首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis was ca. 40,000 Da. The intact enzyme had a relative molecular weight of ca. 250,000 as determined by gel filtration chromatography, suggesting that the native BSH of B. longum is probably a hexamer. The purified enzyme is active towards both glycine and taurine conjugates of cholate, deoxycholate, and chenodeoxycholate. The pH optimum is in the range of 5.5 to 6.5. A loss of BSH activity is observed after incubation at temperatures higher than 42(deg)C; at 60(deg)C, 50% of the BSH activity is lost. The importance of free sulfhydryl groups at the enzyme active center is suggested. For B. longum BB536, no significant difference in the initial rate of deconjugation and enzymatic efficiency appears between bile salts. The enzymatic efficiency is higher for B. longum BB536 than for other genera. In this paper, a new method which permits a display of BSH activity directly on polyacrylamide gels is described; this method confirms the molecular weight obtained for B. longum BB536 BSH.  相似文献   

2.
【目的】随着抗生素生长促进剂(AGPs)在动物饲料中逐步禁止使用,AGPs替代物的研究成为热点。由于胆盐水解酶(BSH)在脂类代谢中的关键作用,成为AGPs替代物研究的一个重要方向。在原核表达和纯化的基础上鉴定鸡源和猪源乳杆菌BSH在酶学性质方面的差异性。【方法】分别对鸡源胆盐水解酶(BSHc)和猪源胆盐水解酶(BSHp)基因进行原核表达和蛋白纯化,通过测定对6种甘氨结合胆盐和牛磺结合胆盐的水解效率获得两种酶的酶学动力学性质,进而测定了温度、pH和金属离子对酶活力的影响。【结果】BSHc和BSHp对甘氨结合胆盐的水解效率高于牛磺结合胆盐,BSHc对甘氨结合胆盐的水解效率较BSHp稍高;BSHc和BSHp的最适酶解温度分别为45°C和42°C;BSHc和BSHp的最适反应pH分别为6.0和5.4;含有Cu~(2+)、Fe~(3+)、Mn~(2+)和Zn~(2+)的金属盐对BSHc和BSHp的酶活力均具有不同程度的抑制作用,特别是Cu~(2+)和Fe~(3+)抑制作用比较强;含有Na~+、K~+、Mg~(2+)和Ca2+的金属盐对BSHc和BSHp酶活力的抑制作用相对较弱或无抑制作用,但KIO3对BSHc和BSHp酶活力具有强抑制作用,KI和CaCl_2对BSHp酶活力也具有较强的抑制作用。【结论】原核表达和纯化的BSHc和BSHp对甘氨结合胆盐的水解效率高于牛磺结合胆盐,BSHc的最适酶解温度和pH稍高于BSHp,Cu~(2+)、Fe~(3+)、Mn~(2+)和Zn~(2+)等金属离子对BSHc和BSHp酶活力具有明显抑制作用,试验结果为鉴定BSH抑制物进而研制AGPs替代物奠定了基础。  相似文献   

3.
Antibiotic growth promoters (AGPs) have been used as feed additives to improve average body weight gain and feed efficiency in food animals for more than 5 decades. However, there is a worldwide trend to limit AGP use to protect food safety and public health, which raises an urgent need to discover effective alternatives to AGPs. The growth-promoting effect of AGPs has been shown to be highly correlated with the decreased activity of intestinal bile salt hydrolase (BSH), an enzyme that is produced by various gut microflora and involved in host lipid metabolism. Thus, BSH inhibitors are likely promising feed additives to AGPs to improve animal growth performance. In this study, the genome of Lactobacillus salivarius NRRL B-30514, a BSH-producing strain isolated from chicken, was sequenced by a 454 GS FLX sequencer. A BSH gene identified by genome analysis was cloned and expressed in an Escherichia coli expression system for enzymatic analyses. The BSH displayed efficient hydrolysis activity for both glycoconjugated and tauroconjugated bile salts, with slightly higher catalytic efficiencies (kcat/Km) on glycoconjugated bile salts. The optimal pH and temperature for the BSH activity were 5.5 and 41°C, respectively. Examination of a panel of dietary compounds using the purified BSH identified some potent BSH inhibitors, in which copper and zinc have been recently demonstrated to promote feed digestion and body weight gain in different food animals. In sum, this study identified and characterized a BSH with broad substrate specificity from a chicken L. salivarius strain and established a solid platform for us to discover novel BSH inhibitors, the promising feed additives to replace AGPs for enhancing the productivity and sustainability of food animals.  相似文献   

4.
The extracellular chitinase produced by Serratia marcescens was obtained in highly purified form by adsorption-digestion on chitin. After gel electrophoresis in a nondenaturing system, the purified preparation exhibited two major protein bands that coincided with enzymatic activity. A study of the enzyme properties showed its suitability for the analysis of chitin. Thus, the chitinase exhibited excellent stability, a wide pH optimum, and linear kinetics over a much greater range than similar enzymes from other sources. The major product of chitin hydrolysis was chitobiose, which was slowly converted into free N-acetylglucosamine by traces of β-N-acetylglucosaminidase present in the purified preparation. The preparation was free from other polysaccharide hydrolases. Experiments with radiolabeled yeast cell walls showed that the chitinase was able to degrade wall chitin completely and specifically.  相似文献   

5.
A thermophilic microorganism producing bile salt hydrolase was isolated from hot water springs, Pali, Maharashtra, India. This microorganism was identified as Brevibacillus sp. by 16S rDNA sequencing. Bile salt hydrolase (BSH) was purified to homogeneity from this thermophilic source using Q-sepharose chromatography and its enzymatic properties were characterized. The subunit molecular mass of the purified enzyme was estimated to be 28 kDa by SDS-PAGE and, 28.2 kDa by MALDI-TOF analysis. The native molecular mass was estimated to be 56 kDa by gel filtration chromatography, indicating the protein to be a homodimer. The pH and temperature optimum for the enzyme catalysis were 9.0 and 60°C, respectively. Even though BSH from Brevibacillus sp. hydrolyzed all of the six major human bile salts, the enzyme preferred glycine conjugated substrates with apparent K M and k cat values of 3.08 μM and 6.32 × 102 s−1, respectively, for glycodeoxycholic acid. The NH2-terminal sequence of the purified enzyme was determined and it did not show any homology with other bacterial bile salt hydrolases. To our knowledge, this is the first report describing the purification of BSH to homogeneity from a thermophilic source. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The present work describes the identification, purification, and characterization of bile salt hydrolase (BSH) from Bifidobacterium animalis subsp. lactis. The enzyme was purified to electrophoretic homogeneity by hydrophobic chromatography, ion-exchange chromatography and ultrafiltration. SDS-PAGE analysis of putative BSH and gel filtration revealed that the analyzed protein is presumably a tetramer composed of four monomers each of about 35 kDa. The purified enzyme was analyzed by liquid chromatography coupled to LTQ FT ICR mass spectrometry and unambiguously identified as a bile salt hydrolase from B. animalis. The isoelectric point of the studied protein was estimated to be around pH 4.9. The pH optimum of the purified BSH is between 4.7 to 6.5, and the temperature optimum is around 50 degrees C. The BSH of B. animalis could deconjugate all tested bile salts, with clear preference for glycine-conjugated bile salts over taurine-conjugated forms. Genetic analysis of the bsh showed high similarity to the previously sequenced bsh gene from B. animalis and confirmed the usefulness of bile salt hydrolase as a genetic marker for B. animalis identification.  相似文献   

7.
1. Nuclei of regenerating rat liver washed with Triton X-100 were found to contain a new protease. Since the enzymatic activity for degrading ribosomal proteins was inhibited in vivo by administration of E-64, a thiol protease inhibitor, the enzyme may participate in the degradation of newly synthesized ribosomal proteins and histones in regenerating rat liver nuclei as reported previously by us [Biochem. Biophys. Res. Commun. 75, 525-531 (1077)]. The optimum pH was 5.5. 2. The enzyme was extracted from washed nuclei and partially purified by gel filtration through Sepharose 6B. Its molecular weight was about 40 000. A maximal activity of partially purified enzyme was observed in the presence of 1 mM EDTA and 2 mM dithiothreitol at pH 5.5 It was inhibited by thio reagents, E-64, leupeptin and hevy metal ions. The enzyme degraded ribosomal proteins endoproteolytically and degraded most proteins tested as substrates, although liver cell sap proteins and serum albumin were less degraded than ribosomal proteins and histones, alpha-N-Benzoylarginine-beta-naphthylamide and benzoylarginine amide were not hydrolyzed.  相似文献   

8.
Haloarchaeal alcohol dehydrogenases are exciting biocatalysts with potential industrial applications. In this study, two alcohol dehydrogenase enzymes from the extremely halophilic archaeon Haloferax volcanii (HvADH1 and HvADH2) were homologously expressed and subsequently purified by immobilized metal-affinity chromatography. The proteins appeared to copurify with endogenous alcohol dehydrogenases, and a double Δadh2 Δadh1 gene deletion strain was constructed to prevent this occurrence. Purified HvADH1 and HvADH2 were compared in terms of stability and enzymatic activity over a range of pH values, salt concentrations, and temperatures. Both enzymes were haloalkaliphilic and thermoactive for the oxidative reaction and catalyzed the reductive reaction at a slightly acidic pH. While the NAD+-dependent HvADH1 showed a preference for short-chain alcohols and was inherently unstable, HvADH2 exhibited dual cofactor specificity, accepted a broad range of substrates, and, with respect to HvADH1, was remarkably stable. Furthermore, HvADH2 exhibited tolerance to organic solvents. HvADH2 therefore displays much greater potential as an industrially useful biocatalyst than HvADH1.  相似文献   

9.
10.

Aims

To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01.

Methods and Results

The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l?1 isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel–nitrilotriacetic acid (Ni2+‐NTA) agarose column and their activities characterized. BSH A hydrolysed tauro‐conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco‐conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety.

Conclusions

BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate‐binding sites, these remain functional through motif conservation.

Significance and Impact of the Study

This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco‐conjugated or tauro‐conjugated bile salts. Future structural homology studies and site‐directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes.  相似文献   

11.
Two enzymes capable of hydrolyzing fructose-1,6-bisphosphate (FBP) have been isolated from the foliose lichen Peltigera rufescens (Weis) Mudd. These enzymes can be separated using Sephadex G-100 and DEAE Sephacel chromatography. One enzyme has a pH optimum of 6.5, and a substrate affinity of 228 micromolar FBP. This enzyme does not require MgCl2 for activity, and is inhibited by AMP. The second enzyme has a pH optimum of 9.0, with no activity below pH 7.5. This enzyme responds sigmoidally to Mg2+, with half-saturation concentration of 2.0 millimolar MgCl2, and demonstrates hyperbolic kinetics for FBP (Km = 39 micromolar). This enzyme is activated by 20 millimolar dithiothreitol, is inhibited by AMP, but is not affected by fructose-2-6-bisphosphate. It is hypothesized that the latter enzyme is involved in the photosynthetic process, while the former enzyme is a nonspecific acid phosphatase.  相似文献   

12.
The gene for a novel α-amylase, designated AmyC, from the hyperthermophilic bacterium Thermotoga maritima was cloned and heterologously overexpressed in Escherichia coli. The putative intracellular enzyme had no amino acid sequence similarity to glycoside hydrolase family (GHF) 13 α-amylases, yet the range of substrate hydrolysis and the product profile clearly define the protein as an α-amylase. Based on sequence similarity AmyC belongs to a subgroup within GHF 57. On the basis of amino acid sequence similarity, Glu185 and Asp349 could be identified as the catalytic residues of AmyC. Using a 60-min assay, the maximum hydrolytic activity of the purified enzyme, which was dithiothreitol dependent, was found to be at 90°C. AmyC displayed a remarkably high pH optimum of pH 8.5 and an unusual sensitivity towards both ATP and EDTA.  相似文献   

13.
Two thermophilic extracellular proteases, designated Lmm-protease-Lh (29 kDa) and Hmm-protease-Lh (62 kDa), were purified from the Lactobacillus helveticus from kefir, and found active in media containing dithiothreitol; the activity of Lmm-protease-Lh was increased significantly in media containing also EDTAK2. Both novel proteases maintained full activity at 60 °C after 1-h incubation at 10 °C as well as at 80 °C, showing optimum kcat/Km values at pH 7.00 and 60 °C. Only irreversible inhibitors specific for cysteine proteinases strongly inhibited the activity of both novel enzymes, while they remained unaffected by irreversible inhibitors specific for serine proteinases. Both enzymes hydrolyzed the substrate Suc-FR-pNA via Michaelis–Menten kinetics; conversely, the substrate Cbz-FR-pNA was hydrolyzed by Lmm-protease-Lh via Michaelis–Menten kinetics and by Hmm-protease-Lh via substrate inhibition kinetics. Valuable rate constants and activation energies were estimated from the temperature-(kcat/Km) profiles of both enzymes, and useful results were obtained from the effect of different metallic ions on their Michaelis–Menten parameters.  相似文献   

14.
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, β-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60°C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.  相似文献   

15.
Two extracellular chitinases (FI and FII) were purified from the culture supernatant of Pseudomonas aeruginosa K-187. The molecular weights of FI and FII were 30,000 and 32,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 60,000 and 30,000, respectively, by gel filtration. The pIs for FI and FII were 5.2 and 4.8, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of FI were pH 8, 50 degrees C, pH 6 to 9, and 50 degrees C; those of FII were pH 7, 40 degrees C, pH 5 to 10, and 60 degrees C. The activities of both enzymes were activated by Cu2+; strongly inhibited by Mn2+, Mg2+, and Zn2+; and completely inhibited by glutathione, dithiothreitol, and 2-mercaptoethanol. Both chitinases showed lysozyme activity. The purified enzymes had antibacterial and cell lysis activities with many kinds of bacteria. This is the first report of a bifunctional chitinase/lysozyme from a prokaryote.  相似文献   

16.
Although the branching enzyme (EC 2.4.1.18) is a member of the alpha-amylase family, the characteristics are not understood. The thermostable branching enzyme gene from Bacillus stearothermophilus TRBE14 was cloned and expressed in Escherichia coli. The branching enzyme was purified to homogeneity, and various enzymatic properties were analyzed by our improved assay method. About 80% of activity was retained when the enzyme was heated at 60 degrees C for 30 min, and the optimum temperature for activity was around 50 degrees C. The enzyme was stable in the range of pH 7.5 to 9.5, and the optimum pH was 7.5. The nucleotide sequence of the gene was determined, and the active center of the enzyme was analyzed by means of site-directed mutagenesis. The catalytic residues were tentatively identified as two Asp residues and a Glu residue by comparison of the amino acid sequences of various branching enzymes from different sources and enzymes of the alpha-amylase family. When the Asp residues and Glu were replaced by Asn and Gln, respectively, the branching enzyme activities disappeared. The results suggested that these three residues are the catalytic residues and that the catalytic mechanism of the branching enzyme is basically identical to that of alpha-amylase. On the basis of these results, four conserved regions including catalytic residues and most of the substrate-binding residues of various branching enzymes are proposed.  相似文献   

17.
Malonyl-CoA decarboxylase was partially purified (nearly 1000-fold) from Mycobacterium tuberculosis H37Ra by ammonium sulfate precipitation, gel filtration with Sepharose 6B, and chromatography on DEAE Sephacel, carboxymethyl-Sephadex, and NADP-agarose. Polyacrylamide gel electrophoresis showed a major band (60–70%), which contained the enzymatic activity, and a minor band which had no decarboxylase activity. The molecular weight of the enzyme was 44,000, and the PI and pH optimum were 6.7 and 5.5, respectively. The enzyme showed a typical Michaelis-Menten substrate saturation, with an apparent Km and V of 0.2 mm and 3.85 μmol/min/mg, respectively. It catalyzed decarboxylation of methylmalonyl-CoA only at 5% of the rate observed with malonyl-CoA, whereas malonic acid and succinyl-CoA were not decarboxylated. Antibodies prepared against malonyl-CoA decarboxylase from the uropygial glands of goose and rat liver mitochondria did not inhibit the bacterial enzyme. Avidin did not inhibit the enzyme suggesting that biotin was not involved in the reaction. Thiol-directed reagents inhibited the enzyme as did CoA, acetyl-CoA, propionyl-CoA, methylmalonyl-CoA, and succinyl-CoA. Malonyl-CoA decarboxylase was also partially purified from malonate-grown Pseudomonas fluorescens. The molecular weight of this enzyme was 56,000 and the pH optimum and apparent Km were 5.5 and 1 mm, respectively. Unlike the mycobacterial enzyme, this enzyme was insensitive to p-hydroxymercuribenzoate, acetyl-CoA, and propionyl-CoA, and it was less sensitive to inhibition by succinyl-CoA and CoA than the mycobacterial enzyme. The size and properties of the two bacterial enzymes suggest that these are quite unlike the mammalian and avian enzymes and that they constitute a different class of malonyl-CoA decarboxylases.  相似文献   

18.
【目的】研究长双歧杆菌(Bifidobacterium longum)JCM1217的N-乙酰氨基己糖1-位激酶(Nacetylhexosamine 1-kinase,Nah K)中对催化活性有影响的位点。【方法】利用点突变试剂盒,获得Nah K的4个位点的共10种单点突变体表达菌株。诱导表达并纯化野生型和突变体酶,用DNS法和NADH偶联的微孔板分光光度法检测野生型及突变体酶的最适p H和最适Mg~(2+)浓度,并测定酶促反应动力学参数。【结果】D208A、D208N、D208E和I24A四种突变体的催化活性几乎丧失。突变体H31A、H31V、F247A和I24V的最适p H由野生型的7.5变为7.0,突变体H31A和F247A的最适Mg~(2+)浓度由野生型的5 mmol/L变为10 mmol/L。反应动力学参数测定结果表明,突变体F247Y对底物Glc NAc/Gal NAc及ATP的催化活性均高于野生型。【结论】通过定点突变,确定了对Nah K催化活性有影响的4个位点,并且获得了一个催化效率提高的突变体(F247Y),为进一步对Nah K进行分子改造奠定了一定基础。  相似文献   

19.
Pyruvate decarboxylase from the obligate anaerobe Sarcina ventriculi was purified eightfold. The subunit Mr was 57,000 +/- 3000 as estimated from SDS-PAGE, and the native Mr estimated by gel filtration on a Superose 6 column was 240,000, indicating that the enzyme is a tetramer. The Mr values are comparable to those for pyruvate decarboxylase from Zymomonas mobilis and Saccharomyces cerevisiae, which are also tetrameric enzymes. The enzyme was oxygen stable, and had a pH optimum within the range 6.3-6.7. It displayed sigmoidal kinetics for pyruvate, with a S0.5 of 13 mM, kinetic properties also found for pyruvate decarboxylase from yeast and differing from the Michaelis-Menten kinetics of the enzyme from Z. mobilis. No activators were found. p-Chloromercuribenzoate inhibited activity and the inhibition was reversed by the addition of dithiothreitol, indicating that cysteine is important in the active site. The N-terminal amino acid sequence of pyruvate decarboxylase was more similar to the sequence of S. cerevisiae than Z. mobilis pyruvate decarboxylase.  相似文献   

20.
Three distinct alkaline serine proteases (named CTSP-1, -2, and -3) were purified from the polychaete Cirriformia tentaculata and characterized in terms of their enzymatic properties and kinetics. The estimated molecular masses of CTSP-1, -2, and -3 enzymes were found to be 28.8, 30.9, and 28.4 kDa, respectively. The enzymes were active at the temperature range of 50–60 °C under pH 8.5–9.0 and completely inactivated by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphates, but not by 1,10-phenanthroline and bestatin, suggesting that they are all typical serine proteases and not metalloproteases or cysteine proteases. CTSP-1 and -2 cleaved arginine, whereas CTSP-3 digested tyrosine residue at the carboxyl sides in their peptide substrates. A typical hepta-sequence (I-X-X-G-X-X-A) conserved in serine proteases from annelid species was found in N-termini of all CTSPs. CTSP-2 was the most active enzyme among the proteases purified as shown by kinetic values. The enzymes cleaved all chains of fibrinogen within 20 min and also hydrolyzed actively fibrin polymer as well as cross-linked fibrin. In addition, the enzymes could actively digest the fibrin clot in blood plasma milieu. Taken together, the results obtained demonstrate that CTSP enzymes have a potential of becoming therapeutic agents for thrombus dissolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号