首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m2/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3–4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60 °C for 8 h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity.  相似文献   

2.
Acylation of (hydroxyalkyl)phenols with vinyl esters by lipase B from Candida antarctica proceeded smoothly in a highly chemoselective manner, affording their alkyl esters exclusively or at least predominantly. The enzyme therefore discriminates between an alcoholic hydroxyl from a phenolic hydroxyl in addition to having versatile catalytic abilities for organic synthesis.  相似文献   

3.
4.
A major problem in predicting the enantioselectivity of an enzyme toward substrate molecules is that even high selectivity toward one substrate enantiomer over the other corresponds to a very small difference in free energy. However, total free energies in enzyme-substrate systems are very large and fluctuate significantly because of general protein motion. Candida antarctica lipase B (CALB), a serine hydrolase, displays enantioselectivity toward secondary alcohols. Here, we present a modeling study where the aim has been to develop a molecular dynamics-based methodology for the prediction of enantioselectivity in CALB. The substrates modeled (seven in total) were 3-methyl-2-butanol with various aliphatic carboxylic acids and also 2-butanol, as well as 3,3-dimethyl-2-butanol with octanoic acid. The tetrahedral reaction intermediate was used as a model of the transition state. Investigative analyses were performed on ensembles of nonminimized structures and focused on the potential energies of a number of subsets within the modeled systems to determine which specific regions are important for the prediction of enantioselectivity. One category of subset was based on atoms that make up the core structural elements of the transition state. We considered that a more favorable energetic conformation of such a subset should relate to a greater likelihood for catalysis to occur, thus reflecting higher selectivity. The results of this study conveyed that the use of this type of subset was viable for the analysis of structural ensembles and yielded good predictions of enantioselectivity.  相似文献   

5.
In this paper we describe the chemoenzymatic synthesis of new enantiomerically enriched (R)- and (S)-1-(2-arylthiazol-4-yl)ethanols and their acetates by enzymatic enantioselective acetylation of the racemic alcohols rac-2ad and by methanolysis of the corresponding racemic esters rac-3ad mediated by lipase B from Candida antarctica (CaL-B) in non-aqueous media. In terms of stereoselectivity and activity, both procedures, acylation and alcoholysis, gave similar good results (50% conversion, E  200). The absolute configuration of the kinetic resolution products was determined by a detailed 1H NMR study of the Mosher's derivatives of (S)-2b.  相似文献   

6.
A biotransformation process has been developed for the production of (S)-N-(2-ethyl-6-methylphenyl) alanine by enantioselective hydrolysis of racemic methyl ester in the presence of Candida antarctica lipase B (CAL-B). However, the enantioselectivity of CAL-B towards the resolution is not high enough to obtain enantiomerically pure product. In order to improve the enantioselectivity of the enzyme, the effects of surfactants on CAL-B-catalyzed hydrolysis were tested. The results suggest that surfactants can influence the microenvironment of the enzyme, and the addition of Tween-80, in particular, to the reaction medium markedly enhanced the selectivity of CAL-B towards the substrate used, with the enantiomeric ratio (E-value) increasing from 11.3 to 60.1.  相似文献   

7.
The lipase-catalyzed enantioselective esterification of ibuprofen has been studied in a media, composed only of substrates. When racemic ibuprofen is used, the alcohol-chain length affects the esterification rates of individual enantiomers, but it does not affect the enantioselectivity. Water activity affects the esterification rates of (R)- and (S)-ibuprofen differently, leading to higher enantioselectivity at lower water activities. Experiments were also conducted at various (R)- to (S)-ibuprofen ratios. It appears that the esterification rate of (R)-ibuprofen is always proportional to its concentration, whereas at low water activity the esterification rate of (S)-ibuprofen shows a saturation at higher concentrations. Other 2-phenyl carboxylic acids were studied, and the increase in apparent enantioselectivity at low-water activity was not observed for the molecules tested.  相似文献   

8.
A biotransformation process has been developed for the production of (S)-N-(2-ethyl-6-methylphenyl) alanine by enantioselective hydrolysis of racemic methyl ester in the presence of Candida antarctica lipase B (CAL-B). However, the enantioselectivity of CAL-B towards the resolution is not high enough to obtain enantiomerically pure product. In order to improve the enantioselectivity of the enzyme, the effects of surfactants on CAL-B-catalyzed hydrolysis were tested. The results suggest that surfactants can influence the microenvironment of the enzyme, and the addition of Tween-80, in particular, to the reaction medium markedly enhanced the selectivity of CAL-B towards the substrate used, with the enantiomeric ratio (E-value) increasing from 11.3 to 60.1.  相似文献   

9.
Gold(I) compounds have been used in the treatment of rheumatoid arthritis for over 80 years, but the biological targets and the structure–activity relationships of these drugs are not well understood. Of particular interest is the molecular mechanism behind the antiarthritic activity of the orally available drug triethylphosphine(2,3,4,6-tetra-O-acetyl-β-1-d-thiopyranosato-S) gold(I) (auranofin, Ridaura). The cathepsin family of lysosomal, cysteine-dependent enzymes is an attractive biological target of Au(I) and is inhibited by auranofin and auranofin analogs with reasonable potency. Here we employ a combination of experimental and computational investigations into the effect of changes in the phosphine ligand of auranofin on its in vitro inhibition of cathepsin B. Sequential replacement of the ethyl substituents of triethylphosphine by phenyl groups leads to increasing potency in the resultant Au(I) complexes, due in large part to favorable interactions of the more sterically bulky Au(I)–PR3 fragments with the enzyme active site.  相似文献   

10.
The ionic liquid, l-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide ([Bmim] [NTf2]), was used as a reaction medium for the kinetic resolution of rac-2-pentanol catalyzed by free Candida antarctica lipase B, using vinyl propionate at 2% (v/v) water content. The synthetic activity of lipase in [Bmim] [NTf2] was up 2.5-times greater than in hexane, and showed high enantioselectivity (ee > 99.99%). The optimal temperature and pH were 60 degrees C and 7, respectively. A decrease in water activity (aw) produced a decay in synthetic activity, and an exponential increase in selectivity.  相似文献   

11.
Four co-solvents (dimethylformamide [DMF], formamide, dimethyl sulfoxide [DMSO], and pyridine) were tested with tert-butanol (tBut) to optimize the initial rate (v?) and yield of mannosyl myristate synthesis by esterification catalyzed by immobilized lipase B from Candida antarctica. Ten percent by volume of DMSO resulted in the best improvement of v? and 48-hr yield (respectively 115% and 13% relative gain compared to pure tBut). Use of molecular sieve (5% w/v) enhances the 48-hr yield (55% in tBut/DMSO [9:1, v/v]). Transesterification in tBut/DMSO (9:1, v/v) with vinyl myristate leads to further improvement of v? and 48-hr yield: a relative gain of 85% and 65%, respectively, without sieve and 25% and 10%, respectively, with sieve, compared to esterification. No difference in v? and 48-hr yield is observed when transesterification is carried out with or without sieve.  相似文献   

12.
The lipase B from Candida antarctica was purified from a commercial source and crystallized. The microcrystals were crosslinked using glutaraldehyde. The crosslinked crystals were then used to catalyze the esterification of (R,S)-ibuprofen with dodecanol in octane at various water activities. As for the commercial preparation immobilized on acrylic resin, Novozym 435, low water activities foster better enantioselectivity, and the maximum reaction rates are obtained for a(W) = 0.1.  相似文献   

13.
Synthesis of both enantiomers of biologically active propranolol and sotalol has been achieved in high optical purity by one-pot reduction of 3 and 7 followed by in situ lipase resolution of the respective chlorohydrins. Pseudomonas cepacia lipase immobilized on ceramic particles (PS-C) provided the chlorohydrin and acetate, which on nucleophilic substitution with isopropyl amine afforded the target amino alcohols in high enantioselectivity under mild reaction conditions.  相似文献   

14.
Novozyme 435, which is a commercial immobilized lipase B from Candida antarctica (CALB), has been proven to be inadequate for the kinetic resolution of rac‐indanyl acetate. As it has been previously described that different immobilization protocols may greatly alter lipase features, in this work, CALB was covalently immobilized on epoxy Immobead‐350 (IB‐350) and on glyoxyl‐agarose to ascertain if better kinetic resolution would result. Afterwards, all CALB biocatalysts were utilized in the hydrolytic resolution of rac‐indanyl acetate and rac‐(chloromethyl)‐2‐(o‐methoxyphenoxy) ethyl acetate. After optimization of the immobilization protocol on IB‐350, its loading capacity was 150 mg protein/g dried support. Furthermore, the CALB‐IB‐350 thermal and solvent stabilities were higher than that of the soluble enzyme (e.g., by a 14‐fold factor at pH 5–70°C and by a 11‐fold factor in dioxane 30%–65°C) and that of the glyoxyl‐agarose‐CALB (e.g., by a 12‐fold factor at pH 10–50°C and by a 21‐fold factor in dioxane 30%–65°C). The CALB‐IB‐350 preparation (with 98% immobilization yield and activity versus p‐nitrophenyl butyrate of 6.26 ± 0.2 U/g) was used in the hydrolysis of rac‐indanyl acetate using a biocatalyst/substrate ratio of 2:1 and a pH value of 7.0 at 30°C for 24 h. The conversion obtained was 48% and the enantiomeric excess of the product (e.e.p) was 97%. These values were much higher than the ones obtained with Novozyme 435, 13% and 26% of conversion and e.e.p, respectively. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:878–889, 2018  相似文献   

15.
The influence of water on the kinetics of alcoholysis of methyl propionate and n-propanol catalyzed by immobilized lipase B from Candida antarctica was studied in a continuous solid/gas reactor. In this reactor, the solid phase is composed of a packed enzymatic sample which is percolated by gaseous nitrogen, simultaneously carrying gaseous substrates to the enzyme while removing reaction products. In this system, interactions between the enzyme and nonreacting molecules are avoided, since no solvent is present, and it is thus more easy to assess the role of water. To this end, alcohol inhibition constant, substrates dissociation constants as well as acylation rate constant and ratio of acylation to deacylation rate constants have been determined as a function of water activity (a(w)). Data obtained highlight that n-propanol inhibition constant and dissociation constant of methyl propionate are a lot affected by a(w) variations whereas water has no significant effect on the catalytic acylation step nor on the ratio of acylation to deacylation rate constants. These results suggest the water-independent character of the transition step.  相似文献   

16.
Lipase A from Candida antarctica (CALA, commercialized as Novocor ADL) was immobilized on octyl-agarose, which is a very useful support for lipase immobilization, and coated with polyethylenimine to improve the stability. The performance was compared to that of the form B of the enzyme (CALB) immobilized on the same support, as both enzymes are among the most popular ones used in biocatalysis. CALA immobilization produced a significant increase in enzyme activity vs. p-nitrophenyl butyrate (pNPB) (by a factor of seven), and the coating with PEI did not have a significant effect on enzyme activity. CALB reduced its activity slightly after enzyme immobilization. Octyl-CALA was less stable than octyl-CALB at pH 9 and more stable at pH 5 and, more clearly, at pH 7. PEI coating only increased octyl-CALA stability at pH 9. In organic solvents, CALB had much better stability in methanol and was similarly stable in acetonitrile or dioxane. In these systems, the PEI coating of octyl-CALA permitted some stabilization. While octyl-CALA was more active vs. pNPB, octyl-CALB was much more active vs. mandelic esters or triacetin. Thus, depending on the specific reaction and the conditions, CALA or CALB may offer different advantages and drawbacks. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2735, 2019  相似文献   

17.
An enzymatic alternative to the chemical synthesis of chiral gem-difluorinated alcohols has been developed. The method is highly effective and stereoselective, feasible at laboratory temperature, avoiding the use of toxic heavy metal catalysts which is an important benefit in medicinal chemistry including the synthesis of drugs and drug precursors. Candida antarctica lipases A and B were applied for the enantioselective resolution of side-chain modified gem-difluorinated alcohols, (R)- and (S)-3-benzyloxy-1,1-difluoropropan-2-ols (1a and 1b), compounds serving as chiral building blocks in the synthesis of various bioactive molecules bearing a gem-difluorinated grouping. The catalytic activity of these lipases was investigated for the chiral acetylation of 1a and 1b in non-polar solvents using vinyl acetate as an acetyl donor. The dependence of the reaction course on various substrate and enzyme concentrations, reaction time, and temperature was monitored by chiral capillary electrophoresis (CE) using sulfobutyl ether β-cyclodextrin as a stereoselective additive of the aqueous background electrolyte. The application of CE, NMR, and MS methods has proved that the complex enzyme effect of Candida antarctica lipase B leads to the thermodynamically stable (S)-enantiomer 1b instead of the expected acetylated derivatives. In contrast, the enantioselective acetylation of racemic alcohol 1 was observed as a kinetically controlled process, where (R)-enantiomer 1a was formed as the main product. This process was followed by enzymatic hydrolysis and chiral isomerisation. Finally, single pure enantiomers 1a and 1b were isolated and their absolute configurations were assigned from NMR analysis after esterification with Mosher’s acids.  相似文献   

18.
Immobilized Candida antarctica lipase B (Novozym 435)-catalyzed enantioselective hydrolysis of D,L-phenylglycine methyl ester to enatiopure D-phenylglycine was successfully conducted in the systems with ionic liquids (ILs). Novozym 435 exhibited excellent activity and enantioselectivity in the system containing the IL BMIMxBF(4) compared to several typical organic solvents tested. It has been found that the cations and, particularly, the anions of ILs have a significant effect on the reaction, and the IL BMIMxBF(4), which shows to be the most suitable for the reaction, gave the highest initial rate and enantioselectivity among various ILs examined. The reaction became much less active and enantioselective in the systems with BMIMxHSO(4). Also, it was noticed that the enzymatic hydrolysis was strongly dependent on BMIMxBF(4) content in the co-solvent systems and the favorable content of the IL was 20% (v/v). Of the assayed four co-solvents and phosphate buffer, the lowest apparent K(m) and activation energy, and the highest V(max) of the reaction were achieved using 20% (v/v) BMIMxBF(4) co-solvent with phosphate buffer. Additionally, various influential variables were investigated. The optimum pH, substrate concentration, reaction temperature and shaking rate were 8.0, 80mM, 25-30 degrees Celsius and 150rpm, respectively, under which the initial rate, the residual substrate e.e. and the enantioselectivity were 2.46mM/min, 93.8% (at substrate conversion of 53.0%) and 38, respectively. When the hydrolysis was performed under reduced pressure, the initial rate (2.64mM/min) and the enantioselectivity (E=43) were boosted.  相似文献   

19.
A large improvement in the thermostability of Candida antarctica lipase B (CALB) was achieved through double immobilization, i.e., physical adsorption and R1 silaffin-mediated biosilicification. The C-terminus of CALB was fused with the R1 silaffin peptide for biosilicification. The CALB-R1 fusion protein was adsorbed onto a macroporous polyacrylate carrier and then subsequently biosilicified with tetramethyl orthosilicate (TMOS). After R1 silaffin-mediated biosilicification, the double-immobilized CALB-R1 exhibited remarkable thermostability. The T5060 of the double-immobilized CALB-R1 increased dramatically from 45 to 72 °C and that was 27, 13.8, 9.8 and 9.9 °C higher than the T5060 values of free CALB-R1, CALB-R1 adsorbed onto a resin, commercial Novozym 435, and Novozym 435 treated with TMOS, respectively. In addition, the time required for the residual activity to be reduced to half (t1/2) of the double immobilized CALB-R1 elevated from 12.2 to 385 min, which is over 30 times longer life time compared free CALB-R1. The optimum pH for biosilicification was determined to be 5.0, and the double-immobilized enzyme showed much better reusability than the physically adsorbed enzyme even after 6 repeated reuses. This R1-mediated biosilicification approach for CALB thermostabilization is a good basis for the thermostabilization of industrial enzymes that are only minimally stabilized by protein engineering.  相似文献   

20.
Adsorption onto solid supports has proven to be an easy and effective way to improve the mechanical and catalytic properties of lipases. Covalent binding of lipases onto the support surface enhances the active lifetime of the immobilized biocatalysts. Our study indicates that mesoporous silica gels grafted with various functions are ideal supports for both adsorptive and covalent binding for lipase B from Candida antarctica (CaLB). Adsorption of CaLB on phenyl-functionalized silica gels improved in particular its specific activity, whereas adsorption on aminoalkyl-modified silica gels enabling covalent binding with the proper reagents resulted in only moderate specific activity. In addition, adsorption on silica gels modified by mixtures of phenyl- and aminoalkyl silanes significantly increased the productivity of CaLB. Furthermore, CaLB adsorbed onto a phenyl/aminoalkyl-modified surface and then treated with glutardialdehyde (GDA) as cross-linking agent provided a biocatalyst of enhanced durability. Adsorbed and cross-linked CaLB was resistant to detergent washing that would otherwise physically deactivate adsorbed CaLB preparations. The catalytic properties of our best immobilized CaLB variants, including temperature-dependent behavior were compared between 0 and 70 °C with those of two commercial CaLB biocatalysts in the continuous-flow kinetic resolutions of racemic 1-phenylethanol rac-1a and 1-phenylethanamine rac-1b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号