首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sulfite oxidase (SO(x)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto prussian blue nanoparticles/polypyrrole composite (PBNPs/PPY) electrodeposited onto the surface of indium tin oxide (ITO) electrode. An amperometric sulfite biosensor was fabricated using SO(x)/PBNPs/PPY/ITO electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The working electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of SO(x). The biosensor showed optimum response within 2s, when operated at 20mVs(-1) in 0.1M Tris-HCl buffer, pH 8.5 and at 35°C. Linear range and minimum detection limit were 0.5-1000μM and 0.12μM (S/N=3) respectively. There was good correlation (r=0.99) between red wine samples sulfite value by standard DTNB method and the present method. The sensor was evaluated with 97% recovery of added sulfite in red wine samples and 2.2% and 4.3% within and between batch coefficients of variation respectively. The sensor was employed for determination of sulfite level in red and white wine samples. The enzyme electrode was used 200 times over a period of 3 months when stored at 4°C.  相似文献   

2.
A chitosan-glutaraldehyde crosslinked uricase was immobilized onto Prussian blue nanoparticles (PBNPs) absorbed onto carboxylated multiwalled carbon nanotube (c-MWCNT) and polyaniline (PANI) layer, electrochemically deposited on the surface of Au electrode. The nanohybrid-uricase electrode was characterized by scanning electron microscopic (SEM), Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry. An amperometric uric acid biosensor was fabricated using uricase/c-MWCNT/PBNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The biosensor showed optimum response within 4 s at pH 7.5 and 40 °C, when operated at 0.4 V vs. Ag/AgCl. The linear working range for uric acid was 0.005-0.8 mM, with a detection limit of 5 μM. The sensor was evaluated with 96% recovery of added uric acid in sera and 4.6 and 5.4% within and between batch of coefficient of variation respectively and a good correlation (r = 0.99) with standard enzymic colorimetric method. This sensor measured uric acid in real serum samples. The sensor lost only 37% of its initial activity after its 400 uses over a period of 7 months, when stored at 4 °C.  相似文献   

3.
A method is described for construction of an amperometric biosensor for detection of phenolic compounds based on covalent immobilization of laccase (Lac) onto manganese dioxide nanoparticles (MnO(2)NPs) decorated carboxylated multiwalled carbon nanotubes (cMWCNTs)/PANI composite electrodeposited onto a gold (Au) electrode through N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response at pH 5.5 (0.1M sodium acetate buffer) and 35°C, when operated at 0.3 V vs. Ag/AgCl. Linear range, response time, detection limit were 0.1-10 μM (lower concentration range) and 10-500 μM (higher concentration range), 4s and 0.04 μM, respectively. Biosensor measured total phenolic content in tea leaves extract. The enzyme electrode was used 150 times over a period of 5 months.  相似文献   

4.
The polyaniline (PANi)-Nafion composite film was prepared onto the ceramic plate by the cyclic voltammetry (CV) method with the various cycle numbers. When the PANi-Nafion/Au/ceramic plate with the preparing cycle number of 5 was as working electrode, the cathodic peak current was achieved as 84.0 microA in 60 mg dl(-1) NH4Cl buffer solution. On the other hand, the small cathodic peak currents for buffer solution in the presence of 60 mg dl(-1) LiOH, NaCl and KCl, respectively, were found with the same composite electrode as working electrode. The cathodic peak current decreased from 84.0 to 16.3 microA in the 60 mg dl(-1) NH4Cl buffer solution when the cycle number for preparing PANi-Nafion/Au/ceramic plate composite electrode with the CV method increased from 5 to 15. The enzyme of urease was immobilized onto the PANi-Nafion/Au/ceramic plate composite film by the electrochemical immobilization and the casting methods and used as sensing electrode to detect the concentration of urea in the buffer solution. The sensitivity of composite electrode immobilized with the casting method was greater than that of electrochemical immobilization method. The sensitivity and the detecting limit of the urea sensor were found to be 0.7 and 5.27 microA (mg dl(-1))(-1)cm(-2), as well as 6 and 0.3 mg dl(-1), respectively, when urease was immobilized by glutaraldehyde (GA) cross-linker and Nafion network, respectively.  相似文献   

5.
A sensitive electrochemical method for DNA hybridization based on immobilization of DNA probe and [Ru(NH3)5Cl]PF6 complex onto nickel oxide nanomaterials (NiOxnp) modified glassy carbon electrode was developed. Due to strong affinity of NiOxnp for phosphate groups, oligonucleotides probe with a terminal 5′-phosphate group was attached to the surface of the modified electrode. DNA immobilization and hybridization were characterized by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry using K3Fe(CN)6/K4Fe(CN)6 and [Ru(NH3)5Cl]PF6 as probe and indicator, respectively. The Ru-complex current response indicates only the complementary sequence showing an obvious current signal in comparison to non-complementary and three or single point mismatched sequences. The fabricated biosensor possessed good selectivity and sensitivity for complementary probe, taxon: 32630 tumor necrosis factor (TNF). The linear dynamic range, sensitivity and detection limit of the proposed biosensor were 4 × 10−10 M to 1 × 10−8 M, 34.32 nA nM−1 and 6.8 × 10−11 M, respectively. Excellent reproducibility and stability, quite simple and inexpensive preparation are the other advantages of proposed biosensor.  相似文献   

6.
A method is described for construction of an amperometric xanthine biosensor based on covalent Immobilization of xanthine oxidase (XOD) onto citrate capped silver nanoparticles deposited on Au electrode surface through cysteine self assembled monolayers (SAM). The biosensor showed optimum response within 5 s at pH 7.0 and 35 °C, when polarized at 0.5 V vs. Ag/AgCl. The linear working range of biosensor for xanthine was from 2 to 16 μM, with a detection limit of 0.15 μM and sensitivity of 0.17 mA/μM/cm2. The mean analytical recovery of exogenously added xanthine in fish meat extract (5 g/l and 10 g/l) was 96.2 ± 2.3% and 95.2 ± 3.4%, respectively. Within and between batches coefficients of variation were <2.6% and <3.4%, respectively. The biosensor measured xanthine in fish, chicken, pork, and beef meat. The enzyme electrode lost 20% of its initial activity after its regular 180 uses over a period of 60 days, when stored at 4 °C in dry state.  相似文献   

7.
3-Hydroxybutyrate, one of the main blood ketone bodies, has been considered as a critical indicator for diagnosis of diabetic ketoacidosis. Biosensors designed for detection of 3-hydroxybutyrate with advantages of precision, easiness and speedy performance have attracted increasing attention. This study attempted to develop a 3-hydroxybutyrate dehydrogenase-based biosensor in which single-walled carbon nanotubes (SWCNT) was used in order to immobilize the cofactor, NAD+, on the surface of screen-printed electrode. The formation of NAD+–SWCNT conjugates was assessed by electrochemistry and electron microscopy. Cyclic voltammetry was used to analyze the performance of this biosensor electrochemically. The considerable shelf life and reliability of the proposed biosensor to analyze real sample was confirmed by this method. The reduction in the over potential of electrochemical oxidation of NADH to ?0.15 V can be mentioned as a prominent feature of this biosensor. This biosensor can detect 3-hydroxybutyrate in the linear range of 0.01–0.1 mM with the low detection limit of 0.009 mM. Simultaneous application of screen-printed electrode and SWCNT has made the biosensor distinguished which can open new prospects for detection of other clinically significant metabolites.  相似文献   

8.
The level of uric acid (UA) has a high relationship with gout, hyperuricemia and Lesch-Nyan syndrome. The determination of UA is an important indicator for clinics and diagnoses of kidney failure. An amperometric UA biosensor based on an Ir-modified carbon (Ir-C) working electrode with immobilizing uricase (EC 1.7.3.3) was developed by thick film screen printing technique. This is the first time to report the utilization of an uricase/Ir-C electrode for the determination of UA by using chronoamperometric (CA) method. The high selectivity of UA biosensor was achieved due to the reduction of H(2)O(2) oxidation potential based on Ir-C electrode. Using uricase/Ir-C as the sensing electrode, the interference from the electroactive biological species, such as ascorbic acid (AA) and UA (might be directly oxidized on the sensing electrode) was slight at the sensing potential of 0.25 V (versus Ag/AgCl). UA was detected amperometrically based on uricase/Ir-C electrode with a sensitivity of 16.60 microAmM(-1) over the concentration range of 0.1-0.8 mMUA, which was within the normal range in blood. The detection limit of UA biosensor was 0.01 mM (S/N=6.18) in pH 7 phosphate buffer solution (PBS) at 37 degrees C. The effects of pH, temperature, and enzymatic loading on the sensing characteristics of the UA biosensor were also investigated in this study.  相似文献   

9.
A high-performance amperometric fructosyl valine (FV) biosensor was developed, based on immobilization of fructosyl amino-acid oxidase (FAO) on core-shell magnetic bionanoparticles modified gold electrode. Chitosan was used to introduce amino groups onto the surface of core-shell magnetic bionanoparticles (MNPs). With FAO as an enzyme model, a new fructosyl valine biosensor was fabricated. The biosensor showed optimum response, when operated at 50 mVs(-1) in 0.1M potassium phosphate buffer, pH 7.5 and 35°C. The biosensor exhibited excellent sensitivity [the detection limit is down to 0.1mM for FV], fast response time (less than 4s), wide linear range (from 0 to 2mM). Analytical recovery of added FV was 95.00-98.50%. Within batch and between batch coefficients of variation were <2.58% and <5.63%, respectively. The enzyme electrode was used 250 times over 3 months, when stored at 4°C.  相似文献   

10.
The electrochemical performance of a new glucose biosensor is reported. The glucose biosensor is developed using glucose oxidase (GOD) and ferrocene encapsulated palladium (Pd)-linked organically modified sol-gel glass (ORMOSIL) material incorporated within graphite paste electrode. The ORMOSIL material incorporated within graphite paste electrode behaves as an excellent electrocatalyst for the oxidation of enzymatically reduced GOD. The electrochemical behavior of new glucose biosensor has been examined by cyclic volammetry and amperometric measurements. The bioelectrocatalysis of ORMOSIL embedded within graphite paste as a function of storage time and varying concentration of ORMOSIL is reported. The initial amperometric response on glucose sensing is recorded to be 145 microA at 15% (w/w) concentration of the ORMOSIL which is decreased to 20 microA at 5% of the same keeping GOD concentration constant. The variation of electrochemical behavior of the ORMOSIL embedded within graphite paste as a function of time has also been studied based on cyclic voltammetry. The voltammograms showing the reversible electrochemistry of ORMOSIL encapsulated ferrocene is changed into a plateau shape as a function of time, however, the electrocatalytic behavior is still retained. The practical usability of new glucose sensor has been compared with earlier developed glucose sensor. The sensitivity, response time and linearity of the new glucose biosensor are found to be excellent over earlier reported glucose biosensor. The amperometric response, calibration curve and practical applications of new glucose sensor are reported.  相似文献   

11.
In this paper, dendritic gold nanostructure (DenAu) modified electrode was obtained by direct electrodeposition of planar electrode into 2.8 mM HAuCl(4) and 0.1 M H(2)SO(4) solution under a very negative potential of -1.5 V. Scanning electron microscopy was used to characterize the growth evolution of DenAu with time. The whole DNA biosensor fabrication process based on the DenAu modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy methods with the use of ferricyanide as an electrochemical redox indicator. The probe DNA immobilization and hybridization with target DNA on the modified electrode could be well distinguished by using methylene blue as an electrochemical hybridization indicator. The DenAu modified electrode could realize an ultra sensitivity of 1 fM toward complementary target DNA and a very wide dynamic detection range (from 1 fM to 1 nM).  相似文献   

12.
In this article, gold nanostructure modified electrodes were achieved by a simple one-step electrodeposition method. The morphologies of modified electrodes could be easily controlled by changing the pH of HAuCl4 solution. The novel nanoflower-like particles with the nanoplates as the building blocks could be interestingly obtained at pH 5.0. The gold nanoflower modified electrodes were then used for the fabrication of electrochemical DNA biosensor. The DNA biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the use of ferricyanide as an electrochemical redox indicator. The DNA immobilization and hybridization on gold nanoflower modified electrode was studied with the use of [Ru(NH3)6]3+ as a hybridization indicator. The electrochemical DNA biosensor shows a good selectivity and sensitivity toward the detection of target DNA. A detection limit of 1 pM toward target DNA could be obtained.  相似文献   

13.
The design of a new tyrosinase biosensor with improved stability and sensitivity is reported. The biosensor design is based on the construction of a graphite-Teflon composite electrode matrix in which the enzyme and colloidal gold nanoparticles are incorporated by simple physical inclusion. Experimental variables such as the colloidal gold loading into the composite matrix, the enzyme loading and the potential applied to the bioelectrode were optimized. The Tyr-Au(coll)-graphite-Teflon biosensor exhibited suitable amperometric responses at -0.10 V for the different phenolic compounds tested (catechol; phenol; 3,4-dimethylphenol; 4-chloro-3-methylphenol; 4-chlorophenol; 4-chloro-2-methylphenol; 3-methylphenol and 4-methylphenol). The limits of detection obtained were 3 nM for catechol, 3.3 microM for 4-chloro-2-methylphenol, and approximately 20 nM for the rest of phenolic compounds. The presence of colloidal gold into the composite matrix gives rise to enhanced kinetics of both the enzyme reaction and the electrochemical reduction of the corresponding o-quinones at the electrode surface, thus allowing the achievement of a high sensitivity. The biosensor exhibited an excellent renewability by simple polishing, with a lifetime of at least 39 days without apparent loss of the immobilized enzyme activity. The usefulness of the biosensor for the analysis of real samples was evaluated by performing the estimation of the content of phenolic compounds in water samples of different characteristics.  相似文献   

14.
A method is described for construction of an amperometric triglyceride (TG) biosensor based on covalent co-immobilization of lipase, glycerol kinase and glycerol-3-phosphate oxidase onto gold polypyrrole nanocomposite decorated poly indole-5-carboxylic acid electrodeposited on the surface of a gold electrode. The enzyme electrode was characterized by transmission electron microscopy, scanning electron microscopy, electrochemical impedance studies, Fourier transform infrared spectroscopy and cyclic voltammetry. Biosensor showed optimum response within 4 s at pH 6.5 and 35 °C, when polarized at +0.1 V against Ag/AgCl. There was a linear relationship between sensor response and triolein concentration in the range 50–700 mg/dl. Biosensor was employed for determination of TG in serum. Detection limit of the biosensor was 20 mg/dl. Biosensor was evaluated with 91–95 % recovery of added triolein in sera and 4.14 and 5.85 % within and between batch coefficients of variation, respectively. There was a good correlation (r = 0.99) between sera TG values by standard method (Enzymic colorimetric) and the present method. The biosensor was unaffected by a number of serum substances at their physiological concentration. Biosensor lost 50 % of its initial activity after its 100 uses over 7 months, when stored at 4 °C.  相似文献   

15.
A novel electrochemical biosensor for the determination of pyrogallol (PG) and hydroquinone (HQ) has been constructed based on the poly l-arginine (poly(l-Arg))/carbon paste electrode (CPE) immobilized with horseradish peroxidase (HRP) and silver nanoparticles (AgNPs) through the silica sol–gel (SiSG) entrapment. The electrochemical properties of the biosensor were characterized by employing the electrochemical techniques. The proposed biosensor showed a high sensitivity and fast response toward the determination of PG and HQ around 0.18 V. Under the optimized conditions, the anodic peak current of PG and HQ was linear with the concentration range of 8 μM to 30 × 10?5 M and 1–150 μM. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 6.2 μM, 20 μM for PG and 0.57 μM, 1.92 μM for HQ respectively. The electrochemical impedance spectroscopy (EIS) studies have confirmed that the occurrence of electron transfer at HRP-SiSG/AgNPs/poly(l-Arg)/CPE was faster. Moreover the stability, reproducibility and repeatability of the biosensor were also studied. The proposed biosensor was successfully applied for the determination of PG and HQ in real samples and the results were found to be satisfactory.  相似文献   

16.
Au nanocrystals with different morphologies were prepared and used for enzyme-free electrochemical biosensor applications. To investigate the electrocatalytic properties of Au nanocrystals as a function on their morphologies, Au nanocrystals, Au nanospheres (NSs) on silica, Au NSs, and Au nanorods (NRs) with aspect ratios of 1:3 and 1:5, were coated on the screen printed electrodes and further measure the amperometric responses to hydrogen peroxide via three-electrode system. The electrodes modified with Au nanocrystals showed biosensing properties without any enzyme being attached or immobilized at their surface. The hydrogen peroxide detection limits of the biosensors with Au NSs, Au NRs (1:3), and Au NRs (1:5) were 6.48, 8.65, and 9.38 μM (S/N = 3), respectively. The biosensors with Au NSs, Au NRs (1:3), and Au NRs (1:5) showed the sensitivities of 11.13, 54.53, and 58.51 μA/mM, respectively. These results indicate that morphologies of Au nanocrystals significantly influence the sensitivity of the biosensors. In addition, the enzyme-free biosensors with Au nanocrystals were stable for 2 months. Au nanocrystal-based enzyme-free system, which is proposed in this study, can be used as a platform for various electrochemical biosensors.  相似文献   

17.
An electrochemical enzyme electrode for dopa and dopamine was developed via an easy and effective immobilization method. The enzyme tyrosinase was extracted from a plant source Amorphophallus companulatus and immobilized in a novel composite of two biopolymers: agarose and guar gum. This composite matrix-containing enzyme forms a self-adhering layer on the active surface of glassy carbon electrode, making it a selective and sensitive phenol sensor. Dopa and dopamine were determined by the direct reduction of biocatalytically liberated quinone species at -0.18V versus Ag/AgCl (3M KCl). The analytical characteristics of this sensor, including linear range, lower detection limit, pH, and storage stability, are described. It has reusability up to 15 cycles and a shelf life of more than 2 months.  相似文献   

18.
A novel non-enzyme glucose amperometric biosensor was fabricated based on biospecific binding affinity of concanavalin A (Con A) for D-glucose on thionine (TH) modified electrode. TH can be covalently immobilized on potentiostatically activated glassy carbon electrode through Schiff-base reaction. Subsequently, the surface-adherent polydopamine film formed by self-polymerization of dopamine attached to TH and afforded binding sites for the subsequent immobilization of Con A molecules via Michael addition and/or Schiff-base reaction with high stability. Thus, a sensing platform for specific detection towards D-glucose was established. The binding of Con A towards D-glucose can be monitored through the decrease of the electrode response of the TH moiety. Due to the high affinity of Con A for D-glucose and high stability of the resulting sensing platform, the fabricated biosensor exhibited high selectivity, good sensitivity, and wide linear range from 1.0×10(-6) to 1.0×10(-4) M with a low detection limit of 7.5×10(-7) M towards D-glucose.  相似文献   

19.
DNA electrochemical biosensor based on thionine-graphene nanocomposite   总被引:1,自引:0,他引:1  
A novel protocol for development of DNA electrochemical biosensor based on thionine-graphene nanocomposite modified gold electrode was presented. The thionine-graphene nanocomposite layer with highly conductive property was characterized by scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. An amino-substituted oligonucleotide probe was covalently grafted onto the surface of the thionine-graphene nanocomposite by the cross-linker glutaraldehyde. The hybridization reaction on the modified electrode was monitored by differential pulse voltammetry analysis using an electroactive intercalator daunomycin as the indicator. Under optimum conditions, the proposed biosensor exhibited high sensitivity and low detection limit for detecting complementary oligonucleotide. The complementary oligonucleotide could be quantified in a wide range of 1.0 × 10(-12) to 1.0 × 10(-7)M with a good linearity (R(2)=0.9976) and a low detection limit of 1.26 × 10(-13)M (S/N=3). In addition, the biosensor was highly selective to discriminate one-base or two-base mismatched sequences.  相似文献   

20.
A biosensor for glucose using glucose dehydrogenase immobilized on a chemically modified graphite electrode was supplied with coenzyme, nicotinamide adenine dinucleotide (NAD+), through pores in the material. A graphite rod was hollowed out, leaving 0.3 mm at the end contacting the solution, filled with 10 mM NAD+ and pressurized. The response factor was 40% of that obtained when 2 mM NAD+ was mixed with the sample solution in a flow system. The coenzyme consumption was 11 microliters h-1 representing a 500-fold saving compared to supply through the bulk solution. The biosensor had a linear calibration curve from the detection limit, 1 microM, to 2 mM glucose and a repeatability of 0.3%. The graphite electrode was modified by adsorption of a bis-(benzophenoxazinyl)-terephthaloyl derivative in order to be able to oxidize NADH at 0 mV versus Ag/AgCl, 0.1 M KCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号