首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ω-aminohexyl diamine immobilized as ligand on CNBr- and bisoxirane-activated agarose gel was evaluated for the purification of human immunoglobulin G (IgG) from serum and plasma by negative affinity chromatography. The effects of matrix activation, buffer system, and feedstream on recovery and purity of IgG were studied. A one-step purification process using Hepes buffer at pH 6.8 allowed a similar recovery (69–76%) of the loaded IgG in the nonretained fractions for both matrices, but the purity was higher for epoxy-activated gel (electrophoretically homogeneous protein with a 6.5-fold purification). The IgG and human serum albumin (HSA) adsorption equilibrium studies showed that the adsorption isotherms of IgG and HSA obeyed the Langmuir–Freundlich and Langmuir models, respectively. The binding capacity of HSA was high (210.4 mg mL?1 of gel) and a positive cooperativity was observed for IgG binding. These results indicate that immobilizing ω-aminohexyl using bisoxirane as coupling agent is a useful strategy for rapid purification of IgG from human serum and plasma.  相似文献   

2.
Hexamer peptide ligand HWRGWV, initially screened from a solid phase combinatorial peptide library for immunoglobulins G (IgG) purification, is shown to also have potential for immunoglobulin A (IgA) purification. The determined dissociation constants for hIgA on HWRGWV resins at three different peptide densities from 0.11 to 0.55 meq/g fall in the range of 10?6–10?7 M, which are somewhat lower than those for hIgG. Although relatively low dynamic binding capacity (DBC) in the range of 9.2–16.8 mg IgA/mL resin at linear flow rates from 173 to 35 cm/h were obtained for IgA compared to IgG, the DBC value of HWRGWV for IgA is much greater than current commercially available affinity ligands. Although relatively lower binding affinity to secretory IgA compared to monomeric IgA was observed, the peptide ligand resins exhibit great potential for large‐scale purification of both human IgA and secretory IgA. Recoveries of 96.0% and 94.3%, and purities of 90.3% and 91.7% were achieved for human IgA and secretory IgA purification, respectively, from spiked Chinese hamster ovary cell culture supernatants without an extra afterwash step. Over 95% in purities were achieved for IgA and secretory IgA with an extra afterwash step; however, the recoveries would decrease at least 15% and 40% for IgA and secretory IgA, respectively. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

3.
The availability of highly pure animal antibodies is critical in the production of diagnostic tools and biosensors. The peptoid PL16, previously isolated from an ensemble of peptoid variants of the IgG-binding peptide HWRGWV, was utilized in this work as affinity ligand on WorkBeads resin for the purification of immunoglobulin G (IgG) from a variety of mammalian sources and chicken immunoglobulin Y (IgY). The chromatographic protocol initially optimized for murine serum and ascites was subsequently employed for processing rabbit, goat and sheep, donkey, llama, and chicken sera. The PL16-WorkBeads resin proved able to recover all antibody targets with values of yield between 50 and 90%, and purity consistently above 90%. Notably, PL16 not only binds a broader spectrum of animal immunoglobulins than the reference ligands Protein A and G, but it also binds equally well with all their subclasses. Unlike the protein ligands, in fact, PL16 afforded excellent values of yield and purity of mammalian polyclonal IgG, namely murine (47 and 94%), rabbit (66.5 and 91.7%), caprine IgG (63 and 91–95%), donkey, and llama (93 and 97%), as well as chicken IgY (42 and 92%). Of notice, it is also the ability of PL16 to target monomeric IgG without binding aggregated IgG; when challenged with a mixture of monomeric and aggregated murine IgG, PL16 eluted <3% of fed aggregates, against 11–13% eluted by Protein A and G. Collectively, these results prove the potential of the proposed peptoid ligand for large-scale purification of animal immunoglobulins.  相似文献   

4.
Tris(2-aminoethyl)amine (TREN) – a chelating agent used in IMAC – immobilized onto agarose gel was evaluated for the purification of IgG from human serum by negative chromatography. A one-step purification process allowed the recovery of 73.3% of the loaded IgG in the nonretained fractions with purity of 90–95% (based on total protein concentration and nephelometric analysis of albumin, transferrin, and immunoglobulins A, G, and M). The binding capacity was relatively high (66.63 mg of human serum protein/mL). These results suggest that this negative chromatography is a potential technique for purification of IgG from human serum.  相似文献   

5.
This report describes a novel use of the four-component Ugi reaction to generate a solid-phase library suitable for the purification of immunoglobulins and their fragments by affinity chromatography. An aldehyde-functionalised Sepharose? solid-support constituted one component in the four-component reaction, whereas the other three components (a carboxylic acid, a primary or secondary amine and an isonitrile) were varied in a combinatorial fashion to generate a tri-substituted peptoidal scaffold structure which provides a degree of rigidity and functionality suitable for rational investigation of immunoglobulin binding. The Ugi ligand library was initially screened chromatographically against whole human IgG and its fragments (Fc and Fab) to yield a Fab-specific lead ligand based on its ability to bind Fab differentially over Fc. Preparative chromatography of IgG from human serum showed 100% of IgG was adsorbed from the 20 mg/ml crude stock and subsequently eluted with a purity of 81.0% as determined by SDS-PAGE analysis under non-optimised conditions. High purity Fab and IgG isolation was achieved from both yeast and E. coli host cell proteins according to silver-stained SDS-PAGE lane densitometry. The ligand density and spacer-arm chemistry of the immobilised ligand was optimised to define an affinity adsorbent which binds 73.06 mg IgG/ml moist gel (dynamic binding capacity at 10% breakthrough) and a static binding capacity of 16.1 ± 0.25 mg Fab/ml moist resin displaying an affinity constant Kd = (2.6 ± 0.3) × 10?6 M. The lead candidate was modelled in silico and docked into a human Fab fragment (PDB: 1AQK) to suggest a putative binding interface to the constant CH1-CL Fab terminal through six defined hydrogen bond interactions together with putative hydrophobic interactions.  相似文献   

6.
《Process Biochemistry》2010,45(2):203-209
The availability of synthetic peptides has paved the way for their use in tailor-made interactions with biomolecules. In this study, a 16mer LacI-based peptide was used as an affinity ligand to examine the scale up feasibility for plasmid DNA purification. First, the peptide was designed and characterized for the affinity purification of lacO containing plasmid DNA, to be employed as a high affinity ligand for the potential capturing of plasmid DNA in a single unit operation. It was found there were no discernible interactions with a control plasmid that did not encode the lacO nucleotide sequence. The dissociation equilibrium constant of the binding between the 16mer peptide and target pUC19 was 5.0 ± 0.5 × 10−8 M as assessed by surface plasmon resonance. This selectivity and moderated affinity indicate that the 16mer is suitable for the adsorption and chromatographic purification of plasmid DNA. The suitability of this peptide was then evaluated using a chromatography system with the 16mer peptide immobilized to a customized monolith to purify plasmid DNA, obtaining preferential purification of supercoiled pUC19. The results demonstrate the applicability of peptide–monolith supports to scale up the purification process for plasmid DNA using designed ligands via a biomimetic approach.  相似文献   

7.
《Process Biochemistry》2007,42(3):444-448
The application of dye–ligand expanded bed chromatography adsorption (EBA) of glucose-6-phosphate dehydrogenase (G6PDH) from unclarified yeast extract was undertaken by using a commercially available expanded bed column (20 mm i.d.) and UpFront adsorbent (ρ = 1.5 g/mL) from UpFront Chromatography. The influence of biomass concentration on the adsorption capacity was explored by employing yeast extracts containing various biomass concentrations (5–30%, w/v). It was demonstrated that the biomass concentration had little effect on G6PDH adsorption performance. Feedstock containing 15% (w/v) biomass gave a relatively high recovery yield (>90%) of G6PDH compared to feedstock containing 30% (w/v) biomass, which gave a recovery of 75% G6PDH. Nevertheless, the enzyme specific activity of 7 U mg−1 with a purification factor of 6 was achieved in the feedstock containing biomass concentration of 30% (w/v). The generic applicability of dye–ligand as an affinity tool in expanded bed chromatography is discussed.  相似文献   

8.
The interaction of the adhesion molecule of the immunoglobulin family intercellular adhesion molecule 1 (ICAM-1) with its ligands such that the integrins LFA-1 and Mac-1 is crucial for the regulation of several physiological and pathophysiological processes like cell mediated-elimination of tumor or virus infected cells, cancer metastasis or inflammatory autoimmune processes. Thus, production of milligrams of protein is required to perform structural and functional studies as well as design novel approaches to find out new inhibitors of ICAM-1/LFA-1 interaction. Here we report on the production of a recombinant human ICAM-1 chimera comprising the first two extracellular domains of ICAM-1 linked to the Fc fraction of a human IgG1. To this aim we have used a cost-effective method based on the expression of a His-tagged protein in Escherichia coli followed by a single step of refolding and purification on immobilized metal affinity columns. This method is able to produce 3 mg/l of bacterial culture in just 72 h with purity greater than 95%. The identity and the native structure of refolded human ICAM-1 chimera were confirmed by biochemical and biophysical studies including SDS-electrophoresis, immunoblot, circular dichroism, isothermal titration calorimetry and fluorescence spectroscopy. Native folding and functional activity of the chimera were further confirmed by different cell biology studies, including B cell adhesion, T cell binding and inhibition of NK cell function. These studies indicate a high biological activity of the protein since it induces a 200-fold increase/mg of protein in B cell adhesion and the inhibitory dose 50 to block cell-mediated cytotoxicity is 10 pg/effector cell. These analyses show that our protocol is able to produce a recombinant human ICAM-1 chimera fully active and useful to analyze the biological processes in which ICAM-1/LFA-1 interaction is critically involved.  相似文献   

9.
To replace conventional affinity ligand like protein A or protein G, a pseudobioaffinity ligand seems to be an alternative for the purification of immunoglobulin G (IgG). In this study, sulfamethazine (SMZ) was chosen as novel affinity ligand for investigating its affinity to human IgG. Monodisperse, non-porous, cross-linked poly (glycidyl methacrylate) (PGMA) beads were employed as the support for high-performance affinity chromatography. SMZ was immobilized on PGMA beads using bisoxirane (ethanediol diglycigyl ether) as spacer. The resultant affinity media presented minimal non-specific interaction with other proteins. Results of high-performance frontal analysis indicated that the media showed specific affinity to human IgG with a dissociation constant on the order of 10(-6) M. The SMZ affinity column proved useful for a very convenient one-step purification of IgG from human plasma. Antibody purity after a one-step purification was higher than 90%, as determined by densitometric scanning of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified fraction under reducing condition. The results obtained indicate that SMZ is a valuable affinity ligand for purification of human IgG.  相似文献   

10.
《Process Biochemistry》2004,39(11):1573-1581
Silica-based immobilized metal affinity chromatography adsorbents with various ligand densities were prepared for the purification and immobilization of poly(His)-tagged d-hydantoinase (DHTase). An adsorbent with a ligand density of 13.0 μmol Cu2+/g gel exhibiting the optimal selectivity and a capacity of 1.4 mg/g gel toward the poly(His)-tagged enzyme was identified. The adsorbent was used for the one-step purification of His-tagged enzymes from crude cell lysate with a purity above 90%. The silica-based affinity adsorbents are particularly well suited for industrial scale operations due to their robustness. A packed-bed bioreactor with the DHTase-loaded adsorbents was used for the continuous conversion of d,l-p-hydroxyphenylhydantoin (d,l-HPH) to N-carbamoyl-d-hydroxyphenylglycine, an intermediate for the production of d-hydroxylphenylglycine. Under optimal conditions, 60 °C and pH 8.0, a conversion of 60% was obtained at a residence time of 30 min. Upon extended operation, the catalytic activity of the biocatalysts declined significantly due to enzyme leakage and enzyme denaturation. The extent of enzyme leakage can be attenuated by crosslinking with glutaraldehyde. In this study, we successfully demonstrate that a packed-bed bioreactor containing silica-based IMAC adsorbents can be used for the direct purification and immobilization of poly(His)-tagged enzymes for biotransformation.  相似文献   

11.
While monoclonal antibodies of the G class can be conveniently purified by affinity chromatography using immobilized protein A or G, even on a large scale, scaling up IgM purification still presents several problems, since specific and cost-effective ligands for IgM are not available. A synthetic peptide (TG19318), deduced from the screening of a combinatorial peptide library, was characterized previously by our group for its binding properties for immunoglobulins of the G class and its applicability as a synthetic ligand for polyclonal and monoclonal IgG purification, from sera or cell culture supernatants. In this study, we have examined the ligand recognition properties for IgM, immobilizing the synthetic peptide on different affinity supports and examining its ability to purify IgMs from serum, ascitic fluid and cell culture supernatants. TG19318 affinity columns proved useful for a very convenient one-step purification of monoclonal IgMs directly from crude sources, loading the samples on the columns equilibrated with saline buffers at pH values ranging from 5 to 7, and eluting adsorbed IgM by a buffer change to 0.1 M acetic acid or 0.05–0.1 M sodium bicarbonate, pH 9.0. Antibody purity after affinity purification was very high, close to 85–95%, as determined by densitometric scanning of sodium dodecyl sulfate–polyacrylamide gels of purified fractions, and by gel permeation analysis. Antibody activity was fully recovered after purification, as determined by immunoassays. Column capacity was related to the type of support used for ligand immobilization, and ranged from 2 to 8 mg of IgM/ml of support.  相似文献   

12.
13.
Alkyl amines and polyamines have been used as ligands for protein purification by mixed-mode chromatography. The adsorption of proteins onto these ligands seems to be governed by multiple effects such as electrostatic, hydrophobic, and affinity interactions. In this work we investigated the adsorption of proteins extracted from soybean onto the adsorbent agarose-Tris(2-aminoethyl)amine (TREN). The effects of flow rate, buffer system, and extract concentration on the capture of proteins extracted from soybean were evaluated. Experiments using Mes at pH 6.5 as adsorption buffer allowed the adsorption of almost the totality of native soybean protein with a dynamic adsorption capacity of 13.50 mg mL?1 adsorbent. Experiments with human IgG (pI in the range of 5.8–9.0) and human serum albumin (HSA, pI of 4.9) spiked into these extracts lead to the conclusion that electrostatic forces play a major role in the interaction between protein and agarose-TREN. Based on this work, negative chromatography with agarose-TREN should be considered as a method for purification of basic recombinant protein produced in transgenic soybean seeds.  相似文献   

14.
Immunoglobulin G (IgG) purification from human plasma with protein A attached supermacroporous poly(hydroxyethyl methacrylate) [PHEMA] cryogel has been studied. PHEMA cryogel was prepared by bulk polymerization which proceeds in aqueous solution of monomer frozen inside a plastic syringe (cryo-polymerization). After thawing, the PHEMA cryogel contains a continuous matrix having interconnected pores of 10–200 μm size. Protein was covalently attached onto the PHEMA cryogel via cyanogen bromide (CNBr) activation. The maximum IgG adsorption on the PHEMA/protein A cryogel was found to be 83.2 mg/g at pH 7.4 from aqueous solutions. The non-specific IgG adsorption onto the PHEMA cryogel was about 0.38 mg/g. The macropore size of the cryogel makes it possible to process blood cells without blocking the column. Higher adsorption capacity was observed from human plasma (up to 88.1 mg/g). Adsorbed IgG was eluted using 0.1 M glycine–HCl buffer (pH 3.5) with a purity of 85%. PHEMA–protein A cryogel was used for repetitive adsorption/desorption of IgG without noticeable loss in IgG adsorption capacity after 10 cycles. PHEMA–protein A cryogel showed several advantages such as simpler preparation procedure, good selectivity for IgG purification from human plasma and good stability throughout repeated adsorption–desorption cycles.  相似文献   

15.
In this study, thermo-sensitive N-alkyl substituted polyacrylamide polymer PNNB was synthesized by using N-hydroxymethyl acrylamide(NHAM), N-isopropyl acrylamide (NIPA) and butyl acrylate (BA) as monomers, and its low critical solution temperature (LCST) was controlled to be 28 °C. The recovery of the thermo-sensitive polymer was over 98%. Butanol as a hydrophobic ligand was covalently attached onto polymer PNNB and butyl ligand density was 80 μmol g?1 polymer. The affinity polymer was used for purification of lipase from crude material. Optimized condition was pH 7.0, 35 °C adsorption temperature, 120 min adsorption time and 0.5 mg ml?1 initial concentration of lipase. The adsorption isotherm accords with a typical Langmuir isotherm. The maximum adsorption capacity (Qm) of the affinity polymer for lipase was 24.8 mg g?1polymer. The affinity copolymer could be recycled by temperature-inducing precipitation and there was only about 6% loss of adsorption capacity after five recyclings. Specific activity of lipase was improved from 14 IU mg?1 to 506 IU mg?1 protein, and its recovery achieved 82%. The affinity polymer is suitable for the purification of target proteins from the crude material with large volume and dilute solution.  相似文献   

16.
《Process Biochemistry》2014,49(3):520-528
The magnetic beads were synthesized using glycidylmethacrylate (GMA) and methylmethacrylate (MMA) monomers. A multimodal ligand (i.e., p-amino-benzamidine) was covalently immobilized onto magnetic beads after glutaraldehyde activation, and consequently used for purification of the trypsin from bovine pancreas. The p-amino-benzamidine ligand immobilized magnetic beads were characterized by FTIR, VSM, SEM, and analytical methods. Trypsin adsorption experiments were investigated under different experimental conditions (i.e., medium pH, initial trypsin concentration, temperature, and ionic strength) in a batch system. Maximum trypsin adsorption capacity was found to be 75.9 ± 2.6 mg/g beads. Adsorbed trypsin was eluted by using (0.1 M acetate buffer, pH 3.0) with a 97% recovery. The purification factor of trypsin from crude pancreas extract was 8.7 folds. The purity of the eluted trypsin from p-amino-benzamidine functionalized magnetic beads was determined as 86% by HPLC. The method developed in this report was successfully applied for purification of the trypsin from crude pancreas extract in a magnetically stabilized fluidized bed reactor.  相似文献   

17.
《Process Biochemistry》2007,42(5):751-756
To improve the purification efficiency of recombinant hepatitis B surface antigen derived from Hansenula polymorpha (Hans-HBsAg), a serial of absorbents for hydrophobic interaction chromatography with the controllable ligand density and spacer arm were synthesized, then developed and further applied to purify Hans-HBsAg. The absorbent, Butyl-S QZT with the ligand density of 25 μmol/(g wet gel) and spacer arm of 3C, was screened out and its physical and chemical properties were evaluated. High rigidity and low backpressure (<0.06 MPa) were obtained at the flow rate up to 20 ml/min. Moreover, it has the stable chemical characteristics of subjecting to high concentrations of acid, alkali and detergents. This HIC absorbent was further applied to purify Hans-HBsAg with the recovery 94% and purification-fold 9 under the optimized operation condition at pH 6.5 and concentration of ammonium sulfate 7.5%. Finally, the HIC adsorbent of Butyl-S QZT was applied in the integrated three-step chromatographic purification process to purify Hans-HBsAg. About 140 mg of purified Hans-HBsAg was obtained from 1 l cell disruption supernatant at the total recovery of 27% and the purification-fold of 151.8. Based on the assay of SDS-PAGE and SEC-HPLC, the purity of the purified HBsAg was over 99% to meet the requirement for the further inoculation use.  相似文献   

18.
Staphylococcal protein A (SpA) has been widely used as an affinity ligand for the purification of immunoglobulin G (IgG). Based on the affinity motif of SpA, we have herein developed a biomimetic design strategy for affinity peptide ligands of IgG. First, according to the distribution of the six hot spots of the SpA affinity motif determined previously, the number of residues that should be inserted into between the hot spots was determined. Cysteine was introduced as one of the middle inserted residues of the peptide for later immobilization. Then, amino acid location was performed to identify other amino acid residues for insertion, leading to the construction of a peptide library. The library was screened by using different molecular simulation protocols, resulting in the selection of 15 peptide candidates. Thereafter, molecular dynamics simulations were performed to validate the dynamics of the affinity interactions between the candidates and IgG, and 14 of them were found to keep high affinities. Finally, the affinity and specificity of the top one ligand FYWHCLDE were exemplified by protein chromatography and IgG purification. The results indicate that the design strategy was successful and the affinity peptide ligand for IgG is promising for application in antibody purifications.  相似文献   

19.
The applicability of dye-ligands attached to an expanded bed chromatography quartz base matrix (Streamline™) for the affinity bioseparation of rabbit immunoglobulin G (IgG) was investigated. Reactive Green 5 (RG-5) immobilized onto adsorbent was selected for capturing of rabbit-IgG due to its higher binding capacity compared to other dye-ligands possessing similar ligand density. Adsorption parameters such as pH, temperature, ionic strength and initial rabbit-IgG concentration were optimized for the adsorption of rabbit-IgG on the RG-5-immobilized adsorbent. The highest rabbit-IgG adsorption was recorded in pH 7.0, while the maximum binding capacity for BSA was achieved at pH 4.0. The adsorption of rabbit-IgG on RG-5-immobilized adsorbent was declined as the increase of ionic strength. There is no significant influence of temperature against adsorption efficiency of RG-5-immobilized adsorbent for rabbit-IgG. The adsorption phenomenon of rabbit-IgG on RG-5-immobilized adsorbent appeared to follow the Langmuir–Freundlich adsorption isotherm model. The theoretically maximum binding capacity (qm) of RG-5-immobilized adsorbent estimated from this isotherm was 49.3 mg ml−1, which is very close to that obtained experimentally (49.0 mg ml−1). About 50% of bound BSA on RG-5-immobilized adsorbent in binary adsorption system was removed with washing buffer containing 1 M NaCl.  相似文献   

20.
The thermo-sensitive N-alkyl substituted polyacrylamide polymer was synthesized by radical polymerization and its lower critical solution temperature (LCST) was controlled to be 28 °C. The thermo-sensitive recovery of polymer was over 95% in the presence of 0.05 M NaClO4. Cibacron Blue F3GA was covalently immobilized onto the polymer via the nucleophilic reaction between the active chlorine atom of its triazine ring and the hydroxyl group of the polymer. The ligands density was 30 μmol g−1 polymer. The adsorption capacity of lysozyme on the polymer was 3.4 mg g−1polymer in affinity precipitation process. And over 90% of adsorbed lysozyme was eluted by 0.5 M KSCN at pH 8.0. When the affinity polymer was applied in the purification of lysozyme from egg white, the purification factor was 28 and lysozyme yield was 80% or so.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号