首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyamine metabolism is intimately linked to the physiological state of the cell. Low polyamines levels promote growth cessation, while increased concentrations are often associated with rapid proliferation or cancer. Delicately balanced biosynthesis, catabolism, uptake and excretion are very important for maintaining the intracellular polyamine homeostasis, and deregulated polyamine metabolism is associated with imbalanced metabolic red/ox state. Although many cellular targets of polyamines have been described, the precise molecular mechanisms in these interactions are largely unknown. Polyamines are readily interconvertible which complicate studies on the functions of the individual polyamines. Thus, non-metabolizable polyamine analogues, like carbon-methylated analogues, are needed to circumvent that problem. This review focuses on methylated putrescine, spermidine and spermine analogues in which at least one hydrogen atom attached to polyamine carbon backbone has been replaced by a methyl group. These analogues allow the regulation of both metabolic and catabolic fates of the parent molecule. Substituting the natural polyamines with methylated analogue(s) offers means to study either the functions of an individual polyamine or the effects of altered polyamine metabolism on cell physiology. In general, gem-dimethylated analogues are considered to be non-metabolizable by polyamine catabolizing enzymes spermidine/spermine-N 1-acetyltransferase and acetylpolyamine oxidase and they support short-term cellular proliferation in many experimental models. Monomethylation renders the analogues chiral, offering some advantage over gem-dimethylated analogues in the specific regulation of polyamine metabolism. Thus, methylated polyamine analogues are practical tools to meet existing biological challenges in solving the physiological functions of polyamines.  相似文献   

2.
This work investigates to which extent different carbon sources are metabolized and used for lipid biosynthesis in retrovirus producer cells, with the ultimate goal of understanding its importance regarding the stability/productivity of the vectors. For that purpose, isotopically labeled substrates (U-(13)C glucose, U-(13)C galactose, U-(13)C fructose, and U-(13)C glutamine) were used in combination with (13)C nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Our results show that glucose plays the major role in lipid biosynthesis, whereas glutamine, fructose and galactose are not significantly incorporated into lipids. Moreover, a correlation between medium osmolality (imposed by the presence of sorbitol) and virus stability and productivity was verified, apparently due to an enhancement in sugar metabolism. Since low stability and short half-life constitute the major bottleneck in process development for retrovirus and other enveloped viral vectors, this work presents useful knowledge for improved process robustness for these essential gene therapy vectors.  相似文献   

3.
Although optimality of microbial metabolism under genetic and environmental perturbations is well studied, the effects of introducing heterologous reactions on the overall metabolism are not well understood. This point is important in the field of metabolic engineering because heterologous reactions are more frequently introduced into various microbial hosts. The genome-scale metabolic simulations of Escherichia coli strains engineered to produce 1,4-butanediol, 1,3-propanediol, and amorphadiene suggest that microbial metabolism shows much different responses to the introduced heterologous reactions in a strain-specific manner than typical gene knockouts in terms of the energetic status (e.g., ATP and biomass generation) and chemical production capacity. The 1,4-butanediol and 1,3-propanediol producers showed greater metabolic optimality than the wild-type strains and gene knockout mutants for the energetic status, while the amorphadiene producer was metabolically less optimal. For the optimal chemical production capacity, additional gene knockouts were most effective for the strain producing 1,3-propanediol, but not for the one producing 1,4-butanediol. These observations suggest that strains having heterologous metabolic reactions have metabolic characteristics significantly different from those of the wild-type strain and single gene knockout mutants. Finally, comparison of the theoretically predicted and 13C-based flux values pinpoints pathways with non-optimal flux values, which can be considered as engineering targets in systems metabolic engineering strategies. To our knowledge, this study is the first attempt to quantitatively characterize microbial metabolisms with different heterologous reactions. The suggested potential reasons behind each strain’s different metabolic responses to the introduced heterologous reactions should be carefully considered in strain designs.  相似文献   

4.
‘Streptomyces tsukubaensis’ was the first tacrolimus producer strain identified. Although it has been included in the Streptomyces genus, its taxonomic position has not been rigorously determined. By using a polyphasic approach, we have established that the tacrolimus producer strain ‘S. tsukubaensis’ NRRL 18488 represents a unique species in the Streptomyces genus, which is phylogenetically distant from other subsequently described producers. This fact means a horizontal transference of the tacrolimus-producing gene cluster. Physiology, nutrient requirement, and molecular genetics analyses of tacrolimus biosynthesis in ‘S. tsukubaensis’ necessitate chemically defined or semi-defined media, which work as a jigsaw puzzle and allow for pieces (nutrients) exchange. To date, studies related to ‘S. tsukubaensis’ have been mainly focused in the improvement of tacrolimus production using complex industrial fermentation media, which difficulty allows testing of tacrolimus overproduction enhancers or inhibitors because of the presence of non‐defined substances. In the present work, two semi-defined media were developed in order to study the main factors involved in tacrolimus production in ‘S. tsukubaensis’.  相似文献   

5.
Viruses rely on the metabolic network of their cellular hosts to provide energy and building blocks for viral replication. We developed a flux measurement approach based on liquid chromatography-tandem mass spectrometry to quantify changes in metabolic activity induced by human cytomegalovirus (HCMV). This approach reliably elucidated fluxes in cultured mammalian cells by monitoring metabolome labeling kinetics after feeding cells (13)C-labeled forms of glucose and glutamine. Infection with HCMV markedly upregulated flux through much of the central carbon metabolism, including glycolysis. Particularly notable increases occurred in flux through the tricarboxylic acid cycle and its efflux to the fatty acid biosynthesis pathway. Pharmacological inhibition of fatty acid biosynthesis suppressed the replication of both HCMV and influenza A, another enveloped virus. These results show that fatty acid synthesis is essential for the replication of two divergent enveloped viruses and that systems-level metabolic flux profiling can identify metabolic targets for antiviral therapy.  相似文献   

6.
The manufacture of enveloped virus, particularly retroviral (RV) and lentiviral (LV) vectors, faces the challenge of low titers that are aggravated under serum deprivation culture conditions. Also, the scarce knowledge on the biochemical pathways related with virus production is still limiting the design of rational strategies for improved production yields. This work describes the adaptation to serum deprivation of two human RV packaging cell lines, 293 FLEX and Te Fly and its effects on lipid biosynthetic pathways and infectious vector production. Total lipid content as well as cellular cholesterol were quantified and lipid biosynthesis was assessed by (13)C-NMR spectroscopy; changes in gene expression of lipid biosynthetic enzymes were also evaluated. The effects of adaptation to serum deprivation in lipid biosynthesis were cell line specific and directly correlated with infectious virus titers: 293 FLEX cells faced severe lipid starvation-up to 50% reduction in total lipid content-along with a 68-fold reduction in infectious vector titers; contrarily, Te Fly cells were able to maintain identical levels of total lipid content by rising de novo lipid biosynthesis, particularly for cholesterol-50-fold increase-with the consequent recovery of infectious vector productivities. Gene expression analysis of lipid biosynthetic enzymes further confirmed cholesterol production pathway to be prominently up-regulated under serum deprivation conditions for Te Fly cells, providing a genotype-phenotype validation for enhanced cholesterol synthesis. These results highlight lipid metabolism dynamics and the ability to activate lipid biosynthesis under serum deprivation as an important feature for high retroviral titers. Mechanisms underlying virus production and its relationship with lipid biosynthesis, with special focus on cholesterol, are discussed as potential targets for cellular metabolic engineering.  相似文献   

7.
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.  相似文献   

8.
9.
In gene therapy, retrovirus and adenovirus vectors are extensively used as gene-delivery vehicles and further large-scale processing of these viral vectors will be increasingly important. This study examined stationary and microcarrier cell culture systems with respect to the production of a retrovirus vector (encoding a monounit hammerhead ribozyme gene with an intron) and an adenovirus vector (encoding a reporter lacZ gene). Cytodex 1 and Cytodex 3 solid microcarriers were found to be able to provide good cell growth and high-titer vector production in suspension cultures. Porous microcarriers such as Cytopore 2 gave slightly lower but still efficient growth but produced significantly lower titers of retrovirus and adenovirus vector from the producer cells. The specific retrovirus production was not proportionally related to the specific growth rate of the producer cells. High MOI infection was essential for high-titer production of adenovirus vector in 293 cells. Hydrodynamic shear forces on microcarrier-grown cells increased the production yield for retrovirus vector but decreased for adenovirus vector. The cellular productivity was much more efficient for adenovirus vector produced in 293 cells as compared to the retrovirus vector produced in PA317-RCM1 cells. These findings can provide further insight into the feasibility of applying microcarrier cell culture technology to produce gene-therapy virus vectors.  相似文献   

10.
While retrovirus vector (RV) is the main virus vector used in human gene therapy trials, the biosafety issues that surround currently used RVs have become a matter of concern. Similar to the insertional mutagenesis in the therapeutic target cells, the generation of replication-competent retrovirus (RCR) must be minimized during the manufacture of the virus vector. This work investigated the kinetics of RV and RCR production in PA317-RCM1 producer cells in static and microcarrier cell culture systems. RCR in the progeny of transduced Mus dunni cells was detected by the PCR method and the titer of RCR was quantified by cell-based S+/L− assay. The specific rates of RCR production in microcarrier cultures were 271–462% higher than those in the static well-plate cultures. Increased medium exchange operations yielded higher specific rates of RCR production in both static and microcarrier cultures. The optimal medium exchange strategy was on an every 2-day schedule, yielding the highest RV/RCR ratio in static culture but not microcarrier culture. Results of this study presented the difficulty for gene therapy processes that together with the product RV also unwanted RCR produced in two different cell culture systems.  相似文献   

11.
Metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, has been a target for antineoplastic therapy since these naturally occurring alkyl amines were found essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. A correlation between regulation of cell proliferation and polyamine metabolism is described. In particular, polyamine catabolism involves copper-containing amine oxidases and FAD-dependent polyamine oxidases. Several studies showed an important role of these enzymes in several developmental and disease-related processes in both animals and plants through a control on polyamine homeostasis in response to normal cellular signals, drug treatment, environmental and/or cellular stressors. The production of toxic aldehydes and reactive oxygen species, H(2)O(2) in particular, by these oxidases using extracellular and intracellular polyamines as substrates, suggests a mechanism by which the oxidases can be exploited as antineoplastic drug targets. This minireview summarizes recent advances on the physiological roles of polyamine catabolism in animals and plants in an attempt to highlight differences and similarities that may contribute to determine in detail the underlined mechanisms involved. This information could be useful in evaluating the possibility of this metabolic pathway as a target for new antiproliferative therapies in animals and stress tolerance strategies in plants.  相似文献   

12.
The polyamines are important molecules governing cell proliferation, survival and apoptosis. Consistent with their elevated levels in cancer, they have been shown to mediate tumor promotion and progression. Cellular and tissue polyamine pools and metabolic flux are regulated by a number of processes. Neoplastic transformation is accompanied with an increase in biosynthesis, decreased catabolism and elevated uptake of exogenous polyamines. Effective strategies for cancer chemoprevention and chemotherapy, targeting the polyamine metabolic pathway will likely require a combination of agents acting at multiple sites of this pathway. Genetic variability affecting expression of the ornithine decarboxylase gene suggests an association between ODC expression and cancer risk, and prediction of response to treatment in certain epithelial cancers.  相似文献   

13.
Because cyanobacteria directly harvest CO2 and light energy, their carbon metabolism is important for both basic and applied sciences. Here, we show that overexpression of the sigma factor sigE in Synechocystis sp. PCC 6803 widely changes sugar catabolism and increases production of the biodegradable polyester polyhydroxybutyrate (PHB) during nitrogen starvation. sigE overexpression elevates the levels of proteins implicated in glycogen catabolism, the oxidative pentose phosphate pathway, and polyhydroxyalkanoate biosynthesis. PHB accumulation is enhanced by sigE overexpression under nitrogen-limited conditions, yet the molecular weights of PHBs synthesized by the parental glucose-tolerant and sigE overexpression strain are similar. Although gene expression induced by nitrogen starvation is changed and other metabolites (such as GDP-mannose and citrate) accumulate under sigE overexpression, genetic engineering of this sigma factor altered the metabolic pathway from glycogen to PHB during nitrogen starvation.  相似文献   

14.
Urea transporter B (UT-B, encoded by the SLC14A1 gene) is a membrane channel protein involved in urea transmembrane transport. Compared with normal tissues, UT-B expression is significantly decreased in most tumours, especially melanoma. However, the UT-B role in tumorigenesis and development is still unclear. Herein, we investigated the effects of UT-B overexpression on polyamine metabolism and the urea cycle in murine melanoma B16 cells, to explore the roles of mitochondrial dysfunction and p53 activation in cell growth and polyamines metabolism. UT-B overexpression in B16 cells decreased cell growth, increased apoptosis, and significantly altered metabolic pathways related to the urea cycle, which were characterized by reduced production of urea and polyamines and increased production of nitric oxide. Subsequently, we observed that activation of the p53 pathway may be the main cause of the above phenomena. The p53 inhibitor pifithrin-α partially restored the production of polyamines, but the mitochondrial morphology and function were still impaired. Further treatment of UT-B-overexpressing B16 cells with reactive oxygen species scavenging agent N-acetyl-l-cysteine and coenzyme Q10 restored cell viability and mitochondrial function and increased polyamine production. In conclusion, UT-B overexpression caused mitochondrial dysfunction and increased oxidative stress in B16 cells, and then activated p53 expression, which may be one of the mechanisms leading to the decrease in intracellular polyamines.  相似文献   

15.
The fruit of the ‘Dangshansuli’ pear has a greenish yellow skin, whereas its mutant, the ‘Xiusu’ pear, has a russet skin, which represents a genetic variation. It has been demonstrated that the formation of russet fruit in the ‘Xiusu’ pear is related to lignin accumulation in skin exocarp cells. In this study, we localized hydrogen peroxide (H2O2) to the cell wall using transmission electron microscopy (TEM) and quantified the concentrations of H2O2 and polyamines. In addition, the expression levels of genes involved in polyamine biosynthesis were measured in the exocarps of samples of young fruits of ‘Dangshansuli’, ‘Xiusu’, ‘Xiusu’ treated with methylglyoxal bis(guanylhydrazone), and ‘Xiusu’ treated with ethephon. The results obtained could explain the mechanism by which H2O2 participates in polyamine metabolism in the lignification of exocarp cells in the russet fruit mutant. The TEM results showed that free H2O2 is present near the cell wall, where lignin is primarily synthesized, and the H2O2 concentration was highly positively correlated with the lignin concentration. Although H2O2 related to lignification showed no significant correlation with the putrescine or spermine concentration, it was highly positively correlated with the spermidine (Spd) concentration. Additionally, the Spd concentration was significantly positively correlated with altered expression of the polyamine oxidase gene (PbPAO). Taken together, these results have demonstrated that H2O2 involved in lignification originates from the oxidation of Spd by the enzyme PAO, with high expression of the PbPAO gene, which suggests that H2O2 from polyamine metabolism affects lignification in the exocarp of the russet mutant pear.  相似文献   

16.
Metabolic engineering for increased isoprenoid production often benefits from the simultaneous expression of the two naturally available isoprenoid metabolic routes, namely the 2-methyl-D-erythritol 4-phosphate (MEP) pathway and the mevalonate (MVA) pathway. Quantification of the contribution of these pathways to the overall isoprenoid production can help to obtain a better understanding of the metabolism within a microbial cell factory. Such type of investigation can benefit from 13C metabolic flux ratio studies. Here, we designed a method based on parallel labeling experiments (PLEs), using [1-13C]- and [4-13C]glucose as tracers to quantify the metabolic flux ratios in the glycolytic and isoprenoid pathways. By just analyzing a reporter isoprenoid molecule and employing only four equations, we could describe the metabolism involved from substrate catabolism to product formation. These equations infer 13C atom incorporation into the universal isoprenoid building blocks, isopentenyl-pyrophosphate (IPP) and dimethylallyl-pyrophosphate (DMAPP). Therefore, this renders the method applicable to the study of any of isoprenoid of interest. As proof of principle, we applied it to study amorpha-4,11-diene biosynthesis in the bacterium Rhodobacter sphaeroides. We confirmed that in this species the Entner-Doudoroff pathway is the major pathway for glucose catabolism, while the Embden-Meyerhof-Parnas pathway contributes to a lesser extent. Additionally, we demonstrated that co-expression of the MEP and MVA pathways caused a mutual enhancement of their metabolic flux capacity. Surprisingly, we also observed that the isoprenoid flux ratio remains constant under exponential growth conditions, independently from the expression level of the MVA pathway. Apart from proposing and applying a tool for studying isoprenoid biosynthesis within a microbial cell factory, our work reveals important insights from the co-expression of MEP and MVA pathways, including the existence of a yet unclear interaction between them.  相似文献   

17.

Background

A number of properties have relegated the use of Moloney murine leukemia virus (Mo‐MLV)‐based retrovirus vectors primarily to ex vivo protocols. Direct implantation of retrovirus producer cells can bypass some of the limitations, and in situ vector production may result in a large number of gene transfer events. However, the fibroblast nature of most retrovirus packaging cells does not provide for an effective distribution of vector producing foci in vivo, especially in the brain. Effective development of new retrovirus producer cells with enhanced biologic properties may require the testing of a large number of different cell types, and a quick and efficient method to generate them is needed.

Methods

Moloney murine leukemia virus (Mo‐MLV) gag‐pol and env genes and retrovirus vector sequences carrying lacZ were cloned into different minimal HSV/AAV hybrid amplicons. Helper virus‐free amplicon vectors were used to co‐infect glioma cells in culture. Titers and stability of retrovirus vector production were assessed.

Results

Simultaneous infection of two glioma lines, Gli‐36 (human) and J3T (dog), with both types of amplicon vectors, generated stable packaging populations that produced retrovirus titers of 0.5–1.2×105 and 3.1–7.1×103 tu/ml, respectively. Alternatively, when cells were first infected with retrovirus vectors followed by infection with HyRMOVAmpho amplicon vector, stable retrovirus packaging populations were obtained from Gli‐36 and J3T cells producing retrovirus titers comparable to those obtained with a traditional retrovirus packaging cell line, ΨCRIPlacZ.

Conclusions

This amplicon vector system should facilitate generation of new types of retrovirus producer cells. Conversion of cells with migratory or tumor/tissue homing properties could result in expansion of the spatial distribution or targeting capacity, respectively, of gene delivery by retrovirus vectors in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

18.
Tetherin is a membrane protein of unusual topology expressed from rodents to humans that accumulates enveloped virus particles on the surface of infected cells. However, whether this ‘tethering’ activity promotes or restricts retroviral spread during acute retrovirus infection in vivo is controversial. We report here the identification of a single nucleotide polymorphism in the Tetherin gene of NZW/LacJ (NZW) mice that mutated the canonical ATG start site to GTG. Translation of NZW Tetherin from downstream ATGs deleted a conserved dual-tyrosine endosomal sorting motif, resulting in higher cell surface expression and more potent inhibition of Friend retrovirus release compared to C57BL/6 (B6) Tetherin in vitro. Analysis of (B6×NZW)F1 hybrid mice revealed that increased Tetherin cell surface expression in NZW mice is a recessive trait in vivo. Using a classical genetic backcrossing approach, NZW Tetherin expression strongly correlated with decreased Friend retrovirus replication and pathogenesis. However, the protective effect of NZW Tetherin was not observed in the context of B6 Apobec3/Rfv3 resistance. These findings identify the first functional Tetherin polymorphism within a mammalian host, demonstrate that Tetherin cell surface expression is a key parameter for retroviral restriction, and suggest the existence of a restriction factor hierarchy to counteract pathogenic retrovirus infections in vivo.  相似文献   

19.
The metabolic burden on human AGE1.HN cells imposed by the production of recombinant α1-antitrypsin (A1AT) was studied by comparing a selected high-producing clonal cell line with the parental cell line. RNA, lipid, and phosphatidylcholine fractions were higher in the producer cell line causing metabolic changes in the producer, e.g., increased glycine and glutamate production. By simulating the theoretical metabolite demand for production of mature A1AT using a network model, it was found that the differences in metabolic profiles between producer and parental cells match the observed increased C1-unit and nucleotide demand as well as lipid precursor demand in the producer. Additionally, metabolic flux analysis revealed similar energy metabolism in both cell lines. The increased lipid content seems related to activated secretion machinery in the producer cell line. Increased lipid and C1 metabolism seem important targets for further improvement of AGE1.HN and other producing mammalian cells.  相似文献   

20.
While polyamines (PAs) have been suggested to protect cells against Reactive Oxygen Species (ROS), their catabolism is known to generate ROS. We compared the activities of several enzymes and cellular metabolites involved in the ROS scavenging pathways in two isogenic cell lines of poplar (Populus nigra × maximowiczii) differing in their PA contents. Whereas the control cell line was transformed with β-glucuronidase (GUS), the other, called HP (High Putrescine), was transformed with a mouse ornithine decarboxylase (mODC) gene. The expression of mODC resulted in several-fold increased production of putrescine as well its enhanced catabolism. The two cell lines followed a similar trend of growth over the seven-day culture cycle, but the HP cells had elevated levels of soluble proteins. Accumulation of H2O2 was higher in the HP cells than the control cells, and so were the activities of glutathione reductase and monodehydroascorbate reductase; the activity of ascorbate peroxidase was lower in the former. The contents of reduced glutathione and glutamate were significantly lower in the HP cells but proline was higher on some days of analysis. There was a small difference in mitochondrial activity between the two cell lines, and the HP cells showed increased membrane damage. In the HP cells, increased accumulation of Ca was concomitant with lower accumulation of K. We conclude that, while increased putrescine accumulation may have a protective role against ROS in plants, enhanced turnover of putrescine actually can make them vulnerable to increased oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号