首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Plant Research - Phelipanche aegyptiaca and Orobanche spp. are obligate plant root-parasitic weeds that cause extensive damage in agricultural crop plants. Their germination requires...  相似文献   

2.
Dai C  Singh NK  Park M 《BMB reports》2011,44(12):805-810
Methionine sulfoxide reductase A (MSRA) is a ubiquitous enzyme that has been demonstrated to reduce the S enantiomer of methionine sulfoxide (MetSO) to methionine (Met) and can protect cells against oxidative damage. In this study, we isolated a novel MSRA (SlMSRA2) from Micro-Tom (Solanum lycopersicum L. cv. Micro-Tom) and characterized it by subcloning the coding sequence into a pET expression system. Purified recombinant protein was assayed by HPLC after expression and refolding. This analysis revealed the absolute specificity for methionine-S-sulfoxide and the enzyme was able to convert both free and protein-bound MetSO to Met in the presence of DTT. In addition, the optimal pH, appropriate temperature, and Km and Kcat values for MSRA2 were observed as 8.5, 25oC, 352 ± 25 μM, and 0.066 ± 0.009 S(-1), respectively. Disk inhibition and growth rate assays indicated that SlMSRA2 may play an essential function in protecting E. coli against oxidative damage.  相似文献   

3.
Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health‐promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome‐scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome‐scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses.  相似文献   

4.
The impact of the season on flowering time and the organization and morphogenesis of the reproductive structures are described in three tomato mutants: compound inflorescence (s), single flower truss (sft), and jointless (j), respectively, compared with their wild-type cultivars Ailsa Craig (AC), Platense (Pl), and Heinz (Hz). In all environmental conditions, the sft mutant flowered significantly later than its corresponding Pl cultivar while flowering time in j was only marginally, but consistently, delayed compared with Hz. The SFT gene and, to a lesser extent, the J gene thus appear to be constitutive flowering promoters. Flowering in s was delayed in winter but not in summer compared with the AC cultivar, suggesting the existence of an environmentally regulated pathway for the control of floral transition. The reproductive structure of tomato is a raceme-like inflorescence and genes regulating its morphogenesis may thus be divided into inflorescence and floral meristem identity genes as in Arabidopsis. The s mutant developed highly branched inflorescences bearing up to 200 flowers due to the conversion of floral meristems into inflorescence meristems. The S gene appears to be a floral meristem identity gene. Both sft and j mutants formed reproductive structures containing flowers and leaves and reverting to a vegetative sympodial growth. The SFT gene appears to regulate the identity of the inflorescence meristem of tomato and is also involved, along with the J gene, in the maintenance of this identity, preventing reversion to a vegetative identity. These results are discussed in relation to knowledge accumulated in Arabidopsis and to domestication processes.  相似文献   

5.
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.  相似文献   

6.
Promoter engineering in plants holds a great promise for understanding complexity of genetic regulatory system in response to specific internal and external cues and for crop improvement. In the present investigation, we report characterization of two fruit-specific promoters SIACS4 and SIEXP1 that were isolated from tomato (Solanum lycopersicum L cv Pusa Ruby). In silico analysis of the cloned promoter sequences revealed the presence of a seed-specific cis-element in SIACS4 and several putative seed, embryo and endosperm-specific cis-elements in SIEXP1 in addition to fruit-specific ethylene responsive regulatory elements. The fruit- and seed-specific expression of both the promoters was analyzed in transgenic tomato lines expressing the promoter:: GUS fusion constructs. The SIACS4 promoter (?1 to ?373) showed GUS activity restricted specifically to flower buds and seeds in fruits. On the contrary, the SIEXP1 promoter (?1 to ?769) showed high level of expression in seeds as compared to fruit tissues at different stages of fruit ripening. No GUS expression was observed in leaves satisfying the fruit-specific nature of both the promoters. Based on deletion analysis, minimal promoters SIACS4DL2 (?1 to ?126) and SIEXP1DL1 (?1 to ?254) were identified which can be used to drive tissue-specific expression of transgenes for introducing traits of agronomic importance such as resistance to fruit borer and for enhancing both nutritional and keeping quality of tomato fruits.  相似文献   

7.
Valuable endophytic strains facilitating plants growth and detoxification of heavy metals are required because the application of plant–endophyte symbiotic system is a promising potential technique to improve efficiency of phytoremediation. In this study, endophytic bacterium LRE07 was isolated from cadmium hyperaccumulator Solanum nigrum L. It was identified as Serratia sp. by 16S rRNA sequence analysis. The endophytic bacterium LRE07 was resistant to the toxic effects of heavy metals, solubilized mineral phosphate, and produced indoleacetic acid and siderophore. The heavy metal detoxification was studied in growing LRE07 cells. The strain bound over 65% of cadmium and 35% of zinc in its growing cells from single metal solutions 72 h after inoculation. Besides the high removal efficiencies in single-ion system, an analogous removal phenomenon was also observed in multi-ions system, indicating that the endophyte possesses specific and remarkable heavy metal remediation abilities.  相似文献   

8.
The mechanical characteristics of the cuticular membrane (CM), a complex composite biopolymer basically composed of a cutin matrix, waxes, and hydrolysable polysaccharides, have been described previously. The biomechanical behaviour and quantitative contribution of cutin and polysaccharides have been investigated here using as experimental material mature green and red ripe tomato fruits. Treatment of isolated CM with anhydrous hydrogen fluoride in pyridine allowed the selective elimination of polysaccharides attached to or incrusted into the cutin matrix. Cutin samples showed a drastic decrease in elastic modulus and stiffness (up to 92%) compared with CM, which clearly indicates that polysaccharides incorporated into the cutin matrix are responsible for the elastic modulus, stiffness, and the linear elastic behaviour of the whole cuticle. Reciprocally, the viscoelastic behaviour of CM (low elastic modulus and high strain values) can be assigned to the cutin. These results applied both to mature green and red ripe CM. Cutin elastic modulus, independently of the degree of temperature and hydration, was always significantly higher for the ripe than for the green samples while strain was lower; the amount of phenolics in the cutin network are the main candidates to explain the increased rigidity from mature green to red ripe cutin. The polysaccharide families isolated from CM were pectin, hemicellulose, and cellulose, the main polymers associated with the plant cell wall. The three types of polysaccharides were present in similar amounts in CM from mature green and red ripe tomatoes. Physical techniques such as X-ray diffraction and Raman spectroscopy indicated that the polysaccharide fibres were mainly randomly oriented. A tomato fruit CM scenario at the supramolecular level that could explain the observed CM biomechanical properties is presented and discussed.  相似文献   

9.
Among the natural plant growth stimulants, moringa has attained enormous attention due to its leaf composition being enriched with cytokinin, antioxidants and minerals. Exogenous application of moringa leaf extract (MLE) improves productivity in many crops. This study investigated the potential of MLE with different dilutions, i.e., MLE0, MLE10, MLE20 and MLE30 (0, 10, 20 and 30 times diluted in water, respectively) to improve the performance of tomato. Foliage-applied water and benzylaminopurine (BAP, 50 mg L?1) were taken as controls. Among treatments, foliar-applied MLE30 produced maximum vegetative and flowering branches, number of flowers and heaviest fruits per plant of tomato in comparison with synthetic BAP and other treatments. A similar increase in vegetative and flowering branches was recorded for root-applied MLE20 including BAP. Foliage-applied MLE30 also increased chlorophyll (a) pigments and leaf total soluble proteins than other stimulants used. This increase was followed by enhanced antioxidant activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), total phenolics in leaves and fruit lycopene contents of tomato. In general, foliar application of MLE30 was more effective as natural biostimulant to improve growth, productivity and fruit quality of tomato as compared to synthetic BAP and its root application.  相似文献   

10.
11.
Potassium transporters belonging to the KT/HAK/KUP family play an important role in plant growth, development, mineral nutrition, and stress adaptation. In this study, we identified 19 KT/HAK/KUP family genes in tomato, distributed on 10 chromosomes, by using bioinformatics methods. A complete overview of the KT/HAK/KUP (SlHAK) genes in tomato is presented, including chromosome location, phylogeny, gene structure, and evolution pattern. Phylogenetic analysis of 19 SlHAK proteins suggested that group IV of the KT/HAK/KUP family is absent in the tomato genome. In addition, five pairs of segmental duplicated paralogs and two pairs of tandem duplicated paralogs were identified in the tomato KT/HAK/KUP family. This suggests that segmental duplication is predominant for the expansion of the SlHAK genes. Calculation of the approximate dates of duplication events using the synonymous substitution rate indicated that the segmental duplication of the KT/HAK/KUP genes in tomato originated 35.89–62.77 million years ago. Adaptive evolution analysis showed that purifying selection contributed to the evolution of segmental duplicated pairs. Furthermore, Tajima’s relative rate test indicated that all segmental duplicated pairs evolved at similar rates. As a first step toward a genome-wide analysis of the KT/HAK/KUP gene family in tomato, our results provide valuable information for understanding the function and evolution of the KT/HAK/KUP gene family in tomato and other species.  相似文献   

12.
Several reports have shown that crude or purified extracts of green, brown, and red seaweeds induce protection against fungal, bacterial, and viral pathogens in plants. In this work, we report that polysaccharide-enriched seaweed extracts obtained from green, Ulva lactuca and Caulerpa sertularioides, and brown algae, Padina gymnospora and Sargassum liebmannii, induced protection against the necrotrophic fungus Alternaria solani in tomato plants (Solanum lycopersicum). Protein activity of defense-related proteins polyphenol oxidase, guaiacol peroxidase and proteinase inhibitors together with expression levels of systemic wound response (SWRP) genes were also measured in leaf samples after algal extract treatment. All extracts were shown to reduce necrotic lesions induced by A. solani, particularly those obtained from U. lactuca and P. gymnospora. U. lactuca extracts induced the expression of SWRP genes, including defense, signal pathway, and protease genes, whereas those obtained from C. sertularioides, P. gymnospora and S. liebmannii showed almost no induction of SWRP genes, suggesting that extracts from the latter, whose carbohydrate composition varied from that of U. lactuca, may act through mechanisms other than the jasmonic acid/systemin wound-response pathway.  相似文献   

13.
Knowledge of the responses of root systems in horizoned heterogeneous soil is vital to optimise uptake of water and nutrients to maximise crop productivity. We explored the interacting effects of soil bulk density and texture on the development of root systems in tomato.Two main techniques were employed, X-ray micro-Computed Tomography (μCT), to provide non-destructive, three-dimensional (3D) images of root systems in situ and destructive root washing followed by WinRHIZO® scanning. Solanum lycopersicum L. cv. Ailsa Craig plants were grown in soil columns for 10 days to measure the effect of soil compaction on selected root traits. Treatments included bulk density (1.2–1.6 Mg m−3), soil texture (loamy sand and clay loam) and the effects of layering.The effect of bulk density on root growth was greatest 3 days after transplanting (DAT) in both soil types. The effect of soil texture was not apparent at this stage, but was significant at 10 DAT for most root and shoot variables. The influence of bulk density differed between soil types as increasing compaction promoted plant growth in clay loam but retarded root growth in loamy sand.We observed that at 3 DAT root growth is primarily influenced by bulk density but by 10 DAT a switch in the processes regulating root growth occurs and the texture of the soil becomes very influential. Future investigations of root growth must consider soil physical properties individually and at specific time points, as their importance changes as the root system becomes established. Here we have demonstrated both positive and negative impacts across a wide range of bulk density treatments in different soil textures on root growth. This illustrates the importance of understanding the complex nature of root–soil interactions, especially for agricultural practices such as seedbed preparation.  相似文献   

14.
15.
Protein inhibitors are molecules secreted by many plants. In a functional genomics approach, an invertase inhibitor (SolyCIF) of Solanum lycopersicum was identified at the Solanaceae Cornell University data bank (www.sgn.cornell.edu). It was established that this inhibitor is expressed mainly in the leaves, flowers and green fruit of the plant and localized in the cell wall compartment. The SolyCIF cDNA was cloned by performing RT-PCR, fully sequenced and heterologously expressed in Pichia pastoris X-33. The purified recombinant protein obtained by performing ion-exchange chromatography and gel filtration was further biochemically characterized and used to perform affinity chromatography. The latter step made it possible to purify natural vacuolar invertase (TIV-1), which showed high rates of catalytic activity (438.3 U mg(-1)) and efficiently degraded saccharose (K(m)=6.4mM, V(max)=2.9 micromol saccharosemin(-1) and k(c)(at)=7.25 x 10(3)s(-1) at pH 4.9 and 37 degrees C). The invertase activity was strongly inhibited in a dose-dependent manner by SolyCIF produced in P. pastoris. In addition, Gel-SDS-PAGE analysis strongly suggests that TIV-1 was proteolyzed in planta and it was established that the fragments produced have to be tightly associated for its enzymatic activity to occur. We further investigated the location of the proteolytic sites by performing NH(2)-terminal Edman degradation on the fragments. The molecular model for TIV-1 shows that the fragmentation splits the catalytic site of the enzyme into two halves, which confirms that the enzymatic activity is possible only when the fragments are tightly associated.  相似文献   

16.
Decreased cytokinin (CK) export from roots in drying soil might provide a root-to-shoot signal impacting on shoot physiology. Although several studies show that soil drying decreases the CK concentration of xylem sap collected from the roots, it is not known whether this alters xylem CK concentration ([CK(xyl)]) in the leaves and bulk leaf CK concentration. Tomato (Solanum lycopersicum L.) plants were grown with roots split between two soil columns. During experiments, water was applied to both columns (well-watered; WW) or one (partial rootzone drying; PRD) column. Irrigation of WW plants aimed to replace transpirational losses every day, while PRD plants received half this amount. Xylem sap was collected by pressurizing detached leaves using a Scholander pressure chamber, and zeatin-type CKs were immunoassayed using specific antibodies raised against zeatin riboside after separating their different forms (free zeatin, its riboside, and nucleotide) by thin-layer chromatography. PRD decreased the whole plant transpiration rate by 22% and leaf water potential by 0.08 MPa, and increased xylem abscisic acid (ABA) concentration 2.5-fold. Although PRD caused no detectable change in [CK(xyl)], it decreased the CK concentration of fully expanded leaves by 46%. That [CK(xyl)] was maintained and not increased while transpiration decreased suggests that loading of CK into the xylem was also decreased as the soil dried. That leaf CK concentration did not decline proportionally with CK delivery suggests that other mechanisms such as CK metabolism influence leaf CK status of PRD plants. The causes and consequences of decreased shoot CK status are discussed.  相似文献   

17.
The temporal and spatial control of auxin distribution has a key role in the regulation of plant growth and development, and much has been learnt about the mechanisms that influence auxin pools and gradients in vegetative tissues, particularly in Arabidopsis. For example polar auxin transport, mediated by PIN and AUX/LAX proteins, is central to the control of auxin distribution. In contrast, very little information is known about the dynamics of auxin distribution and the molecular basis of its transport within and between fruit tissues, despite the fact that auxin regulates many aspects of fruit development, which include fruit formation, expansion, ripening and abscission. In addition, functional information regarding the key regulators of auxin fluxes during both vegetative and reproductive development in species other than Arabidopsis is scarce. To address these issues, we have investigated the spatiotemporal distribution of auxin during tomato (Solanum lycopersicum) fruit development and the function of the PIN and AUX/LAX gene families. Differential concentrations of auxin become apparent during early fruit growth, with auxin levels being higher in internal tissues than in the fruit pericarp and the pattern of auxin accumulation depended on polar transport. Ten tomato PIN (SlPIN1 to 10) and five AUX/LAX (SlLAX1 to 5) genes were identified and found to display heterogeneous expression patterns, with tissue and developmental-stage specificity. RNAi-mediated co-silencing of SlPIN4 and SlPIN3 did not affect fruit development, which suggested functional redundancy of PIN proteins, but did lead to a vegetative phenotype, and revealed a role for these genes in the regulation of tomato shoot architecture.  相似文献   

18.
The tomato (Solanum lycopersicum L.) is one of the world's most important vegetable crop species. Among the many tomato accessions available, only a few are tolerant to abiotic stresses, which are responsible for the majority of the crop losses worldwide. Wild tomato species are then secondary gene pool in the breeding of more resistant tomato cultivars. In the current study, the composition of leaf cuticular waxes from fourteen tomato accessions, including S. lycopersicum, Solanum pennellii, Solanum pimpinellifolium, and their interspecific hybrids was studied in order to select the most adequate chemotaxonomic markers. Total cuticular wax load of S. pennellii plants was much higher than in the other plant species. Hydrocarbons were usually the most abundant wax components, followed by minor quantities of triterpenes and other compounds. Interspecific hybrids showed intermediate wax characteristics. The amount and composition of surface waxes were not correlated with the abiotic stress tolerance in S. lycopersicum. The composition of the hydrocarbon fraction was the least variable both within a single accession and between all the plants studied. Based on the results, cuticular hydrocarbons are proposed as potential chemotaxonomic markers in the classification of tomato and related species.  相似文献   

19.
Cyanamide (CA) has been reported as a natural compound produced by hairy vetch (Vicia villosa Roth.) and it was shown also to be an allelochemical, responsible for strong allelopathic potential in this species. CA phytotoxicity has been demonstrated on various plant species, but to date little is known about its mode of action at cellular level. Treatment of tomato (Solanum lycopersicum L.) roots with CA (1.2 mM) resulted in inhibition of growth accompanied by alterations in cell division, and imbalance of plant hormone (ethylene and auxin) homeostasis. Moreover, the phytotoxic effect of CA was also manifested by modifications in expansin gene expression, especially in expansins responsible for cell wall remodeling after the cytokinesis (LeEXPA9, LeEXPA18). Based on these results the phytotoxic activity of CA on growth of roots of tomato seedlings is likely due to alterations associated with cell division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号