首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactate has long been regarded as one of the key metabolites of mammalian cell cultures. High levels of lactate have clear negative impacts on cell culture processes, and therefore, a great amount of efforts have been made to reduce lactate accumulation and/or to induce lactate consumption in the later stage of cultures. However, there is virtually no report on the impact of lactate depletion after initial accumulation. In this work, we observed that glucose uptake rate dropped over 50% at the onset of lactate consumption, and that catabolism of alanine due to lactate depletion led to ammonium accumulation. We explored the impact of feeding lactate as well as pyruvate to the cultures. In particular, a strategy was employed where CO(2) was replaced by lactic acid for culture pH control, which enabled automatic lactate feeding. The results demonstrated that lactate or pyruvate can serve as an alternative or even preferred carbon source during certain stage of the culture in the presence of glucose, and that by feeding lactate or pyruvate, very low levels of ammonia can be achieved throughout the culture. In addition, low levels of pCO(2) were also maintained in these cultures. This was in strong contrast to the control cultures where lactate was depleted during the culture, and ammonia and pCO(2) build-up were significant. Culture growth and productivity were similar between the control and lactate-fed cultures, as well as various product quality attributes. To our knowledge, this work represents the first comprehensive study on lactate depletion and offers a simple yet effective strategy to overcome ammonia and pCO(2) accumulation that could arise in certain cultures due to early depletion of lactate.  相似文献   

2.
t-PA producing CHO cells have been shown to undergo a metabolic shift when the culture medium is supplemented with a mixture of glucose and galactose. This metabolic change is characterized by the reincorporation of lactate and its use as an additional carbon source. The aim of this work is to understand lactate metabolism. To do so, Chinese hamster ovary cells were grown in batch cultures in four different conditions consisting in different combinations of glucose and galactose. In experiments supplemented with glucose, only lactate production was observed. Cultures with glucose and galactose consumed glucose first and produced lactate at the same time, after glucose depletion galactose consumption began and lactate uptake was observed. Comparison of the metabolic state of cells with and without the shift by metabolic flux analysis show that the metabolic fluxes distribution changes mostly in the reactions involving pyruvate metabolism. When not enough pyruvate is being produced for cells to support their energy requirements, lactate dehydrogenase complex changes the direction of the reaction yielding pyruvate to feed the TCA cycle. The slow change from high fluxes during glucose consumption to low fluxes in galactose consumption generates intracellular conditions that allow the influx of lactate. Lactate consumption is possible in cell cultures supplemented with glucose and galactose due to the low rates at which galactose is consumed. Evidence suggests that an excessive production and accumulation of pyruvate during glucose consumption leads to lactate production and accumulation inside the cell. Other internal conditions such as a decrease in internal pH, forces the flow of lactate outside the cell. After metabolic shift the intracellular pool of pyruvate, lactate and H+ drops permitting the reversal of the monocarboxylate transporter direction, therefore leading to lactate uptake. Metabolic analysis comparing glucose and galactose consumption indicates that after metabolic shift not enough pyruvate is produced to supply energy metabolism and lactate is used for pyruvate synthesis. In addition, MFA indicates that most carbon consumed during low carbon flux is directed towards maintaining energy metabolism.  相似文献   

3.
Spiramycin production by Streptomyces ambofaciens Sp181110 with glucose as the carbon source was studied under a controlled nutritional environment. In a batch culture, the glucose excess after ammonium depletion led to pyruvate and α-ketoglutarate accumulation. 85 mg/l of spiramycin were produced in less than 70 h during the stationary and maintenance phase on these acids after glucose exhaustion. Fed-batch strategy was designed to study spiramycin production without by-product formation and glucose accumulation. In these conditions, up to 150 mg/l were produced in less than 80 h during the stationary phase on glucose. The antibiotic titre was found independent of the glucose feeding under carbon limitation and the importance of putative intracellular reserves formed after nutrient exhaustion was suggested. Besides, spiramycin production was not inhibited by the limiting flux of glucose.  相似文献   

4.
In animal cell cultivation, cell density and product concentration are often low due to the accumulation of toxic end-products such as ammonia and lactate and/or the depletion of essential nutrients. A hybridoma cell line (CRL-1606) was cultivated in T-flasks using a newly devised medium feeding strategy. The goals were to decrease ammonia and lactate formation by the design of an initial medium which would provide a starting environment to achieve optimal cell growth. This was followed by using a stoichiometric equation governing animal cell growth and then designing a supplemental medium for feeding strategy used to control the nutritional environment. The relationship between the stoichiometric demands for glutamine and nonessential amino acids was also studied. Through stoichiometric feeding, nutrient concentrations were controlled reasonably well. Consequently, the specific production rate of lactate was decreased by fourfold compared with conventional fed-batch culture and by 26-fold compared with conventional batch culture. The specific production rate of ammonia was decreased by tenfold compared with conventional fed-batch culture and by 50-fold compared with conventional batch culture. Most importantly, total cell density and monoclonal antibody concentration were increased by five- and tenfold respectively, compared with conventional batch culture. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
The development of a strategy for the culture of Chinese hamster ovary (CHO) cells producing tissue plasminogen activator (t-PA) is investigated. This strategy is based on the replacement of the main carbon source, glucose, by another compound that is slowly metabolizable, particularly galactose. The introduction of this change allows for acute change in cell behavior at various levels. Cell growth is stopped after this nutrient shift, and the cells can be kept in long-duration culture at a low growth rate and high viability as compared with a culture strategy based solely on glucose utilization. Moreover, the capability of cells to produce recombinant proteins (t-PA in this work) can be maintained over the entire period of galactose feeding. From the metabolic point of view, use of a slowly metabolizable carbon source (galactose) introduces important changes in the production of lactate, ammonia, and some amino acids. The use of this metabolic shift enables the generation of biphasic processes, with a first phase with cell growth on glucose and a second stationary phase on galactose, which is particularly suited to perfusion systems.  相似文献   

6.
In this study the effects of ammonium and lactate on a culture of channel catfish ovary (CCO) cells were examined. We also made investigation on the influence of glutamine, since our previous research revealed that this amino acid stimulated CCO cell growth more than glucose in a concentration-dependent manner. The effect of ammonium in cell culture included the considerable decrease in cell growth rate with eventual growth arrest as well as the retardation of glucose consumption. At ammonium concentrations above 2.5 mM, the cells displayed specific morphological changes. The effect of lactate was different to that of ammonium since the cell growth rate was progressively decreasing with the increase of lactate concentration, whereas the glucose consumption rate remained almost unchanged. Besides that, it was found that lactate was steadily eliminated from the culture medium when its initial concentration was relatively high. The influence of glutamine on CCO cell propagation showed that nutrient requirements of this cell line were mainly dependent on glutamine rather than glucose. The increase in glutamine concentration led to the increase in cell growth rate and consequent ammonia accumulation while the glucose utilization and lactate production were reduced. Without glutamine in culture medium cell growth was arrested. However, the lack of glucose reversed the stimulating effect of glutamine by decreasing cell growth rate and affecting amino acid utilization.  相似文献   

7.
A CHO cell line producing t-PA was cultured using glutamate and glucose or galactose to decrease the formation of metabolic end-products and therefore improving the process. In batch cultures using glutamate (6 mM) with glucose at two different levels (5 and 20 mM) or with glucose and galactose (5 and 20 mM, respectively) a remarkable difference in cell culture parameters was evidenced. For 20 mM glucose, a usual cell pattern was observed with lactate built-up in the medium. For 5 mM glucose, cell growth was arrested due to glucose depletion and only a limited use of the excreted lactate could be observed, not supporting cell growth sufficiently. However, when glucose 5 mM and galactose 20 mM were used together, cells consumed the glucose first and, interestingly, in a second phase they continued growing on galactose with the simultaneous consumption of the endogenous lactate. Under these conditions, cell growth was even improved with respect to growth on 20 mM glucose, used as a control. This metabolic behavior is further investigated by using metabolic flux analysis, suggesting that the lactate produced is not used in the oxidative metabolism through the TCA cycle. Metabolic fate of the lactate consumed is discussed.  相似文献   

8.
Cultures of endothelial cells and cell lines of endothelial origin were maintained at confluence without medium exchange for a period of 72 h. During this time period the concentration of nutrients — amino acids and glucose — and metabolic waste products — lactate and ammonium — was determined as well as cell vitality and cell numbers. Metabolic rates were calculated and compared for the different cell lines. Surprisingly the primary cells showed significantly higher rates of glucose and glutamine consumption, respectively lactate production than the immortalized cell lines. Except for one tumorigenic cell line all cells showed a significant participation of transaminases in glutamine/ammonium metabolism. Furthermore it could be shown that in routine culture there was no depletion of nutrients or critical accumulation of ammonium or lactate over a culture period of 72 h.Abbreviations BAEC bovine aorta endothelial cells - EC vascular endothelial cells - FGF fibroblast growth factor - HUVEC vascular endothelial cells from human umbilical cord veins - IF 1:1 mixture of Iscove's MDM and Ham's F12 basal media - MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid - NCS newborn calf serum - PBS phosphate buffered saline - TE 0.05% (w/V) trypsin, 0.02% (w/v) EDTA in PBS  相似文献   

9.
Gluconate and glucose were selected as the carbon substrates in the production of poly-3-hydroxybutyrate (PHB). Gluconate was utilized to maximize the specific growth rate during the first stage of cell growth, whereas glucose was used to maximize PHB biosynthesis during the second stage of PHB accumulation. The sequential feeding of gluconate and glucose resulted in a 50% enhancement of PHB productivity as compared to the cultures cultivated on glucose alone. In conjunction with secondary glucose uptake, the presence of a trace amount of ammonium increased the rate of PHB biosynthesis during the stage of PHB accumulation. Via the feeding of 0.03 mmol/h of NH4Cl solution prior to the exhaustion of the initial amount of NH4Cl, PHB productivity was significantly enhanced as compared to the cultures raised on glucose alone. The glucose-grown culture evidenced a higher level of NADPH during the NH4Cl-exausted PHB accumulation stage than was observed in the gluconate-grown culture, which reflects that the reason of higher PHB production observed when glucose was used as a carbon source. NH4Cl feeding following the depletion of initial NH4Cl resulted in elevated levels of both ATP and NADPH, which increased the PHB biosynthesis rate, and also in a decrease in the level of NADH, which reflected the alleviation of the inhibitory effects on the cells caused by nitrogen depletion. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

10.
Semisteady state cultures are useful for studying cell physiology and facilitating media development. Two semisteady states with a viable cell density of 5.5 million cells/mL were obtained in CHO cell cultures and compared with a fed‐batch mode control. In the first semisteady state, the culture was maintained at 5 mM glucose and 0.5 mM glutamine. The second condition had threefold higher concentrations of both nutrients, which led to a 10% increase in lactate production, a 78% increase in ammonia production, and a 30% reduction in cell growth rate. The differences between the two semisteady states indicate that maintaining relatively low levels of glucose and glutamine can reduce the production of lactate and ammonia. Specific amino acid production and consumption indicated further metabolic differences between the two semisteady states and fed‐batch mode. The results from this experiment shed light in the feeding strategy for a fed‐batch process and feed medium enhancement. The fed‐batch process utilizes a feeding strategy whereby the feed added was based on glucose levels in the bioreactor. To evaluate if a fixed feed strategy would improve robustness and process consistency, two alternative feeding strategies were implemented. A constant volume feed of 30% or 40% of the initial culture volume fed over the course of cell culture was evaluated. The results indicate that a constant volumetric‐based feed can be more beneficial than a glucose‐based feeding strategy. This study demonstrated the applicability of analyzing CHO cultures in semisteady state for feed enhancement and continuous process improvement. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

11.
Alteration of mammalian cell metabolism by dynamic nutrient feeding   总被引:3,自引:0,他引:3  
Zhou W  Rehm J  Europa A  Hu WS 《Cytotechnology》1997,24(2):99-108
The metabolism of hybridoma cells was controlled to reduce metabolic formation in fed-batch cultures by dynamically feeding a salt-free nutrient concentrate. For this purpose, on-line oxygen uptake rate (OUR) measurement was used to estimate the metabolic demand of hybridoma cells and to determine the feeding rate of a concentrated solution of salt-free DMEM/F12 medium supplemented with other medium components. The ratios among glucose, glutamine and other medium components in the feeding nutrient concentrate were adjusted stoichiometrically to provide balanced nutrient conditions for cell growth. Through on-line control of the feeding rate of the nutrient concentrate, both glucose and glutamine concentrations were maintained at low levels of 0.5 and 0.2 mM respectively during the growth stage. The concentrations of the other essential amino acids were also maintained without large fluctuations. The cell metabolism was altered from that observed in batch cultures resulting in a significant reduction of lactate, ammonia and alanine production. Compared to a previously reported fed-batch culture in which only glucose was maintained at a low level and only a reduced lactate production was observed, this culture has also reduced the production of other metabolites, such as ammonium and alanine. As a result, a high viable cell concentration of more than 1.0 × 107 cells/mL was achieved and sustained over an extended period. The results demonstrate an efficient nutrient feeding strategy for controlling cell metabolism to achieve and sustain a high viable cell concentration in fed-batch mammalian cell cultures in order to enhance the productivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
By expanded bed adsorption (EBA) it was possible to simultaneously recover and purify the heterologous cutinase directly from the crude feedstock. However, it was observed that in a highly condensed and consequently economically advantageous purification process as EBA, the cultivation step highly influences the following purification step. Thus, the yeast cultivation and cutinase purification by EBA cannot be considered as independent entities, and the understanding of the interactions between them are crucial for the development of a highly cost effective overall cutinase production process. From the cultivation strategies studied, one batch, one continuous and two fed-batch cultivations, the strategy that resulted in a more economical cutinase overall production process was a fed-batch mode with a feeding in galactose. This last cultivation strategy, exhibited the highest culture cutinase activity and bioreactor productivity, being obtained 3.8-fold higher cutinase activity and 3.0-fold higher productivity that could compensate the 40% higher cultivation medium costs when compared with a fed-batch culture with a feeding on glucose and galactose. Moreover, a 3.8-fold higher effective cutinase dynamic adsorption capacity and 3.8-fold higher effective purification productivity were obtained in relation to the fed-batch culture with the feeding on glucose and galactose. The cultivation strategy with a feeding on galactose, that presented 5.6-fold higher effective purification productivity, could also compensate the 32% effective adsorption capacity obtained with a continuous cultivation broth. Furthermore, a 205-fold higher cutinase activity, 24-fold higher bioreactor productivity and 6% of the cultivation medium costs were obtained in relation to the continuous culture.  相似文献   

13.
The structure of N-linked glycosylation is a very important quality attribute for therapeutic monoclonal antibodies. Different carbon sources in cell culture media, such as mannose and galactose, have been reported to have different influences on the glycosylation patterns. Accurate prediction and control of the glycosylation profile are important for the process development of mammalian cell cultures. In this study, a mathematical model, that we named Glycan Residues Balance Analysis (GReBA), was developed based on the concept of Elementary Flux Mode (EFM), and used to predict the glycosylation profile for steady state cell cultures. Experiments were carried out in pseudo-perfusion cultivation of antibody producing Chinese Hamster Ovary (CHO) cells with various concentrations and combinations of glucose, mannose and galactose. Cultivation of CHO cells with mannose or the combinations of mannose and galactose resulted in decreased lactate and ammonium production, and more matured glycosylation patterns compared to the cultures with glucose. Furthermore, the growth rate and IgG productivity were similar in all the conditions. When the cells were cultured with galactose alone, lactate was fed as well to be used as complementary carbon source, leading to cell growth rate and IgG productivity comparable to feeding the other sugars. The data of the glycoprofiles were used for training the model, and then to simulate the glycosylation changes with varying the concentrations of mannose and galactose. In this study we showed that the GReBA model had a good predictive capacity of the N-linked glycosylation. The GReBA can be used as a guidance for development of glycoprotein cultivation processes.  相似文献   

14.
《Process Biochemistry》2014,49(3):365-373
A three-stage control strategy independent of the organic substrate was developed for automated substrate feeding in a two-phase fed-batch culture of Cupriavidus necator DSM 545 for the production of the biopolymer polyhydroxybutyrate (PHB). The optimal feeding strategy was determined using glucose as the substrate. A combined substrate feeding strategy consisting of exponential feeding and a novel method based on alkali-addition monitoring resulted in a maximal cell concentration in the biomass growth phase. In the PHB accumulation phase, a constant substrate feeding strategy based on the estimated amount of biomass produced in the first phase and a specific PHB accumulation rate was implemented to induce PHB under limiting nitrogen at different biomass concentrations. Maximal cell and PHB concentrations of 164 and 125 g/L were obtained when nitrogen feeding was stopped at 56 g/L of residual biomass; the glucose concentration was maintained within its optimal range. The developed feeding strategy was validated using waste glycerol as the sole carbon source for PHB production, and the three-stage control strategy resulted in a PHB concentration of 65.6 g/L and PHB content of 62.7% while keeping the glycerol concentration constant. It can thus be concluded that the developed feeding strategy is sensitive, robust, inexpensive, and applicable to fed-batch culture for PHB production independent of the carbon source.  相似文献   

15.
Acid production in milk by lactic streptococci was stimulated by added beta-galactosidase. Both glucose and galactose accumulated rapidly in the presence of this enzyme. Glucose accumulation ceased as the culture entered the most rapid period of acid production, whereas galactose accumulation continued. In cultures without added beta-galactosidase, a low concentration of galactose accumulated in the milk, whereas glucose was not detected after 2 hr of incubation. Cultures grew and produced acid faster in broth containing glucose rather than galactose or lactose. These observations suggest that the lactic streptococci do not metabolize the lactose in milk efficiently enough to permit optimum acid production and that a phenomenon such as catabolite repression functions to allow for a preferential use of glucose over either galactose or lactose. In addition to providing the culture with a more readily available energy source, it is possible that the culture produced more acidic metabolites as a result of preferentially utilizing the glucose released by the action of the beta-galactosidase.  相似文献   

16.
The formulation of the culture medium for a Chinese hamster ovary (CHO) cell line has been investigated in terms of the simultaneous replacement of glucose and glutamine, the most commonly employed carbon and nitrogen sources, pursuing the objective of achieving a more efficient use of these compounds, simultaneously avoiding the accumulation of lactate and ammonium in the medium. The key factor in this process is the selection of compounds that are slowly metabolized. Among the different compounds studied, galactose and glutamate provide the best results, allowing support of cell growth with an optimal balance between nutrient uptake and cell requirements and the generation of minimal quantities of lactate and ammonium. The attained results also highlight the capacity of the cells to redistribute their metabolism as a response to the changes in medium composition.  相似文献   

17.
An amplified NS0 cell line transfected with a vector expressing a humanized monoclonal antibody (MAb) against CD-18 and glutamine synthetase (GS) was cultivated in a 1.5 L fed-batch culture using a serum-free, glutamine-free medium. Concentrated solutions of key nutrient components were fed periodically using a simple feeding control strategy. Feeding amounts were adjusted daily based on the integral of viable cell concentration over time (IVC) and assumed constant specific nutrient consumption rates or yields to maintain concentrations of the key nutrient components around their initial levels. On-line oxygen uptake rate (OUR) measurement was used to aid empirically the adjustment of the feeding time points and amounts by inferring time points of nutrient depletion. Through effective nutritional control, both cell growth phase and culture lifetime were prolonged significantly, resulting in a maximal viable cell concentration of 6.6 x 10(9) cells/L and a final IVC of 1.6 x 10(12) cells-h/L at 672 h. The final MAb concentration reached more than 2.7 g/L. In this fed-batch culture, cellular metabolism shifts were repeatedly observed. Accompanying the culture phase transition from the exponential growth to the stationary phase, lactate, which was produced in the exponential growth phase, became consumed. The time point at which this metabolism shift occurred corresponded to that of rapid decrease of OUR, which most likely was caused by nutrient depletion. This transition coincided with the onset of ammonia, glutamate and glutamine accumulation. With removal of the nutrient depletion by increasing the daily nutrient feeding amount, OUR recovered and viable cell concentration increased, while cell metabolism shifted again. Instead of consumption, lactate became produced again. These results suggest close relationships among nutrient depletion, cell metabolism transition, and cell death. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 783-792, 1997.  相似文献   

18.
Summary In a glutamine limited fed-batch culture of the murine myeloma cell Sp 2/0-Ag 14 the production of ammonium ions was reduced to half of that produced in an ordinary batch culture. Other parameters like , DOT, length of stationary phase, the quotients lactate/glucose, ammonium/glutamine, and alanine/glutamine were also influenced by the feeding technique.  相似文献   

19.
A hybridoma cell line was cultivated in fed-batch cultures using a low-protein, serum-free medium. On-line oxygen uptake rate (OUR) measurement was used to adjust the nutrient feeding rate based on glucose consumption, which was estimated on-line using the stoichiometric relations between glucose and oxygen consumption. Through on-line control of the nutrient feeding rate, not only sufficients were supplied for cell growth and antibody production, but also the concentrations of glucose and other important nutrients such as amino acids were maintained at low levels during the cell growth phase. During the cultivation, cell metabolism changed from high lactate production and low oxygen consumption to low lactate production and high oxygen consumption. As a result the accumulation of lactate was reduced and the growth phase was extended. In comparison with the batch cultures, in which cells reached a concentration of approximately 2 x 10(6) cells/mL, a very high concentration of 1.36 x 10(7) cells/mL with a high cell viability (>90%) was achieved in the fed-batch culture. By considering the consumption of glucose and amino acids, as well as the production of cell mass, metabolites, and antibodies, a well-closed material balance was established. Our results demonstrate the value of coupling on-line OUR measurement and the stoichiometric realations for dynamic nutrient feeding in high cell concentration fed batch cultures. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
The stabilization of optimum pH for cells can cause a higher erythropoietin (EPO) production rate and a good growth rate with the prolonged culture span in recombinant Chinese hamster ovary (r-CHO) cells. Our strategy for stabilizing the optimum pH in this study is to reduce the lactate production by adding sodium lactate to a culture medium. When 40 mM sodium lactate was added, a specific growth rate was decreased by approximately 22% as compared with the control culture. However the culture longevity was extended to 187 h, and more than a 2.7-fold increase in a final accumulated EPO concentration was obtained at 40 mM of sodium lactate. On the condition that caused the high production of EPO, a specific glucose consumption rate and lactate production rate decreased by 23.3 and 52%, respectively. Activity of lactate dehydrogenase (LDH) in r-CHO cells increased and catalyzed the oxidation of lactate to pyruvate, together with the reverse reaction, at the addition of 40 mM sodium lactate. The addition of 40 mM sodium lactate caused the positive effects on a cell growth and an EPO production in the absence of carbon dioxide gas as well as in the presence of carbon dioxide gas by reducing the accumulation of lactate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号