously low estimates of microbial biomass. The flush of inorganic-P was more consistent and, in mor humus, generally related to biomass-C as measured by the Anderson and Domsch test.  相似文献   

14.
氮胁迫对水曲柳幼苗养分吸收、利用和生物量分配的影响   总被引:8,自引:2,他引:8  
树木受到环境胁迫时发生形态和生理上的改变,以便获取对其生长发育限制最严重的资源.在东北林区凋落物因受温度影响分解速度和有机物矿质化过程缓慢,森林树木常受到氮营养胁迫.通过温室栽培试验,对氮胁迫下水曲柳幼苗生长的生理学和形态学指标进行了研究.结果表明,在氮胁迫下,水曲柳幼苗的净氮吸收速率和净磷吸收速率都会减少,但在生长前期氮利用效率和磷利用效率高于氮供给充足(8mmol·L^-1)和过量(16mmol·L^-1)时的氮利用效率和磷利用效率.当氮供给浓度不足时,叶重比减少,而特定叶面积和根重比增加.相对生长速率随氮供给浓度增加而增加.在氮胁迫下净同化速率下降,导致总生物量下降.在幼苗生长前期,水曲柳幼苗处于氮胁迫时根/茎比显著大于氮供给充足或过量时的根/茎比。而在生长后期。根/茎比没有显著差别.  相似文献   

15.
The effect of periphyton biomass on hydraulic characteristics and nutrient cycling was studied in laboratory streams with and without snail herbivores. Hydraulic characteristics, such as average water velocity, dispersion coefficients, and relative volume of transient storage zones (zones of stationary water), were quantified by performing short-term injections of a conservative tracer and fitting an advection-dispersion model to the conservative tracer concentration profile downstream from the injection site. Nutrient cycling was quantified by measuring two indices: (1) uptake rate of phosphorus from stream water normalized to gross primary production (GPP), a surrogate measure of total P demand, and (2) turnover rate of phosphorus in the periphyton matrix. These measures indicate the importance of internal cycling (within the periphyton matrix) in meeting the P demands of periphyton. Dense growths of filamentous diatoms and blue-green algae accumulated in the streams with no snails (high-biomass streams), whereas the periphyton communities in streams with snails consisted almost entirely of a thin layer of basal cells of Stigeoclonium sp. (low-biomass streams). Dispersion coefficients were significantly greater and transient storage zones were significantly larger in the high-biomass streams compared to the low-biomass streams. Rates of GPP-normalized P uptake from water and rates of P turnover in periphyton were significantly lower in high biomass than in low biomass periphyton communities, suggesting that a greater fraction of the P demand was met by recycling in the high biomass communities. Increases in streamwater P concentration significantly increased GPP-normalized P uptake in high biomass communities, suggesting diffusion limitation of nutrient transfer from stream water to algal cells in these communities. Our results demonstrate that accumulations of periphyton biomass can alter the hydraulic characteristics of streams, particularly by increasing transient storage zones, and can increase internal nutrient cycling. They suggest a close coupling of hydraulic characteristics and nutrient cycling processes in stream ecosystems.  相似文献   

16.
Richards  M. B.  Cowling  R. M.  Stock  W. D. 《Plant Ecology》1997,130(2):143-153
The relationship between changes in soil nutrient characteristics and fynbos community boundaries was investigated near Cape Agulhas, South Africa. Soil characteristics relating to total nutrient content (pH, total N and total P, organic carbon, and various cations) were assessed at sites along three transects crossing the boundaries between five plant communities. Dynamics of available N and P in soils of three communities were studied in the field over one year, using ion-exchange resins. There was a wide range in the degree of change in soil nutrient content across different community boundaries. The characteristics that varied most were pH, total N, Ca and total P. Differences in available nutrients among soils indicated that the communities in this landscape were associated with a mosaic of N and P availability. It is proposed that spatial variation in soil nutrient availability rather than total soil nutrient contents may be important in explaining landscape-level species distributions and community composition in nutrient-poor mediterranean-climate ecosystems.  相似文献   

17.
Biological indicators are increasingly being used as integrative measures of the ecosystem health in streams, particularly those using macroinvertebrate assemblage composition. Monitoring biological quality of rivers has not a long tradition in some Mediterranean European countries like Spain. Several macroinvertebrate metrics have been recently proposed to assess ecological status in Mediterranean streams, so it is necessary to compare the use of proposed biological quality metrics to select the most appropriate ones.In the present work, two classic richness metrics (total number of families and number of the Ephemeroptera, Plecoptera and Trichoptera families), three indices (IBMWP, IASPT and t-BMWQ) and two multimetric indices, recently proposed to be used in Mediterranean streams (ICM-9 and ICM-11a or IMMi-L), were compared by the analysis of the sensitivity of these metrics to a multiple stressor gradient which reflected the main pressures present in the study area. For this purpose, data from 193 sites sampled in spring (95 reference sites and 98 disturbed sites) belonging to five different Mediterranean stream types present in 35 basins were studied.The results showed that the adjusted regression coefficients (r2) for all seven metrics in the exponential regression models were higher than linear ones, thus indicating an exponential relationship between metrics and the environmental alteration. The two studied multimetric indices presented higher regression coefficients (r2 = 0.590–0.669) than the three indices (r2 = 0.524–0.574) and the two metrics (r2 = 0.471–0.525), therefore showing a better response to a stressor gradient in Mediterranean streams. Within the multimetric indices group, ICM-11a showed the highest regression coefficients. Based on the results obtained, we suggest using the ICM-11a, apart from the IBMWP, to assess ecological status in Mediterranean streams.  相似文献   

18.
We present long-term nutrient data on the Changjiang River (Yangtze River) at six hydrological stations and eight principal tributaries during the period 1958–1985. Three patterns of temporal changes were observed in nitrate and nitrite : minimal variations in the upper catchment area, rapid increases in the middle watershed towards the end of the 1970s, and a gradual increase in the lower drainage basin. Prior to the 1970s, the level of throughout the Changjiang River system remained fairly constant. In the 1980s, however, this changed, with the lowest values in the upper Changjiang changing rapidly to the highest in the middle reaches and then declining slowly but steadily in the lower courses. Compared to and ammonium and soluble reactive phosphorus (SRP) showed smaller increases or no long-term variations, while dissolved silica (DSi) concentration generally decreased at most stations. These three patterns of and changes in the Changjiang River system were reflective of the difference in chemical fertilizer use and landscape features (e.g., slope, soil type and water body area) of the drainage basins of the primary tributaries. The decreases in DSi were most likely attributed to a reduction in suspended sediment loading due to dam constructions and increasing diatom consumption. The increase in and with a reduction in DSi concentrations in the Changjiang River could have significant effects on the stoichiometric balance of nutrients delivered to the East China Sea and the ecosystem in this dynamic region.  相似文献   

19.
High nutrient availability and defoliation generally reduce ectomycorrhizal colonization levels in trees, but it is not known how this affects the functional aspects of mycorrhizal symbiosis. It was therefore investigated whether (1) defoliation or increasing substrate N availability reduce C allocation from the plant to the fungus and N allocation from the fungus to the plant (symbiotic resource exchange), (2) symbiotic resource exchange depends on relative N and P availability, and (3) fungal N translocation to plant and plant C allocation to fungus are interdependent. Birch (Betula pendula) seedlings were grown in symbiosis with the ectomycorrhizal fungus Paxillus involutus at five times excess N, or at five times excess N and P for 6 weeks. One-half of the plants were defoliated and the plant shoots were allowed to photosynthesize 14CO2 while the fungal compartment was exposed to 14NH4. After 3 days, the 14C of plant origin in fungal tissues and 15N of fungal origin in plant tissues were quantified. Nutrient availability had no observable effect on symbiotic resource exchange in non-defoliated systems. Defoliation reduced symbiotic N acquisition by plants at all levels of nutrient availability, with the reduction being most marked at higher N availability, indicating an increased tendency in the symbiotic system to discontinue resource exchange after defoliation at higher fertility levels. The concentration of 14C in extramatrical mycelium correlated significantly with the concentration of 15N in birch shoots. The results support the assumption that N delivery to the host by the mycorrhizal fungus is dependent on C flow from the plant to the fungus, and that exchanges between the partners are reciprocal. No significant reductions in root 14C content as a response to defoliation were observed, indicating that defoliation specifically reduced allocation to fungus, but not markedly to roots.  相似文献   

20.
Carbon and nitrogen stable isotopes are frequently used to study energy sources and food web structure in ecosystems, and more recently, to study the effects of anthropogenic stress on aquatic ecosystems. We investigated the effect of nutrient enrichment on δ13C and δ15N in fine (FPOM), coarse (CPOM) particulate organic matter, periphyton, invertebrates and fish in nine boreal streams in south-central Sweden. In addition, we analysed the diet of benthic consumers using stable isotope data. Increases in δ15N of periphyton (R 2 = 0.88), CPOM (0.78), invertebrates (0.92) and fish (0.89) were related to nutrient enrichment. In contrast, δ13C signatures did not change along the nutrient gradient. Our results show that δ15N has potential as a sensitive indicator of nutrient enrichment in boreal streams. Carbon and nitrogen isotopes failed to elucidate putative diets of selected aquatic consumers. Indeed, comparison of low- and high-impact sites showed that δ13C of many consumers were found outside the ranges of basal resource δ13C. Moreover, ranges of basal resource δ13C and δ15N overlapped at both low and high sites, making discrimination between the importance of allochthonous and autochthonous production difficult. Our findings show that a fractionation rate of 3.4‰ is not always be appropriate to assess trophic interactions, suggesting that more studies are needed on fractionation rates along gradients of impairment. Handling editor: M. Power  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号