首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Messenger RNA (mRNA) secondary structure decreases the elongation rate, as ribosomes must unwind every structure they encounter during translation. Therefore, the strength of mRNA secondary structure is assumed to be reduced in highly translated mRNAs. However, previous studies in vitro reported a positive correlation between mRNA folding strength and protein abundance. The counterintuitive finding suggests that mRNA secondary structure affects translation efficiency in an undetermined manner. Here, we analyzed the folding behavior of mRNA during translation and its effect on translation efficiency. We simulated translation process based on a novel computational model, taking into account the interactions among ribosomes, codon usage and mRNA secondary structures. We showed that mRNA secondary structure shortens ribosomal distance through the dynamics of folding strength. Notably, when adjacent ribosomes are close, mRNA secondary structures between them disappear, and codon usage determines the elongation rate. More importantly, our results showed that the combined effect of mRNA secondary structure and codon usage in highly translated mRNAs causes a short ribosomal distance in structural regions, which in turn eliminates the structures during translation, leading to a high elongation rate. Together, these findings reveal how the dynamics of mRNA secondary structure coupling with codon usage affect translation efficiency.  相似文献   

2.
3.
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno--independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno--independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site.  相似文献   

4.
5.
Translation of protein from mRNA is a complex multi-step process that occurs at a non-uniform rate. Variability in ribosome speed along an mRNA enables refinement of the proteome and plays a critical role in protein biogenesis. Detailed single protein studies have found both tRNA abundance and mRNA secondary structure as key modulators of translation elongation rate, but recent genome-wide ribosome profiling experiments have not observed significant influence of either on translation efficiency. Here we provide evidence that this results from an inherent trade-off between these factors. We find codons pairing to high-abundance tRNAs are preferentially used in regions of high secondary structure content, while codons read by significantly less abundant tRNAs are located in lowly structured regions. By considering long stretches of high and low mRNA secondary structure in Saccharomyces cerevisiae and Escherichia coli and comparing them to randomized-gene models and experimental expression data, we were able to distinguish clear selective pressures and increased protein expression for specific codon choices. The trade-off between secondary structure and tRNA-concentration based codon choice allows for compensation of their independent effects on translation, helping to smooth overall translational speed and reducing the chance of potentially detrimental points of excessively slow or fast ribosome movement.  相似文献   

6.
7.
8.
mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs) and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5’-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.  相似文献   

9.
Modification of nucleotides within an mRNA emerges as a key path for gene expression regulation. Pseudouridine is one of the most common RNA modifications; however, only a few mRNA modifiers have been identified to date, and no one mRNA pseudouridine reader is known. Here, we applied a novel genome-wide approach to identify mRNA regions that are bound by yeast methionine aminoacyl tRNAMet synthetase (MetRS). We found a clear enrichment to regions that were previously described to contain pseudouridine (Ψ). Follow-up in vitro and in vivo analyses on a prime target (position 1074 within YEF3 mRNA) demonstrated the importance of pseudouridine for MetRS binding. Furthermore, polysomal and protein analyses revealed that Ψ1074 mediates translation. Modification of this site occurs presumably by Pus6, a pseudouridine synthetase known to modify MetRS cognate tRNA. Consistently, the deletion of Pus6 leads to a decrease in MetRS association with both tRNAMet and YEF3 mRNA. Furthermore, while global protein synthesis decreases in pus6Δ, translation of YEF3 increases. Together, our data imply that Pus6 ‘writes’ modifications on tRNA and mRNA, and both types of RNAs are ‘read’ by MetRS for translation regulation purposes. This represents a novel integrated path for writing and reading modifications on both tRNA and mRNA, which may lead to coordination between global and gene-specific translational responses.  相似文献   

10.
11.
12.
High-quality wheat germ extract (hqWGE) is very useful for the high-yield production of various types of protein. The most important key to high productivity is the design of mRNA templates. Although the design has been refined for straightforward and efficient translation in hqWGE, there is still room for improvement in untranslated regions (UTRs), especially the 3′ UTR length, because a long, cumbersome 3′ UTR is commonly used for translation enhancement. Here we examined some short viral 3′ cap-independent translation enhancers (3′ CITEs) to identify effective ones for efficient translation in hqWGE. We then combined the most effective 3′ CITE and a 5′ enhancer to further increase the translation efficiency. mRNA with the optimal short 3′ and 5′ UTRs, both of whose length was less than 150 nt, exhibited a productivity of 1.4 mg/mL in prolonged large-scale protein synthesis in hqWGE, which was comparable to that of control mRNA with a commonly-used long 3′ UTR (∼1200 nt).  相似文献   

13.
Individual mRNAs are translated by multiple ribosomes that initiate translation with an interval of a few seconds. The ribosome speed is codon dependent, and ribosome queuing has been suggested to explain specific data for translation of some mRNAs in vivo. By modeling the stochastic translation process as a traffic problem, we here analyze conditions and consequences of collisions and queuing. The model allowed us to determine the on-rate (0.8 to 1.1 initiations/s) and the time (1 s) the preceding ribosome occludes initiation for Escherichia coli lacZ mRNA in vivo. We find that ribosome collisions and queues are inevitable consequences of a stochastic translation mechanism that reduce the translation efficiency substantially on natural mRNAs. The cells minimize collisions by having its mRNAs being unstable and by a highly selected codon usage in the start of the mRNA. The cost of mRNA breakdown is offset by the concomitant increase in translation efficiency.  相似文献   

14.
15.
从GenBank获得大肠杆菌K-12MG1655株的全基因组序列,计算了与基因密码子偏好性相关的多个参数(Nc、CAI、GC、GC3s),对其mRNA编码区长度、形成二级结构倾向与密码子偏好性之间的关系进行了统计学分析,发现虽然翻译效率(包括翻译速度和翻译精度)是制约大肠杆菌高表达基因的密码子偏好性的主要因素,同时,mRNA编码区长度及其形成二级结构的倾向也是形成这种偏好性的不可忽略的原因,而且对偏好性有一定程度的削弱。另外对mRNA编码区形成二级结构倾向的生物学意义进行了讨论分析。  相似文献   

16.
Kahali B  Ahmad S  Ghosh TC 《Gene》2011,481(2):76-82
Protein translation has been elucidated to be dictated by evolutionary constraints, namely, variations in tRNA availabilities and/or variations in codon-anticodon binding that is manifested in biased codon usage. Taking advantage of publicly available mRNA expression and protein abundance data for Saccharomyces cerevisiae, we have performed a comprehensive analysis of the diverse factors guiding translation leading to desired protein levels irrespective of the corresponding high or low mRNA levels. It has been elucidated in this study that different combinations of most abundant/non abundant tRNA isoacceptors are selected for in S. cerevisiae that helps in achieving the optimum speed and accuracy in the protein translation process. This is also accompanied by the strategic location of codon pairs in coherence to mRNA secondary structure folding stability for the above mentioned combinations of tRNA isoacceptors. We thus find that codon pair contextual effects; in addition to tRNA abundance and mRNA folding stability during translation elongation process play plausible roles in maintaining translation accuracy and speed that can achieve desired protein levels.  相似文献   

17.
Ribosome display is a powerful approach for affinity and stability maturation of recombinant antibodies. However, since ribosome display is performed entirely in vitro, there are several limitations to this approach including technical challenges associated with: (i) efficiently expressing and stalling antibodies on ribosomes using cell-free translation mixtures; and (ii) folding of antibodies in buffers where the concentration and composition of factors varies from that found in the intracellular milieu. We have developed a novel method for intracellular ribosome display that takes advantage of the recently discovered Escherichia coli SecM translation arrest mechanism. Specifically, we provide the first evidence that the encoding mRNA of SecM-stalled heterologous proteins remains stably attached to ribosomes, thereby enabling creation of stalled antibody-ribosome-mRNA (ARM) complexes entirely inside of living cells. Since ARM complexes faithfully maintain a genotype-phenotype link between the arrested antibody and its encoding mRNA, we demonstrate that this method is ideally suited for isolating stability-enhanced single-chain variable fragment (scFv) antibodies that are efficiently folded and functional in the bacterial cytoplasm.  相似文献   

18.
《Genomics》2021,113(4):2675-2682
The translation efficiency of protein genes is known to be affected by sequence features. Previous studies have found that various sequence features based on codon usage and mRNA secondary structure contribute to translation efficiency. However, most studies have focused on a specific organism, usually a model organism such as Escherichia coli or Saccharomyces cerevisiae. Here, we investigate whether the relationship between translation efficiency and sequence features is conserved among multiple organisms using publicly available ribosome profiling data and RNA-Seq data. We analyze nine organisms from various taxa: Staphylococcus aureus, five species of Streptomyces, two strains of E. coli, and S. cerevisiae. We reveal that the relationship between translation efficiency and sequence features differs across organisms, partly reflecting their taxonomy. The codon adaptation index shows high correlation in all analyzed organisms. Our study provides an insight into the diversity and commonality of sequence determinants of protein expression in these organisms.  相似文献   

19.
20.
Replication-dependent histone mRNAs are the only eukaryotic cellular mRNAs that are not polyadenylated, ending instead in a conserved stem-loop. The 3′ end of histone mRNA is required for histone mRNA translation, as is the stem-loop binding protein (SLBP), which binds the 3′ end of histone mRNA. We have identified five conserved residues in a 15-amino-acid region in the amino-terminal portion of SLBP, each of which is required for translation. Using a yeast two-hybrid screen, we identified a novel protein, SLBP-interacting protein 1 (SLIP1), that specifically interacts with this region. Mutations in any of the residues required for translation reduces SLIP1 binding to SLBP. The expression of SLIP1 in Xenopus oocytes together with human SLBP stimulates translation of a reporter mRNA ending in the stem-loop but not a reporter with a poly(A) tail. The expression of SLIP1 in HeLa cells also stimulates the expression of a green fluorescent protein reporter mRNA ending in a stem-loop. RNA interference-mediated downregulation of endogenous SLIP1 reduces the rate of translation of endogenous histone mRNA and also reduces cell viability. SLIP1 may function by bridging the 3′ end of the histone mRNA with the 5′ end of the mRNA, similar to the mechanism of translation of polyadenylated mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号