首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grazing by domestic ungulates may limit the densities of small herbivorous mammals that act as key prey in ecosystems. Whether this also influences density dependence and the regulation of small herbivore populations, hence their propensity to exhibit multi-annual population cycles, is unknown. Here, we combine time series analysis with a large-scale grazing experiment on upland grasslands to examine the effects of livestock grazing intensity on the population dynamics of field voles (Microtus agrestis). Using log-linear modelling of replicated time series under different grazing treatments, we show that increased sheep densities weaken delayed density dependent regulation of vole population growth, hence reducing the cyclicity in vole population dynamics. While population regulation is commonly attributed to both top-down and bottom up processes, our results suggest that regulation of cyclic vole populations can be disrupted by the influence of another grazer in the same trophic level. These results support the view that ongoing changes in domestic grazing intensity, by affecting small mammal dynamics, can potentially have cascading impacts on higher trophic levels, and strongly influence the dynamics of upland grassland systems.  相似文献   

2.
Diet composition of a generalist predator, the red fox (Vulpes vulpes) in relation to season (winter or summer) and abundance of multi-annually cyclic voles was studied in western Finland from 1983 to 1995. The proportion of scats (PS; a total of 58 scats) including each food category was calculated for each prey group. Microtus voles (the field vole M. agrestis and the sibling vole M. rossiaemeridionalis) were the main prey group of foxes (PS = 0.55) and they frequently occurred in the scats both in the winter and summer (PSs 0.50 and 0.62, respectively). There was a positive correlation between the PSs of Microtus voles in the winter diet of foxes and the density indices of these voles in the previous autumn. Other microtine rodents (the bank vole Clethrionomys glareolus, the water vole Arvicola terrestris and the muskrat Ondatra zibethicus) were consumed more in winter than in summer. The unusually high small mustelid predation by red foxes (PS = approx. 0.10) in our study area gives qualitative support for the hypothesis on the limiting impact of mammalian predators on least weasel and stoat populations. None of the important prey groups was preyed upon more at low than at high densities of main prey (Microtus voles). This is consistent with the notion that red foxes are generalist predators that tend to opportunistically subsist on many prey groups. Among these prey groups, particularly hares and birds (including grouse), were frequently used as food by foxes.  相似文献   

3.
Fox predation on cyclic field vole populations in Britain   总被引:3,自引:0,他引:3  
The diet of the red fox Vulpes vulpes L. was studied during three winter periods in spruce pklantations in Britain, during which time the cyclic field vole Microtus agrestis L. populations varied in abundance. Field voles and roe deer Capreolus capreolus L. were the two main prey species in the diet of the red fox. The contribution of lagomorphs to fox diet never exceeded 35% and species of small mammal other than field voles were of minor importance. The contribution of field voles was dependent on vole density. The non-linear density dependent relationship with a rather abrupt increase of field voles in fox did when vole density exceeded ca 100 voles ha−1 was consistent with a prey-switching response. The contribution of field voles to fox diet during the low phase of population cycles was lower in Kielder Forest than in other ecosystems with cyclic vole populations. The number of foxes killed annually by forestry rangers was consistent with the evidence from other studies that foxes preying on cyclic small rodents might show a delayed numerical response to changes in vole abundance. Estimates of the maximum predation rate of the fox alone (200–290 voles ha−1 of vole habitat year−1) was well above a previously predicted value for the whole generalist predator community in Kielder Forest. Our data on the functional response of red foxes and estimates of their predation rates suggest that foxes should have a strong stabilising impact on vole populations, yet voles show characteristic 3-4 yr cycles.  相似文献   

4.
Voles can reach high densities with multiannual population fluctuations of large amplitude, and they are at the base of predator communities in Northern Eurasia and Northern America. This status places them at the heart of management conflicts wherein crop protection and health concerns are often raised against conservation issues. Here, a 20‐year survey describes the effects of large variations in grassland vole populations on the densities and the daily theoretical food intakes (TFI) of vole predators based on roadside counts. Our results show how the predator community responded to prey variations of large amplitude and how it reorganized with the increase in a dominant predator, here the red fox, which likely negatively impacted hare, European wildcat, and domestic cat populations. This population increase did not lead to an increase in the average number of predators present in the study area, suggesting compensations among resident species due to intraguild predation or competition. Large variations in vole predator number could be clearly attributed to the temporary increase in the populations of mobile birds of prey in response to grassland vole outbreaks. Our study provides empirical support for more timely and better focused actions in wildlife management and vole population control, and it supports an evidence‐based and constructive dialogue about management targets and options between all stakeholders of such socio‐ecosystems.

A 20‐year survey describes the effects of large variations in grassland vole populations on the densities and the daily theoretical food intakes of a vole predator community based on roadside counts. Our results show how the predator community responds to prey variations of large amplitude and how it reorganized with the increase of the red fox, which likely negatively impacted hare, European wildcat, and domestic cat populations.  相似文献   

5.
Grazing is a widely applied conservation management tool, but the optimal regime for biodiversity conservation is still unknown. The effects of grazers on small mammals are not yet fully understood and mostly restricted to studies which compare grazed with ungrazed areas. We determined the effect of different livestock grazers and densities and a rotation regime, on voles in a conservation area in The Netherlands. We used a 7-year grazing experiment with horse and cattle grazing at two densities namely 0.5 and 1 animal ha−1 (equivalent to 0.4 and 0.8 LSU), including a rotation regime i.e. 1 year summer grazing with 1 cattle ha−1 followed by 1 ungrazed year. We recorded vole activity signs as a measure for presence (i.e. presence of burrow entrances, droppings, runways and plant clippings) in circular 2 m2 plots along transects. Low grazer densities, regardless of species, corresponded to higher vole presence. Vole presence tended to be greater with cattle grazing than with horse grazing, but the difference was not significant. The increase in vole presence was greater in the rotation regime than with low or high density cattle grazing. The different vole activity signs provided similar results to each other with the exception of burrow entrances, suggesting that this measure is less accurate in predicting vole presence. Hence, voles clearly responded to the different grazing regimes. Our results have high relevance for conservation, in particular in systems where small mammals contribute to important ecological processes (e.g. bioturbation, seed dispersal) and play a crucial role in the survival of (iconic) higher trophic level taxa such as raptors or mammalian predators. In such systems, conservation management may best implement low-density cattle or rotation grazing.  相似文献   

6.
Specialist individuals within animal populations have shown to be more efficient foragers and/or to have higher reproductive success than generalist individuals, but interspecific reproductive consequences of the degree of diet specialisation in vertebrate predators have remained unstudied. Eurasian pygmy owls (hereafter POs) have less vole-specialised diets than Tengmalm's owls (TOs), both of which mainly subsist on temporally fluctuating food resources (voles). To test whether the specialist TO is more limited by the main prey abundance than the generalist PO, we studied breeding densities and reproductive traits of co-existing POs and TOs in central-western Finland during 2002–2019. Breeding densities of POs increased with augmenting densities of voles in the previous autumn, whereas breeding densities of TOs increased with higher vole densities in both the previous autumn and the current spring. In years of vole scarcity, PO females started egg-laying earlier than TOs, whereas in years of vole abundance TO females laid eggs substantially earlier than PO females. The yearly mean clutch size and number of fledglings produced of both POs and TOs increased with abundance of voles in the current spring. POs laid large clutches and produced large broods in years of both high and low vole abundance, whereas TOs were able to do so only in years of high vole abundance. POs were able to raise on average 73% of the eggs to fledglings whereas TOs only 44%. The generalist foraging strategy of POs including flexible switching from main prey to alternative prey (small birds) appeared to be more productive than the strictly vole-specialized foraging strategy of TOs. In contrast to earlier studies at the individual-level, specialist predators at the species level (in this case TOs) appear to be less effective than generalists (POs), but diet specialisation was particularly costly under conditions when scarcity of main foods limited offspring production.  相似文献   

7.
The cyclic population dynamics of vole and predator communities is a key phenomenon in northern ecosystems, and it appears to be influenced by climate change. Reports of collapsing rodent cycles have attributed the changes to warmer winters, which weaken the interaction between voles and their specialist subnivean predators. Using population data collected throughout Finland during 1986–2011, we analyse the spatio-temporal variation in the interactions between populations of voles and specialist, generalist and avian predators, and investigate by simulations the roles of the different predators in the vole cycle. We test the hypothesis that vole population cyclicity is dependent on predator–prey interactions during winter. Our results support the importance of the small mustelids for the vole cycle. However, weakening specialist predation during winters, or an increase in generalist predation, was not associated with the loss of cyclicity. Strengthening of delayed density dependence coincided with strengthening small mustelid influence on the summer population growth rates of voles. In conclusion, a strong impact of small mustelids during summers appears highly influential to vole population dynamics, and deteriorating winter conditions are not a viable explanation for collapsing small mammal population cycles.  相似文献   

8.
The abandonment of traditional livestock farming systems in Mediterranean countries is triggering a large-scale habitat transformation, which, in general, consists of the replacement of open grazing areas by woodlands through non-managed regeneration. As a consequence, wild ungulates are occupying rapidly the empty niche left by domestic ungulates. Both types of ungulates represent the main trophic resource for large vertebrate scavengers. However, a comparison of how vertebrate scavengers consume ungulate carcasses in different habitats with different ungulate species composition is lacking. This knowledge is essential to forecast the possible consequences of the current farmland abandonment on scavenger species. Here, we compared the scavenging patterns of 24 wild and 24 domestic ungulate carcasses in a mountainous region of southern Spain monitored through camera trapping. Our results show that carcasses of domestic ungulates, which concentrate in large numbers in open pasturelands, were detected and consumed earlier than those of wild ungulate carcasses, which frequently occur in much lower densities at more heterogenous habitats such as shrublands and forest. Richness and abundance of scavengers were also higher at domestic ungulate carcasses in open habitats. Vultures, mainly griffons (Gyps fulvus), consumed most of the carcasses, although mammalian facultative scavengers, mainly wild boar (Sus scrofa) and red fox (Vulpes vulpes), also contributed importantly to the consumption of wild ungulate carcasses in areas with higher vegetation cover. Our findings evidence that the abandonment of traditional grazing may entail consequences for the scavenger community, which should be considered by ecologists and wildlife managers.  相似文献   

9.
Predation has been invoked as a factor synchronizing the population oscillations of sympatric prey species, either because predators kill prey unselectively (the Shared Predation Hypothesis; hereafter SPH), or because predators switch to alternative prey after a density decline in their main prey (the Alternative Prey Hypothesis; APH). A basic assumption of the APH is that the impact of predators on alternative prey depends more on the density of main prey than on the predator/alternative prey ratio. Both SPH and APH assume that the impact of predators on alternative prey is at least periodically strong enough to depress prey populations. To examine these assumptions, we utilized data from replicated field experiments in large areas where we reduced the breeding densities of avian predators during three years and the numbers of least weasels (Mustela nivalis) in two years when vole populations declined. In addition, we reduced the breeding densities of avian predators in two years when vole populations were high. The reduction of least weasels increased the abundance of their alternative prey, small birds breeding on the ground, but did not affect the abundance of common shrews (Sorex araneus). In years when vole populations declined, the reduction of avian predators increased the abundance of their alternative prey, common shrews and small birds. Therefore, vole‐eating predators do at least periodically depress the abundance of their alternative prey. At high vole densities, the reduction of avian predators did not increase the abundance of common shrews, although the ratio of avian predators to alternative prey was similar to years when vole populations declined, which supported APH. In contrast, the abundance of small birds increased after the reduction of avian predators also at high vole densities, which supported SPH. The manipulations had no obvious effect on the number of game birds, which are only occasionally killed by these small‐sized predators. We conclude that in communities where most predators are small or specialize on a single prey type, the synchronizing impact of predation is restricted to a few similar‐sized species.  相似文献   

10.
Medium-sized predators sometimes switch to alternative prey species as their main prey declines. Our objective of this study was to test the alternative prey hypothesis for a medium sized predator (red fox, Vulpes vulpes ), a small cyclically fluctuating main prey (microtine voles) and larger alternative prey (roe deer fawns, Capreolus capreolus ). We used long-term time series (28 years) on voles, red fox and roe deer from the Grimsö Wildlife Research Area (59°40'N, 15°25'E) in south-central Sweden to investigate interspecific relationships in the annual fluctuations in numbers of the studied species. Annual variation in number of roe deer fawns in autumn was significantly and positively related to vole density and significantly and negatively related to the number of fox litters in the previous year. In years of high vole density, predation on roe deer fawns was small, but in years of low vole density predation was more severe. The time lag between number of fox litters and predation on fawns was due to the time lag in functional response of red fox in relation to voles. This study demonstrates for the first time that the alternative prey hypothesis is applicable to the system red fox, voles and roe deer fawns.  相似文献   

11.
The biology of the gray-sided voleClethrionomys rufocanus in Hokkaido, concerning taxonomy, morphology, phylogeny, distribution, and natural history, is reviewed. Applied issues in forest management (damage, control and census) are also mentioned. AlthoughClethrionomys rufocanus of Hokkaido was originally identified as a distinct species,Evotomys (=nowClethrionomys) bedfordiae Thomas, 1905, current literature generally refers to the gray-sided vole of Hokkaido asClethrionomys rufocanus or asC. rufocanus bedfordiae (vernacular name, the Bedford’s red-backed vole). The gray-sided vole is the most common small mammal in Hokkaido. It inhabits open areas as well as forests, and mainly feeds on green plants. The gray-sided vole has a high reproductive potential; litter size: 4–7; gestation period: 18–19 days; maturation age: 30–60 days old. Although spring-born individuals usually attain sexual maturity in their summer/fall of birth, their maturation is sometimes suppressed under high densities. The breeding season is generally from April to October, but with some regional variation.Clethrionomys rufocanus has a rather specialized diet (folivorous), particularly during winter when it feeds on bamboo grass. Many predators specialize on the grey-sided vole in Hokkaido; even the red fox, which is a typical generalist predator, selectively feeds on this vole. Damage by voles’ eating bark used to be sever on forest plantations in Hokkaido. Censuses of small rodents have been carried out for management purpose since 1954.  相似文献   

12.
Aim We examined evidence for the mesopredator release hypothesis at a subcontinental scale by investigating the relationship between indices of abundance of the dingo Canis lupus dingo (top‐order predator) and the invasive red fox Vulpes vulpes (mesopredator) in three large regions across mainland Australia. The red fox is known to be one of the major threats to the persistence of small and medium‐sized native vertebrates across the continent. Location Australia. Methods Indices of abundance were calculated from three independently collected datasets derived from bounty returns and field surveys. Data were analysed using univariate parametric, semi‐parametric and nonparametric techniques. Results Predator abundance indices did not conform to a normal distribution and the relationships between dingo and fox abundance indices were not well described by linear functions. Semi‐parametric and nonparametric techniques revealed consistently negative associations between indices of dingo and fox abundance. Main conclusions The results provide evidence that mesopredator suppression by a top predator can be exerted at very large geographical scales and suggest that relationships between the abundances of top predators and mesopredators are not linear. Our results have broad implications for the management of canid predators. First, they suggest that dingoes function ecologically to reduce the activity or abundance of red foxes and thus are likely to dampen the predatory impacts of foxes. More generally, they provide support for the notion that the mesopredator‐suppressive effects of top predators could be incorporated into broad‐scale biodiversity conservation programmes in many parts of the world by actively maintaining populations of top predators or restoring them in areas where they are now rare. Determining the population densities at which the interactions of top predators become ecologically effective will be a critical goal for conservation managers who aim to maintain or restore ecosystems using the ecological interactions of top predators.  相似文献   

13.

Background

Most hypotheses on population limitation of small mammals and their predators come from studies carried out in northern latitudes, mainly in boreal ecosystems. In such regions, many predators specialize on voles and predator-prey systems are simpler compared to southern ecosystems where predator communities are made up mostly of generalists and predator-prey systems are more complex. Determining food limitation in generalist predators is difficult due to their capacity to switch to alternative prey when the basic prey becomes scarce.

Methodology

We monitored the population density of a generalist raptor, the Eurasian kestrel Falco tinnunculus over 15 years in a mountainous Mediterranean area. In addition, we have recorded over 11 years the inter-annual variation in the abundance of two main prey species of kestrels, the common vole Microtus arvalis and the eyed lizard Lacerta lepida and a third species scarcely represented in kestrel diet, the great white-toothed shrew Crocidura russula. We estimated the per capita growth rate (PCGR) to analyse population dynamics of kestrel and predator species.

Principal Findings

Multimodel inference determined that the PCGR of kestrels was better explained by a model containing the population density of only one prey species (the common vole) than a model using a combination of the densities of the three prey species. The PCGR of voles was explained by kestrel abundance in combination with annual rainfall and mean annual temperature. In the case of shrews, growth rate was also affected by kestrel abundance and temperature. Finally, we did not find any correlation between kestrel and lizard abundances.

Significance

Our study showed for the first time vertebrate predator-prey relationships at southern latitudes and determined that only one prey species has the capacity to modulate population dynamics of generalist predators and reveals the importance of climatic factors in the dynamics of micromammal species and lizards in the Mediterranean region.  相似文献   

14.
We studied the effects of removal of breeding nomadic avian predators (the kestrel, Falco tinnunculus and Tengmalm's owl, Aegolius funereus) on small mammals (voles of the genera Microtus and Clethrionomys and the common shrew, Sorex araneus) during 1989–1992 in western Finland to find out if these predators have a regulating or limiting impact on their prey populations. We removed potential breeding sites of raptors from five manipulation areas (c. 3 km2 each), whereas control areas had nest-boxes in addition to natural cavities and stick-nests. Densities of small mammals were monitored by snap-trapping in April, June, and August, and densities of mammalian predators (the least weasel, Mustela nivalis nivalis, the stoat, M. erminea and the red fox, Vulpes vulpes) by snow tracking in early spring and late autumn. The yearly mean number of raptor breeding territories was 0.2–1.0 in reduction areas and 3.0–8.2 in control areas. Breeding raptors alone did not regulate prey populations in the long term, but probably caused short-term changes in the population dynamics of both the main prey, the sibling vole (Microtus rossiaemeridionalis) and an alternative prey (the common shrew). The densities of an alternative prey, the bank vole (Clethrionomys glareolus) decreased in raptor reduction areas, most likely due to increased least weasel predation pressure in the absence of breeding avian predators.  相似文献   

15.
Lennart Hansson 《Oecologia》2002,130(2):259-266
Geographically varying rodent dynamics may be due to specific landscape effects or to regional variation. Two common vole species (Clethrionomys glareolus and Microtus agrestis), their main predators and their impact on some important food items were monitored in Sweden on forest clearcuts in two different landscape types, situated in two different regions with different climatic conditions. Censuses, with 10-16 clearcuts in each landscape and both landscapes in the two regions, were designed to permit analyses of variance of the effects of landscape composition and region on dynamics and species interactions. Region had a far greater influence than landscape on vole numbers, on the proportions of generalist and specialist predators and on the winter browsing of bark of indigenous and experimental woody plants as well on seed consumption in experimental supplies. The findings indicated an influence of the depth and quality of the snow cover on the predation rates by generalist and specialist predators. However, there were also clear signs of food limitation in the snow-rich areas. Such areas had fewer generalist predators, which probably meant less directly density-dependent predation. Thus, lack of high-quality food may put a brake on population growth in climatically harsh regions, permitting increasing populations of specialist predators such as small mustelids to subsequently over-utilise their main prey and potentially cause prolonged low densities. Snow conditions may affect numbers and interactions both within habitats, landscapes and regions. Thus, to more fully understand rodent dynamics, small-scale movements and interactions of individuals in relation to the main large-scale factor(s) of various regions need to be examined.  相似文献   

16.
We investigated diet composition, habitat selection and spatial behaviour of the red fox (Vulpes vulpes) in relation to the availability of wader nests in a coastal polder area in southwest Denmark. The predatory role of the red fox in wet grassland ecosystems has profound implications for conservation status of declining populations of grassland breeding waders. However, few studies have focussed on the foraging ecology and behaviour of the red fox in these landscapes. Faecal analyses revealed that fox diet consisted of birds (43 % of prey remains?/?32 % of biomass), rodents (39 %?/?21 %), sheep (mainly as carrion, 14 %?/?41 %) and lagomorphs (4 %?/?7 %). Charadriiformes (including waders) comprised 3–12 % of prey remains throughout the year. Telemetry data and spotlight counts indicated that foxes did not select areas with high densities of breeding waders, suggesting that foxes did not target wader nests while foraging. Foxes maintained stable home ranges throughout their lives, indicating that the area sustained a permanent fox population all year round. The population densities, estimated from spotlight surveys, were 0.74 visible foxes km?2 (95 % CI; 0.34–1.61) on the preferred breeding habitat for waders and 1.21 km?2 in other open habitats such as cultivated fields. Our results indicate that red fox predation on wader nests is incidental, consistent with the notion that red foxes are generalist predators that opportunistically subsist on many prey groups.  相似文献   

17.
The regional synchrony of short-term population fluctuations of small rodents and small game has usually been explained by varying impacts of generalist predators subsisting on both voles and small game (the "alternative prey hypothesis" APH). APH says that densities of predators increase as a response to increasing vole densities and then these predators shift their diet from the main prey to the alternative prey when the main prey decline and vice versa. We studied the diet composition of breeding common buzzards Buteo buteo during 1985-92 in western Finland. Microtus voles were the main prey and water voles, shrews, forest grouse, hares and small birds the most important alternative prey. Our data from the between-year variation in the diet composition of buzzards fulfilled the main predictions of APH. The yearly proportion of main prey (Microtus voles) in the diet was higher in years of high than low vole abundance. The proportion of grouse in the diet of buzzards was negatively related to the abundance of Microtus voles in the field and was nearly independent of grouse abundance in the field. In addition, buzzards mainly took grouse chicks and young hares which is consistent with the prediction of APH. Therefore, we conclude that buzzards are able to shift their diet in the way predicted by the APH and that buzzards, together with other generalist predators, may reduce the breeding success of small game in the decline phase of the vole cycle, and thus substantially contribute to the existence of short-term population cycles of small game.  相似文献   

18.
The introduction of invasive alien predators often has catastrophic effects on populations of naïve native prey, but in situations where prey survive the initial impact a predator may act as a strong selective agent for prey that can discriminate and avoid it. Using two common species of Australian small mammals that have persisted in the presence of an alien predator, the European red fox Vulpes vulpes, for over a century, we hypothesised that populations of both would perform better where the activity of the predator was low than where it was high and that prey individuals would avoid signs of the predator’s presence. We found no difference in prey abundance in sites with high and low fox activity, but survival of one species—the bush rat Rattus fuscipes—was almost twofold higher where fox activity was low. Juvenile, but not adult rats, avoided fox odour on traps, as did individuals of the second prey species, the brown antechinus, Antechinus stuartii. Both species also showed reduced activity at foraging trays bearing fox odour in giving-up density (GUD) experiments, although GUDs and avoidance of fox odour declined over time. Young rats avoided fox odour more strongly where fox activity was high than where it was low, but neither adult R. fuscipes nor A. stuartii responded differently to different levels of fox activity. Conservation managers often attempt to eliminate alien predators or to protect predator-naïve prey in protected reserves. Our results suggest that, if predator pressure can be reduced, otherwise susceptible prey may survive the initial impact of an alien predator, and experience selection to discriminate cues to its presence and avoid it over the longer term. Although predator reduction is often feasible, identifying the level of reduction that will conserve prey and allow selection for avoidance remains an important challenge.  相似文献   

19.
VIDAR SELÅS 《Ibis》2006,148(4):678-686
According to the alternative prey hypothesis, autumn populations of ground-nesting game birds fluctuate in synchrony with vole numbers because generalist predators that mainly eat voles switch to alternative prey, such as eggs and chicks, when vole numbers decline. In hunting statistics from Nord-Trøndelag, central Norway, 1901–24, annual fluctuations in the number of Willow Grouse Lagopus lagopus and Western Capercaillie Tetrao urogallus , but not of Woodcock Scolopax rusticola , were positively related to vole numbers in the current year. Both Woodcock and grouse indices were related to hunting indices of Goshawk Accipiter gentilis and to weather variables assumed to influence the birds' survival or reproduction, suggesting that the indices actually reflected local population levels. Synchronous vole and grouse fluctuations are consistent with the alternative prey hypothesis (although predator densities were low in the early 1900s), but the asynchronous Woodcock fluctuations refute the hypothesis. Rather, because the Woodcock does not feed on plants utilized by voles and grouse, I suggest that food quality is the ultimate factor for the synchrony in vole and grouse numbers in Norway.  相似文献   

20.
Use of livestock guardian dogs (LGDs) to reduce predation on livestock is increasing. However, how these dogs influence the activity of wildlife, including predators, is not well understood. We used pellet counts and remote cameras to investigate the effects of free ranging LGDs on four large herbivores (eastern gray kangaroo, common wombat, swamp wallaby, and sambar deer) and one mesopredator (red fox) in Victoria, Australia. Generalized mixed models and one‐ and two‐species detection models were used to assess the influence of the presence of LGDs on detection of the other species. We found avoidance of LGDs in four species. Swamp wallabies and sambar deer were excluded from areas occupied by LGDs; gray kangaroos showed strong spatial and temporal avoidance of LGD areas; foxes showed moderately strong spatial and temporal avoidance of LGD areas. The effect of LGDs on wombats was unclear. Avoidance of areas with LGDs by large herbivores can benefit livestock production by reducing competition for pasture and disease transmission from wildlife to livestock, and providing managers with better control over grazing pressure. Suppression of mesopredators could benefit the small prey of those species. Synthesis and applications: In pastoral areas, LGDs can function as a surrogate top‐order predator, controlling the local distribution and affecting behavior of large herbivores and mesopredators. LGDs may provide similar ecological functions to those that in many areas have been lost with the extirpation of native large carnivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号