首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Forest restoration by planting trees often accelerates succession, but the trajectories toward reference ecosystems have rarely been evaluated. Using a chronosequence (4–53 years) of 26 riparian forest undergoing restoration in the Brazilian Atlantic Forest, we modeled how the variables representing forest structure, tree species richness and composition, and the proportion of plant functional guilds change through time. We also estimated the time required for these variables to reach different types of reference ecosystems: old‐growth forest (OGF), degraded forest, and secondary forest. Among the attributes which follow a predictable trajectory over time are: the basal area, canopy cover, density and tree species richness, as well as proportions of shade tolerant and slow growing species or individuals. Most of the variation in density of pteridophythes, lianas, shrubs and phorophythes, proportion of animal‐dispersed individuals, rarefied richness and floristic similarity with reference ecosystems remain unexplained. Estimated time to reach the reference ecosystems is, in general, shorter for structural attributes than for species composition or proportion of functional guilds. The length of this time varies among the three types of reference ecosystems for most attributes. For instance, tree species richness and proportion of shade tolerant or slow growing individuals become similar to secondary forests in about 40 years, but is estimated to take 70 years or more to reach the OGF. Of all the variables considered, canopy cover, basal area, density, and richness of the understory—by their ecological relevance and predictability—are recommended as ecological indicators for monitoring tropical forest restoration success.  相似文献   

2.
We discuss aspects of one of the most important issues in ecological restoration: how to evaluate restoration success. This first requires clearly stated and justified restoration goals and targets; this may seem “obvious” but in our experience, this step is often elided. Indicators or proxy variables are the typical vehicle for monitoring; these must be justified in the context of goals and targets and ultimately compared against those to allow for an evaluation of outcome (e.g. success or failure). The monitoring phase is critical in that a project must consider how the monitoring frequency and overall design will allow the postrestoration trajectories of indicators to be analyzed. This allows for real‐time management adjustments—adaptive management (sensu lato)—to be implemented if the trajectories are diverging from the targets. However, as there may be large variation in early postrestoration stages or complicated (nonlinear) trajectory, caution is needed before committing to management adjustments. Ideally, there is not only a goal and target but also a model of the expected trajectory—that only can occur if there are sufficient data and enough knowledge about the ecosystem or site being restored. With so many possible decision points, we focus readers' attention on one critical step—how to choose indicators. We distinguish generalizable and specific indicators which can be qualitative, semiquantitative, or quantitative. The generalizable indicators can be used for meta‐analyses. There are many options of indicators but making them more uniform would help mutual comparisons among restoration projects.  相似文献   

3.
For an estuarine restoration project to be successful it must reverse anthropogenic effects and restore lost ecosystem functions. Restoration projects that aim to rehabilitate endangered species populations make project success even more important, because if misjudged damage to already weakened populations may result. Determining project success depends on our ability to assess the functional state or “performance” and the trajectory of ecosystem development. Mature system structure is often the desired “end point” of restoration and is assumed to provide maximum benefit for target species; however, few studies have measured linkages between structure and function and possible benefits available from early recovery stages. The Salmon River estuary, Oregon, U.S.A., offers a unique opportunity to simultaneously evaluate several estuarine restoration projects and the response of the marsh community while making comparisons with a concurring undiked portion of the estuary. Dikes installed in three locations in the estuary during the early 1960s were removed in 1978, 1987, and 1996, creating a “space‐for‐time substitution” chronosequence. Analysis of the marsh community responses enables us to use the development state of the three recovering marshes to determine a trajectory of estuarine recovery over 23 years and to make comparisons with a reference marsh. We assessed the rate and pattern of juvenile salmon habitat development in terms of fish density, available prey resources, and diet composition of wild juvenile Oncorhynchus tshawytscha (chinook salmon). Results from the outmigration of 1998 and 1999 show differences in fish densities, prey resources, and diet composition among the four sites. Peaks in chinook salmon densities were greatest in the reference site in 1998 and in the youngest (1996) site in 1999. The 1996 marsh had higher densities of chironomids (insects; average 864/m2) and lower densities of amphipods (crustaceans; average 8/m3) when compared with the other sites. Fauna differences were reflected in the diets of juvenile chinook with those occupying the 1978 and 1996 marshes based on insects (especially chironomids), whereas those from the 1987 and reference marshes were based on crustaceans (especially amphipods). Tracking the development of recovering emergent marsh ecosystems in the Salmon River estuary reveals significant fish and invertebrate response in the first 2 to 3 years after marsh restoration. This pulse of productivity in newly restored systems is part of the trajectory of development and indicates some level of early functionality and the efficacy of restoring estuarine marshes for juvenile salmon habitat. However, to truly know the benefits consumers experience in recovering systems requires further analysis that we will present in forthcoming publications.  相似文献   

4.
When compared to planted reforestation, natural unassisted regeneration is often reported to result in slow recovery of biomass and biodiversity, especially early in succession. In some cases, naturally regenerating forests are not comparable to the community structure of primary forests after many decades. However, direct comparison of the outcomes of tropical forest restoration and natural regeneration is hindered by differences in metrics of forest recovery, inconsistency in land use histories, and dissimilarities in experimental design. We present the results of a replicated reforestation experiment comparing natural regeneration and polyculture tree planting at multiple diversity levels (3, 6, 9, or 12 native tree species), with uniform land use history and initial edaphic conditions. We compare the recovery of basal area and floristic diversity in these treatments after 5 yr of succession. Total basal area was higher in planted plots than in naturally regenerating plots, but it but did not vary among the different planted diversity levels. The basal area of woody recruits did not differ among treatments. The diversity of woody recruits increased substantially over time but did not vary among planting treatments. Species composition trajectories showed directional turnover over time, with no consistent differences among treatments. The convergence of restoration trajectories and similarity of floristic community diversity and composition across all treatments, after only 5 yr, provides evidence of the viability of natural regeneration for rapid restoration of forest biodiversity.  相似文献   

5.
The preponderance of short‐term objectives and lack of systematic monitoring of restoration projects limits opportunities to learn from past experience and improve future restoration efforts. We conducted a retrospective, cross‐sectional survey of 89 riparian revegetation sites and 13 nonrestored sites. We evaluated 36 restoration metrics at each site and used project age (0–39 years) to quantify plant community and aquatic habitat trajectories with a maximum likelihood model selection approach to compare linear and polynomial relationships. We found significant correlations with project age for 16 of 21 riparian vegetation, and 11 of 15 aquatic habitat attributes. Our results indicated improvements in multiple ecosystem services and watershed functions such as diversity, sedimentation, carbon sequestration, and available habitat. Ten riparian vegetation metrics, including native tree and exotic shrub density, increased nonlinearly with project age, while litter and native shrub density increased linearly. Species richness and cover of annual plants declined over time. Improvements in aquatic habitat metrics, such as increasing pool depth and decreasing bankfull width‐to‐depth ratio, indicated potentially improved anadromous fish habitats at restored sites. We hypothesize that certain instream metrics did not improve because of spatial and/or temporal limitations of riparian vegetation to affect aquatic habitat. Restoration managers should be prepared to maintain or enhance understory diversity by controlling exotic shrubs or planting shade‐tolerant native species as much as 10 years after revegetation.  相似文献   

6.
Deforestation of tropical forests has led to widespread loss and extirpation of forest bird species around the world, including the Hawaiian Islands which have experienced a dramatic loss of forests over the last 200–800 years. Given the important role birds play in forest ecosystem functions via seed dispersal and pollination, a bird community's response to forest restoration is an important measure of the success of such conservation actions. We evaluated the bird response to reforestation at an important bird sanctuary, Hakalau Forest National Wildlife Refuge, Hawai′i Island, using 26 years of bird count data. We show that most species from within the diverse avian community increased significantly, but species colonized the restoration forest at different rates. Distance from intact forest and time since restoration were both important predictors of colonization rate, interacting such that for most species it took more time to colonize areas farther from the intact forest. In addition, both forest cover and understory diversity helped to explain bird densities, but the effect varied among species, suggesting that different habitat requirements may help drive variation in colonization rates. This article provides the first detailed evaluation of how a diverse community of birds has responded to one of the largest, ongoing reforestation projects in Hawai′i.  相似文献   

7.
Large‐scale forest restoration relies on approaches that are cost‐effective and economically attractive to farmers, and in this context agroforestry systems may be a valuable option. Here, we compared ecological outcomes among (1) 12–15‐year‐old coffee agroforests established with several native shade trees, (2) 12–15‐year‐old high‐diversity restoration plantations, and (3) reference old‐growth forests, within a landscape restoration project in the Pontal do Paranapanema region, in the Atlantic Forest of southeastern Brazil. We compared the aboveground biomass, canopy cover, and abundance, richness, and composition of trees, and the regenerating saplings in the three forest types. In addition, we investigated the landscape drivers of natural regeneration in the restoration plantations and coffee agroforests. Reference forests had a higher abundance of trees and regenerating saplings, but had similar levels of species richness compared to coffee agroforests. High‐diversity agroforests and restoration plantations did not differ in tree abundance. However, compared to restoration plantations, agroforests showed higher abundance and species richness of regenerating saplings, a higher proportion of animal‐dispersed species, and higher canopy cover. The abundance of regenerating saplings declined with increasing density of coffee plants, thus indicating a potential trade‐off between productivity and ecological benefits. High‐diversity coffee agroforests provide a cost‐effective and ecologically viable alternative to high‐diversity native tree plantations for large‐scale forest restoration within agricultural landscapes managed by local communities, and should be included as part of the portfolio of reforestation options used to promote the global agenda on forest and landscape restoration.  相似文献   

8.
We investigated the restoration trajectories in vegetation and soil parameters of monospecific Rhizophora mucronata stands planted 6, 8, 10, 11, 12, 17, 18, and 50 years ago (restored system). We tested the hypothesis that the changes in vegetation characteristics, with progressing mangrove age, are related to the changes in soil characteristics. The vegetation and soil parameters were compared across this restoration sequence using a reference system comprising mature, natural mangrove stands of unknown age. Rapid increases in leaf area index and aboveground biomass, and declines in tree density and size (in terms of tree diameter and height) occurred with increasing stand age. Soil organic matter, total nitrogen, and soil redox potential increased, and soil temperature decreased as stands aged. These patterns tended to stabilize at approximately the 11th year, indicating the probable age that restoration plots tend toward forest maturity. The time for the restored systems to reach forest maturity, attaining characteristics similar to the reference system, is estimated at 25 years, which is relatively slow compared to forest regeneration trajectories estimated for natural mangroves. Our study describes the trajectory patterns for planted mangroves, which are important for the assessment of both the progress and success of mangrove rehabilitation programs.  相似文献   

9.
Creating, restoring, and sustaining forests in urban areas are complicated by habitat fragmentation, invasive species, and degraded soils. Although there is some research on the outcomes of urban reforestation plantings during the first 5 years, there is little research on longer term outcomes. Here, we compare the successional trajectories of restored and unrestored forest sites 20 years after initiating restoration. The sites are located within the Rodman's Neck area of Pelham Bay Park, in the northeast corner of the Bronx in New York City (NYC), U.S.A. Compared with unrestored sites, we saw improvements in species diversity, greater forest structure complexity, and evidence of the regeneration and retention of native tree species in restored sites. In addition, we found differences in restoration outcomes depending on the level of intervention: clearing exotic shrubs and vines and planting native trees and shrubs improved tree diversity and canopy closure to a greater extent than clearing exotics alone, and the mechanical removal of invasive plants after the native plantings further improved some measures of restoration, such as tree species diversity and native tree regeneration. The results of this study suggest that the goal of a sustainable forest ecosystem dominated by native trees and other plant species may not be achievable without continued human intervention on site. In addition, these results indicate that the restoration approach adopted by NYC's reforestation practitioners is moving the site toward a more desirable vegetative community dominated by native species.  相似文献   

10.
The restoration of floodplain grasslands has benefited from many studies of the underlying mechanisms. Among the operational tools that resulted, hay transfer is now used increasingly to alleviate the effects of limited seed dispersal and recruitment. To improve this method, we still need to understand how it can affect restoration trajectories, and particularly their direction and magnitude during the early stages of restoration. Based on concepts from the field of community ecology theory, we investigated the effects of early‐stage management through grazing or mowing on restoration trajectories after soil harrowing and hay transfer. We established a randomized block design experiment and quantified several community‐related metrics to formalize restoration trajectories for 3 years after hay transfer on a previously arable alluvial island in southwestern France. Whatever the management treatment, the species richness and evenness were significantly higher in hay‐inoculated than in control plots. This effect was linked to the recruitment of species originating not only from the reference grassland through hay transfer, but also from the seed bank, a well‐known effect of soil harrowing. Although generally oriented toward the reference grassland, the origin, direction, and magnitude of the trajectory of hay‐inoculated plots all depended on the management applied. Sheep grazing applied at the same time as hay transfer enhanced the recruitment of reference species as from the first experimental year, because it controlled aboveground competition and maintained the window of opportunity open for a sufficiently longer period of time. Our findings show that the type of management applied simultaneously to hay transfer influences the origin of a grassland trajectory, while its direction and magnitude are dependent on the management applied in subsequent years. Grazing immediately after hay transfer may be appropriate to accelerate the recruitment of species from the reference grassland.  相似文献   

11.
One hundred and twenty years after restoration of badlands by reforestation with Pinus nigra Arn. ssp. nigra, the analysis of the soils on marls of the Saignon experimental watershed (Alpes-de-Haute-Provence) demonstrates the potentialities and the driving forces behind the distribution of earthworms in the main site types. The communities are young, and density and biomass are low to normal (up to 49 individuals and 27 g·m−2, respectively) for these low productivity pine woods. Two main site-directed trajectories would lead marls to a mixed species association: the first one is initiated by the epi-anecic behaviour of Lumbricus terrestris L. in xeric conditions (south-oriented slope, thin soil); the second is initiated by Octolasion cyaneum Sav. (north-oriented slope).  相似文献   

12.
Reforestation of riparian zones is increasingly practiced in many regions for purposes of biodiversity conservation, bank stabilisation, and improvement in water quality. This is in spite of the actual benefits of reforestation for recovering underlying soil properties and function remaining poorly understood. Here we compare remnant riparian rainforest, pasture and reforestation plantings aged 2–20 years in an Australian subtropical catchment on ferrosols to determine the extent to which reforestation restores key soil properties. Of the nine soil attributes measured (total nitrogen, nitrate and ammonium concentrations, net nitrification and ammonification rates, organic carbon, bulk density, fine root biomass and water infiltration rates), only infiltration rates were significantly lower in pasture than remnant riparian rainforest. Within reforestation plantings, bulk density decreased up to 1.4-fold and infiltration rates increased up to 60-fold with time post-reforestation. Our results suggest that the main outcome of belowground processes of early reforestation is the recovery of the soils'' physical structure, with potential beneficial ecosystem services including reduced runoff, erosion and associated sediment and nutrient loads in waterways. We also demonstrate differential impacts of two commonly planted tree species on a subset of soil properties suggesting that preferential planting of select species could accelerate progress on specific restoration objectives.  相似文献   

13.
Many studies have attempted to assess the ability of created wetlands to replace the ecological structure and functions of natural wetlands over short time periods (<5 years). Few studies have repeatedly monitored vegetative community development of created depressional wetlands over longer time frames or assessed the return on the level of initial restoration efforts. Here, the vegetation communities of 17 created freshwater marshes in two different geographic regions of the U.S., Ohio and Colorado, ranging from 5 to 19 years old, were monitored over multiple years and compared to natural reference sites. Findings suggest that created marshes in Ohio achieved floristic equivalency with natural reference sites for measures of plant species richness, number of native plant species, number of hydrophytes, and percent plant cover within a decade. Yet, created marshes in Ohio contained double the amount of non-native plant species observed in natural reference sites. In Colorado, created marshes were less successful, failing to achieve floristic equivalency for plant species richness, number of native plant species, and number and percent hydrophytes given more than a decade of restoration. Soil chemistry data suggest that although created marshes achieve certain hydric soil characteristics, they were significantly lower in organic matter, cation exchange capacity, and extractable phosphorus than natural wetlands. Equivalency for soil chemistry will require longer time periods (>14 years). Data suggest that created marshes that seem to be approaching floristic equivalency in early years following construction may level off or even dramatically decline over longer time periods (10–20 years) for certain floristic indicators. Restoration trajectories for Ohio created marshes with strong initial restoration efforts predict floristic equivalency in a median of 14 years compared to 24 years for sites with weak initial efforts. Created marshes with strong initial restoration efforts displayed significantly greater plant species richness, number of native plant species, and number of hydrophytes than sites with low initial efforts, indicating the importance of planting, soil transport and/or contouring in establishing a wetland's restoration trajectory.  相似文献   

14.
Summary The emergence of carbon markets has provided a potential source of funding for reforestation projects. However, there is concern amongst ecologists that these markets will promote the establishment of monoculture plantations rather than more diverse restoration plantings, on the assumption that fast‐growing monocultures are likely to store more carbon than restoration plantings. We examined the validity of this assumption for three predominantly rainforest plantation types established in the moist tropical uplands of north‐east Australia: monoculture plantations of native rainforest conifers (n = 5, mean age 13 years); mixed species plantations of rainforest cabinet timber species, rainforest conifers and eucalypts (n = 5, mean age 13 years); and, environmental restoration plantings comprised mostly of a diverse range of rainforest trees (n = 10, mean age 14 years). We found that restoration plantings stored significantly more carbon in above‐ground biomass than monoculture plantations of native conifers (on average, 106 t vs 62 t carbon per ha); and tended to store more carbon than mixed species timber plantations which were intermediate in value (86 t carbon per ha). Carbon stocks were higher in restoration plantings than in monoculture and mixed species plantations for three reasons. First, and most importantly, restoration plantings were more densely stocked than monoculture and mixed species plantations. Second, there were more large diameter trees in restoration plantings than monoculture plantations. Third, the trees used in restoration plantings had a higher average wood density than the conifers used in monoculture plantations. While, on average, wood density was higher in mixed species plantations than restoration plantings, the much higher stocking rate of restoration plantings meant they stored more carbon than mixed species plantations. We conclude that restoration plantings in the moist tropics of north‐east Australia can accumulate relatively high amounts of carbon within two decades of establishment. Comparison with reference rainforest sites suggests that restoration plantings could maintain their high stocking rates (and therefore high biomass) as they develop in future decades. However, because restoration plantings are currently much more expensive to establish than monoculture plantations, restoration plantings are unlikely to be favoured by carbon markets. Novel reforestation techniques and designs are required if restoration plantings are to both provide habitat for rainforest biota and store carbon in biomass at a cost comparable to monoculture plantations.  相似文献   

15.

Question

Identifying the factors that lead to the success of restoration projects has been a major challenge in ecological restoration. Here we ask which factors, aside from time since restoration began, drive the recovery of tree biomass, density and richness of the understorey in riparian forests undergoing restoration.

Location

Semideciduous Atlantic Forest with tropical climate and deep, fertile soils, southeast Brazil.

Methods

We sampled tree basal area (DBH ≥ 5 cm), density and richness of the understorey (DBH < 5 cm) in 26 riparian forests undergoing restoration (a chronosequence spanning 4–53 years). We assessed the following variables as possible factors, besides time, influencing community attributes: (1) planting design: density and richness of seedlings planted; (2) landscape features: proximity index measuring forest cover within a 1.5‐km radius, distance and size of the nearest forest remnant; and (3) environmental factors: invasive grasses, soil fertility, drought, average annual precipitation and proportion of fine particles in the soil. We performed correlation analyses including predictor and response variables, followed by stepwise backward regression (AIC), multiple and simple linear regressions, to investigate the relationships between those factors and the community attributes.

Results

Tree basal area was primarily influenced by the proportion of small particles in the soil (+) and secondarily by rainfall (?). Understorey richness was influenced by the combination of size (+) and distance (?) of the nearest patch, rainfall (?) and soil fertility (+). Understorey density was primarily influenced by the size of the nearest forest remnant (+) and secondarily by invasive grasses (?). No influence of density or richness of the seedlings planted was observed.

Conclusion

Environmental factors and landscape configuration drive the recovery of tree biomass, density and richness in communities undergoing restoration. The most relevant ecological filters influencing restoration success are availability of soil water and nutrients and the distance and size of the nearest remnant of native vegetation. The expected influence of richness and density of seedlings planted, considered for many years as important drivers of forest restoration success, was not confirmed in this study.  相似文献   

16.
Clearcutting is a common silvicultural practice in the deciduous forests of northern New England. Subsequent regrowth is usually rapid, largely due to regenerative capacities of successional plants, particularly pin cherry (Prunus pensylvanica L.). The forest cover of an experimental watershed (W2) in Hubbard Brook Experimental Forest, NH was clearcut and then treated with herbicides for 3?years to prevent regrowth. This experimental treatment delayed plant growth and caused extensive nutrient losses from the watershed-ecosystem, thereby diminishing factors normally promoting revegetation. This article addresses the question of whether, or to what degree, resilience, defined here as the trajectory of recovery back to a prior state following a perturbation, was reduced by this treatment. Performance metrics for resilience were aboveground net primary productivity (ANPP) and biomass accumulation. Data collected over seven intervals for the first 31?years of regrowth show that a primary component of resilience??pin cherry density??was reduced, and that ANPP and biomass accumulation were initially below normal compared with other clear-cut sites. After approximately a decade of regrowth, however, trajectories for both ANPP and biomass fell within the lower margins of variability measured in other regional examples.  相似文献   

17.
Various approaches to coral restoration have been developed to help increase rate of reef recovery from perturbations, among the most common of which is coral transplantation. Success is often evaluated based on short‐term observations that capture only the initial phase of space colonization by coral transplants. Here, an individual‐based model is developed to quantify uncertainty in future trajectories in experimental plots given past observations. Empirical data were used to estimate probabilistic growth, survival, and fission rates of Acropora pulchra and A. intermedia (order Scleractinia) in a sandy reef flat (Bolinao, Philippines). Simulations were initialized with different densities (25 or 50 transplants per species per 16 m2) to forecast possible coral cover trajectories over a 5‐year period. Given current conditions, there is risk of local extinction which is higher in low‐density plots for both species, and higher for A. intermedia compared to A. pulchra regardless of density. While total coral cover is projected to increase, species composition in the future is more likely to be highly uneven. The model was used to quantify effect on recovery rate of protection from pulse anthropogenic disturbances, given different initial transplantation densities. When monitoring data are limited in time, stochastic models may be used to assess whether the restoration trajectory is heading toward the desired state and at what rate, and foresee system response to various adaptive interventions.  相似文献   

18.
Much of the primary forest in the eastern United States that was converted to farmland between 1600 and 1900 has reverted back to second growth forest as a result of agriculture abandonment. This reversion back to forest gives soil productivity a chance to recover, though the rates of recovery are not well understood. Understanding the legacy effects of past disturbances like agriculture can provide important insights to support ecological restoration efforts on disturbed soils. Our goal with this study was to further understand the effects of forest development on soil productivity after agriculture abandonment. We used a chronosequence approach to examine soil properties over a 60‐year temporal scale of forest development on abandoned agricultural lands in Saratoga and Rensselaer Counties in New York, U.S.A. We measured soil properties within this chronosequence to test the hypothesis that there would be measurable recoveries of soil physical properties and fertility over time. We observed rapid recovery of physical properties (lower bulk density and higher macroporosity) of surface soils within 5–10 years after agricultural abandonment. However, we found a legacy effect of agricultural compaction still evident in subsoils, with soil strength measurements indicating that past agricultural practices still limited root growth 55–60 years after abandonment. Soil percent organic matter and mineralizable nitrogen (N) both increased with forest development, but biomass accumulation may be slowed by limited root growth in the subsoil due to high strength. We recommend assessing subsoil physical properties when developing ecological restoration plans for agricultural lands.  相似文献   

19.
This study used data from a nationwide survey in Japan to model the developmental course of social skills during early childhood. The goals of this study were to identify longitudinal profiles of social skills between 2 and 5 years of age using a group-based trajectory approach, and to investigate whether and to what extent parenting practices at 2 years of age predicted developmental trajectories of social skills during the preschool period. A relatively large sample of boys and girls (N > 1,000) was assessed on three social skill dimensions (Cooperation, Self-control, and Assertion) at four time points (ages 2, 3, 4, and 5), and on four parenting practices (cognitive and emotional involvement, avoidance of restriction and punishment, social stimulation, and social support for parenting) at age 2. The results indicated that for each social skill dimension, group-based trajectory models identified three distinct trajectories: low, moderate, and high. Multinomial regression analysis revealed that parenting practice variables showed differential contributions to development of child social skills. Specifically, Cooperation and Assertion were promoted by cognitive and emotional involvement, Self-control by social stimulation, and Assertion by avoidance of restriction and punishment. Abundant social support for parenting was not associated with higher child social skills trajectories. We found heterogeneity in developmental profiles of social skills during the preschool ages, and we identified parenting practices that contributed to different patterns of social skills development. We discussed the implications of higher-quality parenting practices on the improvement of child social skills across early childhood.  相似文献   

20.
Question: How are dynamics of early‐seral post‐fire vascular plant and bryoid (terrestrial mosses, lichens, and fungi) vegetation impacted by reforestation activities, particularly manual vegetation removal and planting density? Does the relationship between vegetation dynamics and vegetation removal differ between harsh (west‐facing) and moderate (east‐facing) aspects? Location: Five high‐severity burn plantation forests of Pseudotsuga menziesii in southwestern Oregon, USA. Methods: Plantations severely burned in a recent wildfire were planted with conifer seedlings as a four‐species mixture or a monoculture, at two different densities, with and without manual vegetation removal. A subset of plots was also planted on a contrasting aspect within each plantation. The contrasting aspects differed in potential solar insolation and were indicative of moderate (eastern exposure) and harsh (western exposure) site conditions. Covers of shrub, herbaceous and bryoid vegetation layers were measured during reforestation activities 2–4 yr after the fire. Dynamics of structural layer cover and community composition were compared among treatments with analysis of variance and multivariate analyses (non‐metric multidimensional scaling and blocked multi‐response permutation procedure). Results: Structural layer cover and community composition differed between areas that received reforestation treatments and untreated areas. However, variability within treatments in a plantation was greater than variability within treatments across plantations. Effects of vegetation removal on composition and structure were more evident than effects of planting or altering planting density. Vegetation removal decreased cover of tall and low shrub and the bryoid layer, and increased herbaceous layer cover. Bryoid community and low shrub structural layer responses were more pronounced on moderate aspects than on harsh aspects. Vegetation removal shifted vascular plant community composition towards exotic and annual species. Conclusions: These reforestation treatments may be implemented without substantially altering early‐seral vegetation community composition dynamics, especially in areas with harsh site conditions. Site conditions, such as aspect, should be evaluated to determine need and potential effects of reforestation before implementation. Monitoring for exotic species establishment should follow reforestation activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号