首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
内蒙古典型草原灌丛化对生物量和生物多样性的影响   总被引:1,自引:0,他引:1  
彭海英  李小雁  童绍玉 《生态学报》2013,33(22):7221-7229
通过样方调查,研究了内蒙古典型草原不同退化程度草地中小叶锦鸡儿 (Caragana microphylla Lam.)灌丛斑块空间分布格局、草地生物量及生物多样性特征。结果表明,从轻度到中度、重度退化草地,草本植物生物量呈减少趋势,小叶锦鸡儿生物量呈增加趋势,总生物量呈先减少后增加趋势;灌丛斑块生物多样性呈增加趋势,草地斑块生物多样性呈先减少后增加趋势,其中轻度退化草地中灌丛斑块生物多样性低于草地斑块,中度和重度退化草地中灌丛斑块生物多样性高于草地斑块。本研究认为,内蒙古典型草原灌丛化过程中,生态系统可能存在草本植物占优势或小叶锦鸡儿占优势这样两种稳定状态,这两种状态能维持较高生物量和生物多样性,而在由草本植物占优势向小叶锦鸡儿占优势转化的过渡阶段,系统不稳定,仅能维持较低生物量和生物多样性。  相似文献   

2.
For investigating the protective roles of antioxidative system in desiccation tolerance of Caragana species as they adapt to arid environments, we monitored a variety of ecophysiological parameters in the leaves of Caragana arborescens (mesophyte), C. microphylla (semiarid species), C. roborovskyi, C. stenophylla, C. acanthophylla, and C. tragacanthoides (xerophyte) grown under a drying-rehydration cycle. Relative leaf water content and chlorophyll content were decreased by 17.4?C39.2?%, and by 14?C40?%, respectively, after exposure to 48?days of drought stress. Malondialdehyde did not increase in xeric Caragana species. Hydrogen peroxide concentrations increased by 13.1?C43.9?% except in C. acanthophylla. The activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and reduced glutathione (GSH) in xeric Caragana species were significantly elevated with progressing drought stress. However, catalase in all species decreased markedly before drought stress treatment reached 40?days. The xeric Caragana species showed higher SOD, POD, APX, and GR activities, as well as ascorbate content, and more manganese SOD isoenzymes. C. arborescens and C. microphylla accumulated more free proline. Our data indicate that SOD and POD with the ascorbate?Cglutathione cycle have important protective effects in xeric Caragana species under drought stress. Free proline may be crucial in the resistance of C. arborescens and C. microphylla to drought stress.  相似文献   

3.
This study investigates the potential of using Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to estimate root zone soil moisture at native in-situ measured sites, and at distant sites under the same climatic setting. We obtained in-situ data from Soil Climate Analysis Network (SCAN) sites near the Texas-New Mexico border area, and NDVI and EVI products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board the Terra satellite. Results show that soil moisture values of the same depth are highly correlated (r = 0.53 to 0.85) among sites as far as 150 km apart, and that NDVI and EVI are highly correlated at the same site (r = 0.87 to 0.91). Correlation based on raw time series of NDVI and soil moisture is in general higher than that based on deseasonalized time series at every depth. The correlation reaches maximum value when vegetation index (VI) lags soil moisture by 5 to 10 days. NDVI shows a slightly higher correlation with soil moisture than EVI does by using the deseasonalized time series of NDVI and soil moisture. It is found that deseasonalized time series of NDVI and soil moisture are correlated at native sites (r = 0.33 to 0.77), but not at sites where soil moisture is very low. Regression analysis was conducted using deseasonalized time series soil moisture and deseasonalized time series NDVI with a 5-day time lag. Regression models developed at one site and applied to a similar distant site can estimate soil moistures, accounting for 50–88% of the variation in observed soil moistures.  相似文献   

4.
Biotic interactions play an important role in ecosystem function and structure in the face of global climate change. We tested how plant–plant interactions, namely competition and facilitation among grassland species, respond to extreme drought and heavy rainfall events. We also examined how the functional composition (grasses, forbs, legumes) of grassland communities influenced the competition intensity for grass species when facing extreme events. We exposed experimental grassland communities of different functional compositions to either an extreme single drought event or to a prolonged heavy rainfall event. Relative neighbour effect, relative crowding and interaction strength were calculated for five widespread European grassland species to quantify competition. Single climatic extremes caused species specific shifts in plant–plant interactions from facilitation to competition or vice versa but the nature of the shifts varied depending on the community composition. Facilitation by neighbouring plants was observed for Arrhenatherum elatius when subjected to drought. Contrarily, the facilitative effect of neighbours on Lotus corniculatus was transformed into competition. Heavy rainfall increased the competitive effect of neighbours on Holcus lanatus and Lotus corniculatus in communities composed of three functional groups. Competitive pressure on Geranium pratense and Plantago lanceolata was not affected by extreme weather events. Neither heavy rainfall nor extreme drought altered the overall productivity of the grassland communities. The complementary responses in competition intensity experienced by grassland species under drought suggest biotic interactions as one stabilizing mechanism for overall community performance. Understanding competitive dynamics under fluctuating resources is important for assessing plant community shifts and degree of stability of ecosystem functions.  相似文献   

5.
连浩宇  李愈哲 《生态学报》2023,43(23):9733-9744
内蒙古草原是我国重要的生态保护屏障,部分区域是农牧交错带的重要组成部分。锡林郭勒草原位于内蒙古东中部,属典型温性草原,深入开展退耕还草对其植被总初级生产力(GPP)的影响、探究相关环境因子,对深入了解退耕还草过程中区域植被生长状况变化和生物固碳潜力时空分布以及制定更加科学精准的退耕政策具有重要意义。基于遥感、气象观测和土地利用数据,采用残差分析和相关性分析方法,系统研究了2010-2015年间锡林郭勒草原退耕还草区域的植被GPP变化特征,并探讨了不同环境因子对GPP变化量的影响,揭示了退耕还草活动造成的GPP变化特征及其受环境因子影响的作用机制。结果发现:(1)锡林郭勒盟退耕还草区域5年内GPP平均变化量为0.47 g C/m2,其中GPP增加面积占退耕还草总面积的67.2%,退耕还草初期GPP变化不显著;(2)退耕还草区域内,土壤含水量和土壤有机碳与GPP变化量显著负相关,而气温、降水、高程和坡度均与GPP变化量显著正相关;(3)坡度和土壤含水量与GPP变化量的相关程度最强,对退耕还草后GPP变化的影响程度较高。  相似文献   

6.
Aridland ecosystems are predicted to be responsive to both increases and decreases in precipitation. In addition, chronic droughts may contribute to encroachment of native C3 shrubs into C4-dominated grasslands. We conducted a long-term rainfall manipulation experiment in native grassland, shrubland and the grass–shrub ecotone in the northern Chihuahuan Desert, USA. We evaluated the effects of 5 years of experimental drought and 4 years of water addition on plant community structure and dynamics. We assessed the effects of altered rainfall regimes on the abundance of dominant species as well as on species richness and subdominant grasses, forbs and shrubs. Nonmetric multidimensional scaling and MANOVA were used to quantify changes in species composition in response to chronic addition or reduction of rainfall. We found that drought consistently and strongly decreased cover of Bouteloua eriopoda, the dominant C4 grass in this system, whereas water addition slightly increased cover, with little variation between years. In contrast, neither chronic drought nor increased rainfall had consistent effects on the cover of Larrea tridentata, the dominant C3 shrub. Species richness declined in shrub-dominated vegetation in response to drought whereas richness increased or was unaffected by water addition or drought in mixed- and grass-dominated vegetation. Cover of subdominant shrubs, grasses and forbs changed significantly over time, primarily in response to interannual rainfall variability more so than to our experimental rainfall treatments. Nevertheless, drought and water addition shifted the species composition of plant communities in all three vegetation types. Overall, we found that B. eriopoda responded strongly to drought and less so to irrigation, whereas L. tridentata showed limited response to either treatment. The strong decline in grass cover and the resistance of shrub cover to rainfall reduction suggest that chronic drought may be a key factor promoting shrub dominance during encroachment into desert grassland.  相似文献   

7.
Drought is a major environmental constraint affecting growth and distribution of plants in the desert region of the Inner Mongolia plateau. Caragana microphylla, C. liouana, and C. korshinskii are phylogenetically close but distribute vicariously in Mongolia plateau. To gain a better understanding of the ecological differentiation between these three species, we examined the leaf gas exchange, growth, water use efficiency, biomass accumulation and allocation by subjecting their seedlings to low and high drought treatments in a glasshouse. Increasing drought stress had a significant effect on many aspects of seedling performance in all species, but the physiology and growth varied with species in response to drought. C. korshinskii exhibited lower sensitivity of photosynthetic rate and growth, lower specific leaf area, higher biomass allocation to roots, higher levels of water use efficiency to drought compared with the other two species. Only minor interspecific differences in growth performances were observed between C. liouana and C. microphylla. These results indicated that faster seedling growth rate and more efficient water use of C. korshinskii should confer increased drought tolerance and facilitate its establishment in more severe drought regions relative to C. liouana and C. microphylla.  相似文献   

8.
Phosphorus (P) is one of the limiting mineral nutrient elements in the typical steppe of Inner Mongolia, China. In order to find out the adaptive strategy of Caragana microphylla to low soil P status, we grew plants in P-deficient soil in April 2009 and gave a gradient of P addition ranging from 0 to 60 mg(P) kg?1(soil) from May 2010. Leaf traits were measured in September 2010. Both leaf growth and light-saturated photosynthetic rate (P max) were similar among different groups. Leaf nitrogen (N):P ratio indicated that the growth of C. microphylla was not P-limited in most of the Inner Mongolia typical steppe, which had an average soil available P content equal to 3.61 mg kg?1. The optimal P addition was 20 mg(P) kg?1(soil) for two-year-old plants of C. microphylla. Leaf mass area (LMA) and leaf dry matter content (LDMC) were enhanced with low P, and significantly negatively correlated with photosynthetic N-use efficiency (PNUE). Photosynthetic P-use efficiency (PPUE) increased with decreasing soil P and increasing leaf inorganic P (Pi): organic P (Po) ratio, and showed no significant negative correlation with LMA or LDMC. P max of C. microphylla did not decline so sharply as it was anticipated. The reason for this phenomenon might be due to the increased PPUE through regulating the leaf total P allocation. C. microphylla had high P-use efficiency via both high PPUE and long P-retention time at low-P supply. The adaptation of C. microphylla to low-P supply provided a new explanation for the increased distribution of the species in the degraded natural grassland in Inner Mongolia, China.  相似文献   

9.
Arid regions are prone to drought because annual rainfall accumulation depends on a few rainfall events. Natural plant communities are damaged by drought, but atmospheric nitrogen (N) deposition may enhance the recovery of plant productivity after drought. Here, we investigated the effect of increasing N deposition on post-drought recovery of grassland productivity in the Mongolian steppe, and we examined the influence of grazing in this recovery. We added different amounts of N to a Mongolian grassland during two sequential drought years (2006 and 2007) and the subsequent 3 years of normal rainfall (2008–2010) under grazed and nongrazed conditions. Aboveground biomass and number of shoots were surveyed annually for each species. Nitrogen addition increased grassland productivity after drought irrespective of the grazing regime. The increase in grassland productivity was associated with an increase in the size of an annual, Salsola collina, under grazed conditions, and with an increase in shoot emergence of a perennial, Artemisia adamsii, under nongrazed conditions. The addition of low N content simulating N deposition around the study area by the year 2050 did not significantly increase grassland productivity. Our results suggest that increasing N deposition can enhance grassland recovery after a drought even in arid environments, such as the Mongolian steppe. This enhancement may be accompanied by a loss of grassland quality caused by an increase in the unpalatable species A. adamsii and largely depends on future human activities and the consequent deposition of N in Mongolia.  相似文献   

10.
中国北方草原对气候干旱的响应   总被引:6,自引:0,他引:6  
王宏  李晓兵  李霞  王丹丹 《生态学报》2008,28(1):172-182
草原生长动态受气候条件的影响和制约,在很大程度上取决于水分条件.为了较好阐明草原生长与干旱气候关系,利用表征草原生长变化的NDVI(Normalized Difference Vegetation Index)指数和表征干旱的SPI(Standardized Precipitation Index)指数研究了荒漠草原、典型草原、草甸草原与干旱气候的线性关系,表明荒漠草原的生长动态受季节性干旱影响很大,短期、中长期和长期干旱对荒漠草原影响较小.典型草原对季节性干旱响应较强,而对短期、中长期和长期的干旱响应较弱.草甸草原对季节性和长期干旱响应较强.并且草原对降雨量的响应具有时滞效应,水分盈亏对草原的影响是累积效应.利用基于虚拟变量的回归模型和简单回归模型模拟了草原NDVI对SPI指数的响应关系,基于虚拟变量的回归模型显示出对草原NDVI与SPI关系的较优拟合度.表明了草原生长动态对干旱气候响应具有季节性效应.  相似文献   

11.
Grassland monitoring is important for both global change research and regional sustainable development. Gross primary production (GPP) is one of the key factors for understanding grass growing conditions. Methods for estimating GPP are plentiful, and the light use efficiency (LUE) model based on remote sensing data is widely used. The MODIS GPP product, which is employed by the National Aeronautics and Space Administration (NASA), is calculated using the LUE model and the surface reflection data from the Moderate Resolution Imaging Spectroradiometer onboard the Terra/Aqua satellite. The MODIS GPP product harbors its own uncertainties arising from the sources and parameters, such as FPAR and light use efficiency (ɛ). In this study, we propose an improved indicator for monitoring grassland based on MODIS GPP and NDVI data. Fractional vegetation coverage and the percentage of grass area (1 km2) were used to reduce the mixed pixel effect. A function of NDVI was used to simulate the light use efficiency and FPAR. The modified GPP data were calculated and validated with in situ measured data from the Sichuan province, China, 2011. The results indicated that the modified GPP data were a more accurate indicator for monitoring grassland than previous indicators, and the precision of grass production simulated by SsGPPndvi reached 85.6%. Spatial statistic results were consistent with the practical condition in most cases. Since MODIS data are available twice a day, the improved indicator can meet the actual requirement of grassland monitoring at regional scale.  相似文献   

12.
In grasslands, litter has been recognized as an important factor promoting grass persistence and the suppression of forbs. The invasive European annual grass Bromus diandrus (ripgut brome) is widespread throughout California, where it produces a persistent and thick litter layer. The native grass, Stipa pulchra, is also common in some grassland settings and can also produce persistent litter, yet it is typically associated with more forbs. Very little is known about the mechanisms through which these two common grass species influence seedling establishment of both exotic invasive and native herbs. Here, we evaluated the effect of B. diandrus and S. pulchra litter on seedling establishment of two invasive (the grass B. diandrus and the forb Centaurea melitensis) and two native (the grass S. pulchra, and the forb Clarkia purpurea) herbaceous plants in a greenhouse setting. Our results showed that B. diandrus litter cover hindered seedling establishment of the four species tested, but that the degree and mechanism of inhibition was dependent on which species was tested, life form (e.g. monocot/dicot) and seed size. Seedling emergence of the two forb species was more vulnerable to litter cover than either grass species and both forbs had smaller seed size. After germination, only seedling biomass of B. diandrus itself was reduced by litter (both B. diandrus and S. pulchra). We found no significant effects of leachate of either grass species on seedling emergence of any species, while a high concentration of B. diandrus leachates inhibited root growth of all species including B. diandrus seedlings. Stipa pulchra litter leachates did not affect S. pulchra or C. melitensis seedlings although it did suppress B. diandrus and C. purpurea seedling growth. Our findings provide direct experimental evidence for the mechanism of effect of litter on these coexisting invasive and native species. Such evidence helps advance our understanding of role of B. diandrus and S. pulchra litter in California grassland.  相似文献   

13.
Regional differences in Caragana microphylla density in the Mongolian steppes were explained by considering multiple abiotic and biotic factors collectively, including aridity gradients, grazing regimes, fire disturbance, and interspecific interactions. In the central and eastern Mongolian steppes, we collected vegetation data from 127 sites. Along 250-m line transects, the hit frequencies of C. microphylla and tall-grass species were recorded. Ancillary data included weather information, livestock populations, fire occurrence maps, and herder camp locations. Based on the steppe types and disturbance regimes, the sites were classified into 12 sub-groups. The data were statistically analyzed at the site, county, and sub-group levels. The natural C. microphylla density decreased with climatic aridity from forb-steppes to semi-desert steppes, but this pattern was not observed at grazed and burned sites. Livestock grazing decreased C. microphylla density, but this effect was considerably confounded by aridity effects, especially in the central steppes, making the relationship between C. microphylla and livestock densities complex. Although fire appeared to be an important factor in the eastern steppes, the mechanism of its effect on C. microphylla density was unclear, because the fire–shrub interaction is influenced by the tall-grass recovery process after fire. Based on our results, we propose that two different confounding effects, namely aridity versus grazing and fire versus interspecific interactions, play important roles in determining the spatial distribution of C. microphylla density in the central and eastern Mongolian steppes, respectively.  相似文献   

14.
Warming, watering and elevated atmospheric CO2-concentration effects have been extensively studied separately; however, their combined impact on plants is not well understood. In the current research, we examined plant growth and physiological responses of three dominant species from the Eurasian Steppe with different functional traits to a combination of elevated CO2, high temperature, and four simulated precipitation patterns. Elevated CO2 stimulated plant growth by 10.8–41.7 % for a C3 leguminous shrub, Caragana microphylla, and by 33.2–52.3 % for a C3 grass, Stipa grandis, across all temperature and watering treatments. Elevated CO2, however, did not affect plant biomass of a C4 grass, Cleistogenes squarrosa, under normal or increased precipitation, whereas a 20.0–69.7 % stimulation of growth occurred with elevated CO2 under drought conditions. Plant growth was enhanced in the C3 shrub and the C4 grass by warming under normal precipitation, but declined drastically with severe drought. The effects of elevated CO2 on leaf traits, biomass allocation and photosynthetic potential were remarkably species-dependent. Suppression of photosynthetic activity, and enhancement of cell peroxidation by a combination of warming and severe drought, were partly alleviated by elevated CO2. The relationships between plant functional traits and physiological activities and their responses to climate change were discussed. The present results suggested that the response to CO2 enrichment may strongly depend on the response of specific species under varying patterns of precipitation, with or without warming, highlighting that individual species and multifactor dependencies must be considered in a projection of terrestrial ecosystem response to climatic change.  相似文献   

15.

Aims

The aim of this study was to examine the effect of plant species differing in functional and phylogenetic traits on the decomposition processes of leaf litter in a grassland of Japanese pampas grass (Miscanthus sinensis) and adjacent forests of Japanese red pine (Pinus densiflora) and Japanese oak (Quercus crispula), representing sequential stages of secondary succession.

Methods

The litterbag experiments were carried out for 3 years in a temperate region of central Japan.

Results

The decomposition constant (Olson’s k) was 0.49, 0.39, and 0.56/year for grass, pine, and oak, respectively. Nitrogen mass decreased in grass leaf litter during decomposition, whereas the absolute amount of nitrogen increased in leaf litter of pine and oak during the first year. Holocellulose in grass leaf litter decomposed selectively over acid-unhydrolyzable residues more markedly than in leaf litter of pine and oak. 13C nuclear magnetic resonance analysis also revealed a decrease in the relative area of O-alkyl-C in grass.

Conclusions

The different decomposition among the three litter species implied that the secondary succession from grassland to pine forest and from pine to oak forests could decrease and increase, respectively, the rate of accumulation and turnover of organic materials and N in soils.  相似文献   

16.
In grassland ecosystems, spatial and temporal variability in precipitation is a key driver of species distributions and population dynamics. We experimentally manipulated precipitation to understand the physiological basis for differences in responses of species to water availability in a southern mixed grass prairie. We focused on the performance of two dominant C4 grasses, Andropogon gerardii Vitman and Schizachyrium scoparium (Michx.) Nash, in treatments that received ambient rainfall, half of ambient rainfall (“drought” treatment), or approximately double ambient rainfall (“irrigated” treatment). Water potentials of S. scoparium were lower than A. gerardii, suggesting superior ability to adjust to water deficit in S. scoparium. Additionally, drought reduced photosynthesis to a greater extent in A. gerardii compared to S. scoparium. Leaf-level photosynthesis rates were similar in ambient and irrigated treatments, but were significantly lower in the drought treatment. Although stomatal conductance was reduced by drought, this was not limiting for photosynthesis. Leaf δ13C values were decreased by drought, caused by an increase in Ci/Ca. Chlorophyll fluorescence measures indicated light-harvesting rates were highest in irrigated treatments, and were lower in ambient and drought treatments. Moreover, drought resulted in a greater proportion of absorbed photon energy being lost via thermal pathways. Reductions in photosynthesis came as a result of non-stomatal limitations in the C4 cycle. Our results provide mechanistic support for the hypothesis that S. scoparium is more drought tolerant than A. gerardii.  相似文献   

17.

Background and aims

Plant litter quality and water availability both control decomposition. The interaction of both parameters was never studied. We used a grassland site, where litter of contrasting quality, i.e. green litter (fresh leaves; high quality) and brown litter (dead leaves, which underwent senescence but which are still attached to the plant; low quality), is returned to soil. Green and brown litter were exposed in the field under regular weather and drought conditions. The objective of this study was to evaluate the effect of drought on the decomposition of both litter types.

Methods

We incubated green and brown litter of three different grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) alone or as litter mixture (1/3 of each of the three grassland species) in litterbags for 28?weeks. Drought conditions were simulated by rainfall exclusion. After incubation, litter residues were analysed for C and nitrogen (N) content and stable isotope composition. Additionally, we determined the response of the lignin and carbohydrate signatures to the contrasting conditions.

Results

C decomposition kinetics of green and brown litter under drought conditions could be explained by two pools of contrasting turnover times. Drought decreased leaf litter C and N decomposition by more than 50% compared to regular weather conditions, mainly by strongly decreasing the decomposition rate constants. The lowest C decomposition occurred for mixtures of litter from all three grassland species. Brown litter showed on average 15% higher reduction in carbon decomposition than green litter following drought. Lignin content remained similar for green and brown litter after drought and regular weather conditions, while sugar content remained similar in green litter and decreased by 18% for brown litter under drought conditions.

Conclusions

Our results showed different response of decomposition of litter with contrasting quality to drought. Low quality brown litter is likely to be more affected than high quality green litter. Thus, litter quality must be taken into account, when assessing the effect of drought on decomposition.  相似文献   

18.
为了分析内蒙古草原不同植物物种对土壤微生物群落的影响, 采用实时荧光定量PCR (real-time PCR)以及末端限制性片段长度多态性分析(terminal restriction fragment length polymorphism, T-RFLP)等分子生物学技术, 测定了退化-恢复样地上几种典型植物的根际土壤和非根际土壤中细菌和真菌的数量及群落结构。结果表明, 不同植物物种对根际和非根际细菌及根际真菌数量均有显著影响。根际土壤中的细菌和真菌数量普遍高于非根际土壤, 尤其以真菌更为明显。对T-RFLP数据进行多响应置换过程(multi-response permutation procedures, MRPP)分析和主成分分析(principal component analysis, PCA), 结果表明, 大多数物种的根际细菌及真菌的群落结构与非根际有明显差异, 并且所有物种的真菌群落可以按根际和非根际明显分为两大类群。此外, 细菌和真菌群落结构在一定程度上存在按物种聚类的现象, 以细菌较为明显。这些结果揭示了不同植物对土壤微生物群落的影响特征, 对理解内蒙古草原地区退化及恢复过程中植被演替引起的土壤性质和功能的变化有一定的帮助。  相似文献   

19.
As drought stress is expected to occur more frequently in future climate in central Europe, survival and productivity of grassland species are an important issue. Non-stomatal limitation processes related to the drought-stress inhibition of photosynthesis of selected grassland species were analysed at three locations using leaf gas exchange and chlorophyll fluorescence. The effect of an artificial drought on the non-stomatal limitations differed considerably between species present in the same grassland plot. The maximum efficiency of photosystem II (Fv/Fm), indicator for the intactness of the photosynthetic electron transport, showed only small differences under drought. On the other hand, more pronounced effects were observed for the carboxylation velocity of Rubisco (Vc,max). Vc,max was in Phleum pratense about 20% lower under drought than in control plants, while other species in the same plot were far less affected. The carboxylation velocity of Rubisco is highly sensitive to water deficit and might represent a tool to evaluate the drought response of various species in order to address the performance of grasslands.  相似文献   

20.
本文论述了内蒙古锡林郭勒草原植被的光谱反射特征,分析了各波段反射率与不同植被牧草产量的相关关系,利用6种比值植被指标和正交指标拟建立产草量的估算模式,并进行了精度检验,确认:比值指标G与ND以及二维正交指标(PVI)可以成功地用以估测牧场产草量,这种估测方法最大误差为10%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号