首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipase from Candida rugosa was immobilized by adsorption onto a macroporous copolymer support. Under optimum conditions the maximum amount of protein bound was 15.4 mg/g and the immobilization efficiency was 62%. The kinetics of lipase binding to the selected polymer carrier was assessed by using a general model of topochemical reactions. The effect of temperature on adsorption was thoroughly investigated, as was the adsorption mechanism itself. Analysis of the proposed kinetic model and the specific kinetic parameters measured suggest that surface kinetics control the adsorption process. According to the activation energy (E a) and the rate constant, k, the enzyme has rather a high affinity for the support's active sites. The immobilized enzyme was used to catalyse the hydrolysis of palm oil in a lecithin/isooctane reaction system, in which the enzyme's activity was 70% that of the free enzyme. Kinetic parameters such as maximum velocity (V max) and the Michaelis constant (K m) were determined for the free and the immobilized lipase. Following repeated use, the immobilized lipase retained 56% of its initial activity after the fifth hydrolysis cycle. Received: 3 April 1998 / Received revision: 28 July 1998 / Accepted: 29 July 1998  相似文献   

2.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

3.
A novel technique for immobilization of Candida rugosa lipase onto anionic colloidal gas aphrons (CGAs) is described. CGAs are spherical microbubbles (10-100 microm) composed of an inner gas core surrounded by a surfactant shell. In this initial study, greater than 80% lipase (w/w) was effectively retained on the CGAs. Leakage of protein from the CGAs and the activity of the adsorbed lipase decreased with increasing enzyme loading; this indicates that multilayers of lipase may be adsorbing onto the CGAs. The CGA-immobilised lipase displayed normal Michaelis-Menten dependence on substrate concentration and also exhibited greater activity than the free enzyme.  相似文献   

4.
Three liquid phases (viz. aqueous, nonaqueous, and reverse micelles) were scrutinized as medium for attachment of the enzyme Candida rugosa lipase (CRL) onto multiwalled carbon nanotubes (CNTs). The nanotubes were functionalized to attain carboxyl and amino groups on their surfaces before enzyme conjugation. Transmission electron microscopy and Fourier transformation infrared spectroscopic studies were used for characterization of the nanotubes during the course of functionalization. High enzyme loadings associated with the functionalized CNTs were observed when reverse micelles were used as the attachment medium. In addition, high activity in terms of ester synthesis in organic solvents was also observed while using those preparations. The nanobioconjugates prepared using reverse micelles were found to be highly sturdy and exhibited appreciable operational stability of around 95 ± 3% at 20th cycle (in case of carboxylated nanotubes) and 90 ± 5% at 10th cycle (in case of aminated nanotubes) for esterification. This shows the potential application of reverse micelles as the attachment medium for surface active enzymes such as CRL onto CNTs. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:828–836, 2014  相似文献   

5.
Two lipases (Lip A and Lip B), were purified from a commercial lipase preparation produced by Candida rugosa and partially characterized. The purified lipases were immobilized on Duolite A 568 and used in the selective esterification of cholesterol with free fatty acids from sardine fish oil. The results showed that Lip A and Lip B preferentially esterified saturated and monounsaturated fatty acids allowing a 3.4-fold (Lip B, 24 h) and 4-fold (Lip A, 10 h) enrichment of docosahexaenoic acid in the remaining free fatty acid fraction. Selectivity towards eicosapentaenoic acid was less pronounced. By this selective esterification docosahexaenoic acid was concentrated from 7.4 to 32% with a recovery of 95% of its initial content in sardine fish oil.  相似文献   

6.
Zhu S  Wu Y  Yu Z 《Journal of biotechnology》2005,116(4):397-401
Candida rugosa lipase (Lipase OF) was immobilized by covalent binding to a pH-sensitive support showing reversibly soluble-insoluble characteristics with pH change. The immobilized lipase could carry out the enantioselective hydrolysis of ketoprofen ester in a soluble form yet be recovered after precipitation by simply adjusting pH. Its activity and enantioselectivity for hydrolysis of 2-chloroethyl ester of ketoprofen were enhanced 1.5-fold and 8.7-fold compared with those of free lipase. After eight catalytic cycles, the immobilized enzyme was still 46% active and its enantioselectivity remained unchanged.  相似文献   

7.
8.
9.
Summary Lipase from Candida rugosa has been immobilized in lyotropic liquid crystals consisting of a nonionic surfactant, hexane, and aqueous buffer with the enzyme. The kinetics of butyl butyrate synthesis, diffusion effects, and enzyme stability were investigated. Some basic rules have been formulated for a rational medium design in liquid-crystalline matrices.  相似文献   

10.
Candida rugosa lipase was immobilized by first cross-linking with glutaraldehyde and then entrapping in calcium alginate beads. The presence of 2-propanol during cross-linking markedly improved the enzyme activity and activity recovery. Maximal enzyme activity (2.1?mmol?h?1?g?1 immobilized conjugate, wet weight) and activity recovery (117%) were observed at 30% (v/v) 2-propanol for hydrolysis of olive oil, which were 1.7 and 2.0 times higher than those of the immobilized enzyme prepared in the absence of 2-propanol. The half-life of the immobilized lipase prepared by entrapment after cross-linking in 30% 2-propanol was 1.6 times higher than that prepared by entrapment of the native lipase without cross-linking and 2-propanol pretreatment. The enantioselectivity of the former was 11 times higher than that of the latter for hydrolysis of racemic ketoprofen ethyl ester.  相似文献   

11.
The overall objective of this study is to evaluate the morphological [scanning electron microscopy (SEM)], physicochemical [differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), chemical composition analysis, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR)], and biochemical properties of Candida rugosa lipase (CRL) immobilized on a natural biopolymer poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) in aqueous solution. CRL was immobilized by physical adsorption with efficiency of 30%. Compared with free CRL enzyme, there were slight changes in immobilized CRL activity as a function of temperature (from 37°C to 45°C), but a similar optimal pH value of 7.0. Inactivation rate constants for immobilized CRL enzyme were 0.009 and 0.334 h−1, and half-lives were 77 and 2 h at 40°C and 60°C, respectively. Kinetic parameters obtained for immobilized CRL include the Michaelis–Menten constant of K m = 213.18 mM and maximum reaction velocity of V max = 318.62 U/g. The operational stability of immobilized CRL was tested repeatedly, and after 12 cycles of reuse, the enzyme retained 50% activity. Based on our results, we propose that PHBV-immobilized CRL could serve as a promising biocatalyst in several industrial applications.  相似文献   

12.
Anandamide, an endogenous ligand for cannabinoid receptors, loses its biological activities when it is hydrolyzed to arachidonic acid and ethanolamine by anandamide amidohydrolase. We overexpressed a recombinant rat enzyme with a hexahistidine tag in a baculovirus-insect cell expression system, and purified the enzyme with the aid of a Ni-charged resin to a specific activity as high as 5.7 micromol/min/mg protein. The purified recombinant enzyme catalyzed not only the hydrolysis of anandamide and palmitoylethanolamide, but also their reverse synthetic reactions. In order to attain an equilibrium of the anandamide hydrolysis and its reverse reaction within 10 min, we utilized a large amount of the purified enzyme. The equilibrium constant ([arachidonic acid][ethanolamine])/([anandamide][water]) was calculated as 4x10(-3) (37 degrees C, pH 9.0). These experimental results with a purified enzyme preparation quantitatively confirmed the reversibility of the enzyme reaction previously observed with crude enzyme preparations.  相似文献   

13.
Macroporous polymer particles containing surface epoxy groups were synthesized for immobilization of Candida rugosa lipase (CRL). The effect of incorporation of two different sets of monomers [allyl glycidyl ether (AGE) and glycidyl methacrylate (GMA)] and the effect of crosslinking density on immobilization of lipase were studied. AGE-co-EGDM polymers gave higher binding and expression of lipase than GMA-co-EGDM polymers. Optimization of immobilization parameters was done with respect to immobilization time and enzyme loading. Amongst AGE-co-EGDM polymer series, AGE-150 polymer found to give maximum lipase activity yield and therefore evaluated for temperature, pH and storage stability. Under optimum conditions, AGE-150 polymer gave 78.40% of activity yield. Immobilized lipase on AGE-150 showed a broader pH, higher temperature and excellent storage stability.  相似文献   

14.
采用"界面亲和层析",从商品Candida rugosa脂肪酶(CRL)中分离到三个同工酶(CRL-1、CRL-2和CRL-3),它们在水-有机溶剂双液相体系中催化(R,S)-萘普生甲酯的不对称水解反应,具有不同的立体选择性.分析表明:CRL-1和CRL-2上不同程度地非共价结合有小分子的酸性化合物,阻碍了其活性位点处疏水腔的完全开放;CRL-3上不含有该小分子酸性化合物,活性位点处疏水腔可处于完全开放构象.据此分别将CRL同工酶选择性地固定在不同的载体(GDX101和YWG-NH2)上.通过简单易行的选择吸附步骤,可同时达到同工酶的分离及固定化目的,提出了一种对结构上相差不大同工酶分离的便利方法.  相似文献   

15.
The aim of this study was to evaluate the immobilization of lipase from Candida rugosa on a nylon support by methods used to attach biomolecules to solid supports through their carbohydrate moieties. The carbohydrate groups were converted to dialdehydes by treatment with sodium periodate. The length of exposure and the periodate amount were optimized to the point where almost total activity retention was obtained. Tests of the immobilized enzyme showed the expressed activity to be significantly higher than the activity obtained with the unimmobilized enzyme. The use of reverse micelles as a way of delivering water to the enzyme was tested and found to give significantly higher activities. The immobilized enzyme activity was also tested with other substrates, one of which was a chiral ester. The immobilized enzyme was found to have high stereoselective efficiency and activity toward racemic methyl methoxyphenyl glycidate, a chiral intermediate used in the manufacture of the drug diltiazem. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
Two conformational states of Candida rugosa lipase.   总被引:5,自引:4,他引:1       下载免费PDF全文
The structure of Candida rugosa lipase in a new crystal form has been determined and refined at 2.1 A resolution. The lipase molecule was found in an inactive conformation, with the active site shielded from the solvent by a part of the polypeptide chain-the flap. Comparison of this structure with the previously determined "open" form of this lipase, in which the active site is accessible to the solvent and presumably the substrate, shows that the transition between these 2 states requires only movement of the flap. The backbone NH groups forming the putative oxyanion hole do not change position during this rearrangement, indicating that this feature is preformed in the inactive state. The 2 lipase conformations probably correspond to states at opposite ends of the pathway of interfacial activation. Quantitative analysis indicates a large increase of the hydrophobic surface in the vicinity of the active site. The flap undergoes a flexible rearrangement during which some of its secondary structure refolds. The interactions of the flap with the rest of the protein change from mostly hydrophobic in the inactive form to largely hydrophilic in the "open" conformation. Although the flap movement cannot be described as a rigid body motion, it has very definite hinge points at Glu 66 and at Pro 92. The rearrangement is accompanied by a cis-trans isomerization of this proline, which likely increases the energy required for the transition between the 2 states, and may play a role in the stabilization of the active conformation at the water/lipid interface. Carbohydrate attached at Asn 351 also provides stabilization for the open conformation of the flap.  相似文献   

17.
Cross-linked enzyme aggregates (CLEA®s) were prepared from Candida rugosa lipase (CrL) using glutaraldehyde as the cross-linker. The optimum conditions of the immobilization process were determined (precipitant: ethanol, crosslinker concentration: 25 mM, enzyme concentration: 50 mg/ml, crosslinking time: 45 min.). CLEAs were shown to have several advantages compared to the free enzyme. They were more stable at 50 °C and 60 °C and had good reusability; retaining 40% of their initial activity after 15 recycles in aqueous media and remaining constant at that level thereafter, suggesting some initial leaching in water. The CLEAs catalyzed esterification reactions in cyclohexane, affording higher conversions than with the free enzyme, especially when longer fatty acids and alcohols were used as substrates.  相似文献   

18.
Vesicular silica (VS) with hierarchical structure was prepared by utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulfate (SDS) as the structure directing agents, and 1,3,5-triisopropylbenzene (TIPB) as the micelle expander. The resulting unilamellar and multilamellar VS with interlamellar mean mesopore size of 15–20 nm and shell thickness of 5–15 nm were used as supports for immobilization of Candida rugosa lipase (CRL) through physical adsorption. Possible mechanisms for the formation of VS and the immobilization of CRL on VS are proposed. N2 adsorption-desorption experiments and Fourier transform infrared spectroscopy (FT-IR) measurements demonstrated that CRL was adsorbed into the curved channels of the VS. The catalytic activity, thermal stability, and reusability of VS immobilized CRL were assayed in phosphate buffer medium by hydrolysis of triacetin. The effects of pH and temperature on enzyme activity were also investigated. We report that VS immobilized CRL exhibited outstanding adaptability at higher pH and temperature, and excellent thermal stability and reusability compared with free CRL.  相似文献   

19.
Summary We describe a two-step method for the purification of two lipases (lipases A and B) from C. rugosa. The purification procedure includes Phenyl-Sepharose and Sephacryl HR 100 chromatographies. The enzymes obtained were pure according to criteria of specific activity and neutral sugar content.  相似文献   

20.
The activity and enantioselectivity of Candida rugosa lipase were investigated in chiral solvents, (–)-, (+)- and racemic carvone, for the resolution of 2-chloro-propionic acid with n-butanol via esterification. The activity of the enzyme studied was about 50% higher in (–)-carvone than in (+)-carvone, however the enantioselectivity was similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号