首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
We studied the effects of early postnatal hypoxia on the efficiency of active GABA transport through the plasma membrane of synaptic terminals (synaptosomes) isolated from the cerebral cortex, hippocampus, and thalamus of rats and on non-stimulated and Ca2+-stimulated GABA release. The state of hypoxia was induced by exposure of 10- to 12-day-old rats to a respiratory medium with low O2 content (4% О2 and 96% N2) for 12 min (up to the initiation of clonico-tonic seizures). Animals were taken in the experiment 8 to 9 weeks after an episode of hypoxic stress. The intensity of transmembrane transport of GABA was estimated according to accumulation of [3Н]GABA in a coarse synaptosomal fraction. The process was characterized by calculation of the Michaelis constant K m and also of the initial (within the 1st min) and maximum rates of accumulation of [3Н]GABA. The means of the initial rate of [3Н]GABA accumulation in preparations from the thalamus, cortex, and hippocampus were 205.5 ± 8.8, 266.2 ± 29.6, and 302.3 ± 31.2 pmol/min⋅mg protein, respectively. Hypoxic stress influenced the rates of accumulation of [3Н]GABA in synaptic terminals from the cortex and hippocampus but not in those from the thalamus. According to the characteristics of the response to hypoxic stress, all experimental animals could be classified into two groups. In some rats, accumulation of [3Н]GABA in both cortical and hippocampal synaptosomes decreased insignificantly (by about 15%), while in other animals this parameter increased significantly (by nearly 50%) for the cortex and decreased by 21.5%, on average, for the hippocampus. The affinity of the transporter with respect to [3Н]GABA in the cortex and hippocampus was nearly the same and showed no changes under the influence of hypoxia. The non-stimulated release of [3Н]GABA after the influence of hypoxia increased in all structures, while the depolarization-induced Ca2+-dependent release of [3Н]GABA was intensified only in synaptosomes from the cerebral cortex. The mechanisms of development of modifications of GABA-ergic processes under the influence of hypoxic stress in the course of the perinatal period are discussed. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 293–302, July–August, 2008.  相似文献   

2.
We studied the effects of i.p. injection of melatonin in pharmacotherapeutic doses and of constant illumination (a melatonin synthesis-suppressing factor) on the behavior of rats in the open-field test and on the content of the main isoforms of neural cell adhesion molecule (NCAM) in the hippocampus, cerebellum, and neocortex of these animals. In the studied brain structures of the rats kept under conditions preventing the melatonin synthesis, we observed suppression of the behavioral activity of animals and a decrease in the expression of the NCAM180 isoform. In rats injected with 10 mg/kg melatonin, changes in the behavioral activity were insignificant. In the hippocampus and neocortex of rats of this group, the NCAM180 content increased. Our experiments showed that melatonin can be involved in the control of balance of the expression of different NCAM isoforms. Such a balance is a crucial factor determining plastic rearrangements of the synaptic contacts.  相似文献   

3.
The rapid effects of glucocorticoids on various behaviors suggest that these hormones play a role in rapidly coping with challenging situations. The variety of behaviors affected in different situations raise, however, questions regarding the specificity and roles of glucocorticoids in controlling behavior. To clarify this issue, we assessed the rapid behavioral effects of glucocorticoids in the elevated plus-maze (EPM) and the open-field (OF) tests in male rats. Both tests measure three different kinds of behavioral responses: locomotion, anxiety-like behaviors (central area and open arm exploration in the OF and EPM tests, respectively), and risk assessment (investigating aversive areas in a stretched attend posture). The acute inhibition of glucocorticoid synthesis by metyrapone decreased risk assessment but did not affect locomotion and anxiety-like behaviors. Corticosterone administration increased risk assessment, without affecting locomotion and anxiety-like behaviors. Moreover, plasma corticosterone levels measured immediately after testing strongly correlated with the intensity of risk assessment. The effects of corticosterone were rapid, as occurred even when the hormone was injected 2 min before behavioral testing. In addition, the effect was resistant to protein synthesis inhibition. These data demonstrate that glucocorticoids are able to increase specifically risk assessment behaviors by non-genomic mechanisms in two different, novelty-related, non-social challenging situations. Thus, glucocorticoids appear to rapidly induce specific behavioral adjustments to meet immediate requirements set by the challenge. These data support earlier assumptions on the role of glucocorticoids in coping, and it can be hypothesized that the rapid activation of the HPA-axis may play a role in forming coping responses.  相似文献   

4.
Testosterone (T) may be associated with enhanced spatial navigation in a number of rodent species, although the nature of the relation is equivocal. Similarly, numerous studies in humans generally have found that T is associated with enhanced spatial ability on a variety of paper and pencil tasks that may relate to navigational ability. However, relatively few studies have reported effects of T on navigational ability in humans. We investigated the relationship between endogenous T and performance on a virtual water maze (vWM) and mental rotations test (MROT). ELISA for T was performed on salivary samples that were obtained from participants before and after completion of both spatial tasks. Results indicated that women with low T required more time to locate the hidden platform in the vWM than either group of men or women with high T. Significant negative correlations were found for the entire sample between vWM performance and T, and between vWM latency to escape and MROT. Similar significant correlations were found in women but not men. Thus, our data support the position that T improves performance in the vWM in a linear fashion, most strongly in women. However, further work is needed to confirm this hypothesis in humans.  相似文献   

5.
Adenosine's effects result from a balanced activation of inhibitory A1 and facilitatory A2A receptors. Because in aged animals there is an increased number of A2A receptors, we now compared the efficiency of A2A receptors in cortical and striatal preparations of young adult (6-week-old) and aged (2-year-old) rats. In cortical, in contrast to striatal, membranes from aged rats, A2A receptors were more tightly coupled to G proteins, because 5'-guanylylimidodiphosphate (100 microM) increased by 321% the Ki of the A2A agonist CGS21680 as a displacer of binding of the A2A antagonist [3H]ZM241385 (1 nM), compared with a 112% increase in young rats. In cortical slices, CGS21680 (30-1,000 nM) was virtually devoid of effect on cyclic AMP accumulation in young rats but increased cyclic AMP accumulation with an EC50 of 153 nM in aged rats, whereas the efficiency of CGS21680 was similar in striatal slices of young and aged rats. CGS21680 (30 nM) was virtually devoid of effect on acetylcholine release from hippocampal CA1 slices of young rats but caused a 55% facilitation in aged rats. These results show that the number of A2A receptors, their coupling to G proteins, and their efficiency are enhanced in the limbic cortex of aged rats, suggesting a greater involvement of facilitation in adenosine responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号