首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Understanding the effects of long-term crop management on soil organic matter (SOM) is necessary to improve the soil quality and sustainability of agroecosystems.

Method

The present 7-year long-term field experiment was conducted to evaluate the effect of integrated management systems and N fertilization on SOM fractions and carbon management index (CMI). Two integrated soil-crop system management (ISSM-1 and ISSM-2, combined with improved cultivation pattern, water management and no-tillage) were compared with a traditional farming system at three nitrogen (N) fertilization rates (0, 150 and 225 kg N ha?1).

Results

Management systems had greater effects on SOM and its fractions than did N fertilization. Compared with traditional farming practice, the integrated management systems increased soil organic carbon (SOC) by 13 % and total nitrogen (TN) by 10 % (averaged over N levels) after 7 years. Integrated management systems were more effective in increasing labile SOM fractions and CMI as compared to traditional farming practice. SOC, TN and dissolved organic matter in nitrogen increased with N fertilization rates. Nonetheless, N addition decreased other labile fractions: particulate organic matter, dissolved organic matter in carbon, microbial biomass nitrogen and potassium permanganate-oxidizable carbon.

Conclusions

We conclude that integrated management systems increased total SOM, labile fractions and CMI, effectively improved soil quality in rice-rapeseed rotations. Appropriate N fertilization (N150) resulted in higher SOC and TN. Though N application increased dissolved organic matter in nitrogen, it was prone to decrease most of the other labile SOM fractions, especially under higher N rate (N250), implying the decline of SOM quality.  相似文献   

2.
Plant and Soil - A field experiment was conducted to evaluate the effects of alley cropping systems on microbial activity and soil organic matter (SOM) pools. We hypothesized that enzyme activity...  相似文献   

3.
桂西北喀斯特移民区土地利用方式对土壤养分的影响   总被引:10,自引:0,他引:10  
利用典型喀斯特峰丛洼地主要土地利用方式(灌草地、次生林地、果园、牧草地、旱地)的土壤养分测定数据,研究土地利用变化对土壤养分的影响.结果表明:土壤有机碳、全氮、有效氮含量随土地利用强度的增加而降低,灌草地和次生林地比果园、牧草地和旱地土壤有机质含量高86%~155%、全氮含量高62%~119%、有效氮含量高66%~215%(P<0.05);全磷和全钾含量主要受养分来源的影响,受土地利用方式影响较小;速效磷含量主要受施肥的影响,有效钾含量则主要受植被覆盖和水土流失状况的影响.土地利用方式是影响土壤有机碳、全氮、有效氮、有效磷、有效钾等养分含量变化的重要因素.粗放的农业耕作降低了土壤养分并引起土壤退化,而植被恢复等措施可以培肥土壤.因此,喀斯特区域应改变粗放的农业耕作方式,加强施用有机肥和平衡施肥,对坡度≥25°的坡耕地采取“退耕还林还草”措施,以恢复和重建喀斯特地区生态环境,实现土地资源的可持续利用.  相似文献   

4.
Qualitative and quantitative changes in soil and fertilizer-derived organic N fractions were assessed during a cropping season in an intertropical Alfisol, under maize and pasture, fertilized with15 N-urea. Before the sowing, after fertilizing and after the harvest, the organic N of top soil samples was fractionated by a two-step acid hydrolysis under reflux (H1 = 1 M HCl for 3 h; H2 = 3 M HCl for 3 h). The total hydrolysable N (HN) from H1 decreased significantly during the cropping season in both maize and pasture soils. Contrastingly, the content of HN from H2 and that of non-hydrolysable N did not vary significantly during the cropping season. The easily hydrolysable fractions, especially amino acid N, amino sugar N and amide N, were the most active N pools and the major source of N potentially available for plants. The urea-derived N that remained in the soil was mainly in organic forms at both 7 and 108 d after fertilizing (70–82% and 93–98%, respectively), higher figures being found in pasture than in maize soil. The total amount of urea-derived HN decreased significantly during the crop period in both maize and pasture soils. This decrease was largely due to the decline in HN from H1. The amount of non-hydrolysable urea-derived N was significantly higher in pasture than in maize soil and it decreases in the former and increases in the latter, during the cropping season. During the crop period, the decrease of urea-derived organic N was 4.6 to 9.1 times higher than that of native organic N. Shortly after fertilizing, the proportion of urea-derived N in the easily hydrolysable (H1) organic fractions was higher than that of soil N, whereas the reverse was true for the slowly hydrolysable (H2) or insoluble fractions. These differences were less marked, but still significant, at the end of cropping. The easily hydrolysable organic N fractions were more sensitive than total N to the impact of land use intensification and are, therefore, a more useful index for early detection of soil biological degradation.  相似文献   

5.
长白山原始阔叶红松林土壤有机质组分小尺度空间异质性   总被引:3,自引:1,他引:2  
土壤有机质(SOM)对于维持生态系统生产力具有非常重要的意义,有机质的组成、空间分布和空间关联性是影响和控制诸多生态系统过程的重要因素。应用地统计学方法,对长白山原始阔叶红松林局部尺度内0—20 cm土壤有机质与活性有机质的空间异质性进行了研究,并通过交叉半方差分析探讨了二者之间的相关性。研究结果表明:(1)总体上来说,土壤有机碳(SOC)、全氮(TN)、颗粒态有机碳(POC)和颗粒态有机氮(PON)空间异质性较小;而土壤微生物量碳(MBC)、微生物量氮(MBN)和表层(0—10 cm)溶解性有机碳(DOC)的空间异质性较大;(2)SOC、TN、MBC、DOC、POC和PON随着深度的增加空间自相关性增加;而溶解性有机氮(DON)的空间自相关性随深度的增加变化不大;(3)SOC与TN在表层和下层(10—20 cm)均存在空间上的正相关关系;(4)SOC、TN在表层和下层分别与MBC、MBN、DOC、DON和POC呈空间上的正相关性,但是与PON之间的空间相关关系较差;(5)不同土层深度的土壤活性有机质之间的相关关系存在差异。在表层,除POC,PON外,其余土壤活性有机质组分在空间上两两相关;但是随着土壤深度的增加,活性有机质变量之间在空间上两两相关。研究结果表明土壤有机质组分在长白山原始阔叶红松林小尺度内存在不同空间异质性和空间关联性,这为人们更好的理解森林生态系统功能(如土壤养分循环)提供了重要的理论依据。  相似文献   

6.
Mountain soils stock large quantities of carbon as particulate organic matter that may be highly vulnerable to climate change. To explore potential shifts in soil organic matter (SOM) form and stability under climate change (warming and reduced precipitations), we studied the dynamics of SOM pools of a mountain grassland in the Swiss Jura as part of a climate manipulation experiment. The climate manipulation (elevational soil transplantation) was set up in October 2009 and simulated two realistic climate change scenarios. After 4 years of manipulation, we performed SOM physical fractionation to extract SOM fractions corresponding to specific turnover rates, in winter and in summer. Soil organic matter fraction chemistry was studied with ultraviolet, 3D fluorescence, and mid-infrared spectroscopies. The most labile SOM fractions showed high intra-annual dynamics (amounts and chemistry) mediated via the seasonal changes of fresh plant debris inputs and confirming their high contribution to the microbial loop. Our climate change manipulation modified the chemical differences between free and intra-aggregate organic matter, suggesting a modification of soil macro-aggregates dynamics. Interestingly, the 4-year climate manipulation affected directly the SOM dynamics, with a decrease in organic C bulk soil content, resulting from significant C-losses in the mineral-associated SOM fraction (MAOM), the most stable form of SOM. This SOC decrease was associated with a decrease in clay content, above- and belowground plants biomass, soil microbial biomass and activity. The combination of these climate changes effects on the plant–soil system could have led to increase C-losses from the MAOM fraction through clay-SOM washing out and DOC leaching in this subalpine grassland.  相似文献   

7.
Johnson AH  Frizano J  Vann DR 《Oecologia》2003,135(4):487-499
Forest ecologists and biogeochemists have used a variety of extraction techniques to assess labile vs. non-labile soil P pools in chronosequences, the balance between biological vs. geochemical control of P transformations across a wide range of soil orders, the role of plants with either N-fixing or mycorrhizal symbionts in controlling soil P fractions, and to make inferences about plant-available P. Currently, variants of the sequential extraction procedure developed by M. J. Hedley and co-workers afford the greatest discrimination among labile and non-labile organic and inorganic P pools. Results of recent studies that used this technique to evaluate P fractions in forest soils indicate the following: (1) in intact, highly weathered forest soils of the humid tropics, Hedley-labile P values are several times larger than extractable P values resulting from mildly acidic extracting solutions which were commonly used in the past 2 decades; (2) pools of Hedley-labile P are several times larger than the annual forest P requirement and P required from the soil annually in both temperate and tropical forests; (3) long-term trends in non-labile P pools during pedogenesis are adequately represented by the Walker and Syers' model of changes in P fractionation during soil development. However, to better represent trends in pools that can supply plant-available P across forest soils of different age and weathering status, the paradigm should be modified; and (4) across a wide range of tropical and temperate forest soils, organic matter content is an important determinant of Hedley-labile P.  相似文献   

8.
The development of alley cropping systems is based on the assumption that leguminous trees planted in hedgerows influence the yield of associated crops favourably by means of the additional nutrient pool applied to the soil through tree prunings. An on-station field study (split-plot design in a randomised block design) was conducted on an Eutric Cambisol under humid premontane climate conditions in Costa Rica in order to evaluate the ability of Erythrina poeppigiana, Calliandra calothyrsus and Gliricidia sepium to increase bean (Phaseolus vulgaris) yields compared to sole cropping. Soil tillage was applied as a sub-treatment in order to evaluate if soil preparation would additionally alter soil fertility and bean yield. After seven years with pruning twice per year, the size of both the total N and P pool in the pruned tree material was about three times higher for Erythrina prunings than for Calliandra and Gliricidia prunings. Two and five weeks after mulch application 50–150% higher inorganic N pools were measured in the soil from Erythrina plots, the bean shoot biomass at harvest was increased by 65–100% and the bean yield was 15–50% higher than in plots with beans alone. Hence, of the three tree species, Erythrina was the best choice for alley cropping systems in the pedoclimatic environment studied. Soil tillage reduced bean yield, soil organic matter, total soil N content and soil microbial biomass N in the top soil and is not recommended for similar soils in humid premontane climates.  相似文献   

9.
Over the past several decades, the conversion of native forest to agricultural land uses has accelerated across the Amazon Basin. Despite a growing body of research on nutrient dynamics in Amazonian primary forest and forest-derived land uses, the effects of widespread land-use change on nutrient contents and cycles in soil and vegetation are not well understood. We reviewed over 100 studies conducted in Amazônia over the past 40 years on nutrient dynamics in natural forests and forest-derived land uses (pasture, shifting cultivation, and tree plantations). Our objectives were to compare soil data from land uses across Amazônia and identify any gaps in our present knowledge that might offer direction for future research. Specifically, by analyzing data we tested the following five widely cited hypotheses concerning the effects of land-use change on soil properties compiled from 39 studies in multifactorial ANOVA models; (a) soil pH, effective cation exchange capacity (ECEC), and exchangeable calcium (Ca) concentrations rise and remain elevated following the slash-and-burn conversion of forest to pasture or crop fields; (b) soil contents of total carbon (C), nitrogen (N), and inorganic readily extractable (that is, Bray, Mehlich I, or resin) phosphorus (Pi) decline following forest-to-pasture conversion; (c) soil concentrations of total C, N, and Pi increase in secondary forests with time since abandonment of agricultural activities; (d) soil nutrient conditions under all tree-dominated land-use systems (natural or not) remain the same; and (e) higher efficiencies of nutrient utilization occur where soil nutrient pools are lower. Following the conversion of Amazonian forest to pasture or slash-and-burn agriculture, we found a significant and lasting effect on soil pH, bulk density, and exchangeable Ca concentrations. Unlike the other three land uses studied, concentrations of extractable soil Pi were equally low in both forest and pastures of all age classes, which demonstrates that postburning pulses in soil Pi concentration following a slash-and-burn decrease rapidly after forest-to-pasture conversion, perhaps due to accumulation in organic P fractions. Neither the concentrations nor the contents of total C and N appeared to change greatly on a regionwide basis as a result of forest-to-pasture conversion, but surface soil C:N ratios in 5-year-old pastures were significantly higher than those in older pastures, suggesting changes in the soil concentrations of at least one of these elements with time after pasture creation. Pasture soils did have higher total C and N concentrations than land uses such as annual cropping and secondary forest fallow, indicating that soil C and N maintenance and/or accumulation following forest conversion may be greater in pastures than in these other two land uses. The low concentrations of C and N in shifting cultivation soils appear to persist for many years in secondary forests regenerating from abandoned crop fields, suggesting that the recuperation of soil losses of C and N resulting during no-input annual cropping is slower than previously thought. Soil C, N and P concentrations were strongly related to clay content. Across all land uses, efficiencies of N, P, and Ca use (estimated as the inverse of litterfall N, P, and Ca contents) were not related to the sizes of their soil pools. More work is needed to test and standardize P extraction procedures that more accurately reflect plant availability. Few studies have been conducted to determine the role of organic P fractions and dissolved organic N (DON) in the elemental cycles of both natural and managed systems in this region. In general, we recommend further study of annual and perennial cropping systems, as well as more detailed examination of managed pastures and fallows, and secondary forests originating from various disturbances, since the intensity of previous land use likely determines the degree of soil degradation and the rate of subsequent secondary regrowth.  相似文献   

10.
We examined the effects of the conversion of tropical forest to pasture on soil organic matter (SOM) origin and quality along a chronosequence of sites, including a primary forest and six pastures. Bulk soil samples received a physical size-fractionation treatment to assess the contribution of each compartment to total SOM pool. Besides a general increase in total C and N stocks along the chronosequence, we observed a reduction of the relative contribution of the coarser fractions to total soil C content, and an increased concentration in the finer fractions. The origin of the C in each size fraction was established from measurements of13C abundance. After 80 years about 93% of the C in the least humified fraction of the top 10 cm of soil was of pasture origin, while in the most humified it was 82%. Chemical analyses indicated that the fine silt and coarse clay fractions contained the most refractory carbon.  相似文献   

11.
The long-term soil management effects on C and N stocks of soil physical fractions are still poorly understood for South American subtropical soils. This study aimed (i) to evaluate the influence of cereal- and legume-based cropping systems and N fertilisation on C and N stocks of the sand-, silt- and clay-size fractions of a no-tilled subtropical Acrisol in southern Brazil, (ii) to compute the Carbon Management Index (CMI) for those cropping systems using physical fractionation data, and (iii) to investigate the possible existence of finite capacity of those soil physical fractions to store C and N. Soil samples of a long-term experiment were collected from the 0–2.5 and 2.5–7.5 cm layers of three no-till cropping systems [fallow bare soil, oat/maize (O/M) and pigeon pea+maize (P+M)] under two N fertilisation levels (0 and 180 kg N ha–1). However, for fallow bare soil, only the non-fertilised sub-plot was sampled. An adjacent native grassland soil was sampled as a reference. The C and N stocks of the three soil physical fractions were higher in the legume-based cropping system (P+M) than in O/M and bare soil, because of the higher residue input in the former. The P+M cropping system restored the C and N stocks in sand- and silt-size fractions to the same levels found in grassland soil. Higher C and N stocks in all physical fractions were also obtained with N fertilisation. The C and N stocks and the C:N ratio were most affected by cropping systems in the sand- and least in the clay-size fraction. Particulate organic matter was found in the silt-size fraction, showing this fraction is not only constituted by mineral-associated organic mater, as commonly believed. Taking grassland soil as reference (CMI = 100), the CMI ranged from 46, in O/M no N, to 517, in P+M with N, pointing to a better soil management in the latter. The clay-size fraction tended to show a finite capacity to store C and N (48.8 g C kg–1 and 4.9 g N kg–1 of clay), which was not verified in sand- and silt-size fractions. The adoption of no-tillage and legume-based cropping systems with high residue input are adequate soil management strategies to improve soil quality and make the agricultural production systems more sustainable in subtropical regions.  相似文献   

12.
Fertilisation of agricultural land causes an accumulation of nutrients in the top soil layer, among which phosphorus (P) is particularly persistent. Changing land use from farmland to forest affects soil properties, but changes in P pools have rarely been studied despite their importance to forest ecosystem development. Here, we describe the redistributions of the P pools in a four-decadal chronosequence of post-agricultural common oak (Quercus robur L.) forests in Belgium and Denmark. The aim was to assess whether forest age causes a repartitioning of P throughout the various soil P pools (labile P, slowly cycling P and occluded P); in particular, we addressed the time-related alterations in the inorganic versus organic P fractions. In less than 40 years of oak forest development, significant redistributions have occurred between different P fractions. While both the labile and the slowly cycling inorganic P fractions significantly decreased with forest age, the organic fractions significantly increased. The labile P pool (inorganic + organic), which is considered to be the pool of P most likely to contribute to plant-available P, significantly decreased with forest age (from >20 to <10% of total P), except in the 0-5 cm of topsoil, where labile P remained persistently high. The shift from inorganic to organic P and the shifts between the different inorganic P fractions are driven by biological processes and also by physicochemical changes related to forest development. It is concluded that the organic labile P fraction, which is readily mineralisable, should be taken into account when studying the bioavailable P pool in forest ecosystems.  相似文献   

13.
Within the framework of the Kyoto Protocol, the potential mitigation of greenhouse gas emissions by terrestrial ecosystems has placed focus on carbon sequestration following afforestation of former arable land. Central to this soil C sequestration are the dynamics of soil organic matter (SOM). In North Eastern Italy, a mixed deciduous forest was planted on continuous maize field soil with a strong C4 isotopic C signature 20 years ago. In addition, a continuous maize field and a relic of the original permanent grassland were maintained at the site, thus offering the opportunity to compare the impacts on soil C dynamics by conventional agriculture, afforestation and permanent grassland. Soil samples from the afforested, grassland and agricultured systems were separated in three aggregate size classes, and inter‐ vs. intra‐aggregate particulate organic matter was isolated. All fractions were analyzed for their C content and isotopic signature. The distinct 13C signature of the C derived from maize vegetation allowed the calculation of proportions of old vs. forest‐derived C of the physically defined fractions of the afforested soil. Long‐term agricultural use significantly decreased soil C content (?48%), in the top 10 cm, but not SOM aggregation, as compared to permanent grassland. After 20 years, afforestation increased the total amount of soil C by 23% and 6% in the 0–10 and in the 10–30 cm depth layer, respectively. Forest‐derived carbon contributed 43% and 31% to the total soil C storage in the afforested systems in the 0–10 and 10–30 cm depths, respectively. Furthermore, afforestation resulted in significant sequestration of new C and stabilization of old C in physically protected SOM fractions, associated with microaggregates (53–250 μm) and silt&clay (<53 μm).  相似文献   

14.
Mineral soils from a chronosequence of landslide scars ranging in age from 1 to more than 55 years in a subtropical montane rain forest of eastern Puerto Rico were used to determine the rate at which labile P capital recovers during primary succession. Nine organic and inorganic soil P fractions were measured using the Hedley sequential extraction procedure. Deep soil cores (9 m) from a nearby site were also analyzed to determine the distribution of P fractions below the solum. Litterfall P was measured for two years in the landslide scars to estimate allochthonous litter P inputs, and published precipitation data were used to estimate annual atmospheric inputs of P to the recovering forests. In the upper solum (0–10 cm), organic matter increased with landslide age, as did resin‐Pi, labile P (defined here as resin‐Pi + HCO3‐Pi + HCO3‐Po) and total organic P. Occluded P decreased with increasing landslide age. No significant changes in P concentrations or pools were observed in 10 to 35 or in 35 to 60 cm depth intervals across the chronosequence. Labile soil P increased to approximately two‐thirds of the pre‐disturbance levels in the oldest landslide scar (>55 yr). Thus, plants, their associated microflora/fauna, and P inputs from off‐site substantially altered the distribution of soil P fractions during forest recovery. Across the chronosequence, the increase in labile P accumulated in soil and biomass appeared to be greater than the estimated allochthonous inputs from litter and precipitation, indicating that as the forest developed, some occluded P may have been released for use by soil biota. Resin‐Pi and labile P were correlated with soil organic matter content, suggesting, as in other highly weathered soils, organic matter accumulation and turnover are important in maintaining labile P pools. Primary mineral P (apatite) was scarce, even in deep soil cores.  相似文献   

15.
The sustainability of using irrigation to produce food depends not only on the availability of sufficient water, but also on the soil's ‘response’ to irrigation. Stocks of carbon (C) and nitrogen (N) are key components of soil organic matter (SOM), which is important for sustainable agricultural production. While there is some information about the effects of irrigation on soil C stocks in cropping systems, there is a paucity of such studies in pastoral food production systems. For this study, we sampled soils from 34 paired, irrigated and unirrigated pasture sites across New Zealand (NZ) and analysed these for total C and N. On average, irrigated pastures had significantly (< 0.05) less soil carbon (C) and nitrogen (N) than adjacent unirrigated pastures, with differences of 6.99 t C ha?1 and 0.58 t N ha?1 in the uppermost 0.3 m. Differences in C and N tended to occur throughout the soil profile, so the cumulative differences increased with depth, and the proportion of the soil C lost from deeper horizons was large. There were no relationships between differences in soil C and N stocks and the length of time under irrigation. This study suggests SOM will decrease when pastures under a temperate climate are irrigated. On this basis, increasing the area of temperate pasture land under irrigation would result in more CO2 in the atmosphere and may directly and indirectly increase N leaching to groundwater. Given the large and increasing area of land being irrigated both in NZ and on a global scale, there is an urgent need to determine whether the results found in this study are also applicable in other regions and under different land management systems (e.g. arable).  相似文献   

16.
Anthropogenic perturbations have profoundly modified the Earth's biogeochemical cycles, the most prominent of these changes being manifested by global carbon (C) cycling. We investigated long‐term effects of human‐induced land‐use and land‐cover changes from native tropical forest (Kenya) and subtropical grassland (South Africa) ecosystems to agriculture on the dynamics and structural composition of soil organic C (SOC) using elemental analysis and integrated 13C nuclear magnetic resonance (NMR), near‐edge X‐ray absorption fine structure (NEXAFS) and synchrotron‐based Fourier transform infrared‐attenuated total reflectance (Sr‐FTIR‐ATR) spectroscopy. Anthropogenic interventions led to the depletion of 76%, 86% and 67% of the total SOC; and 77%, 85% and 66% of the N concentrations from the surface soils of Nandi, Kakamega and the South African sites, respectively, over a period of up to 100 years. Significant proportions of the total SOC (46–73%) and N (37–73%) losses occurred during the first 4 years of conversion indicating that these forest‐ and grassland‐derived soils contain large amounts of labile soil organic matter (SOM), potentially vulnerable to degradation upon human‐induced land‐use and land‐cover changes. Anthropogenic perturbations altered not only the C sink capacity of these soils, but also the functional group composition and dynamics of SOC with time, rendering structural composition of the resultant organic matter in the agricultural soils to be considerably different from the SOM under natural forest and grassland ecosystems. These molecular level compositional changes were manifested: (i) by the continued degradation of O‐alkyl and acetal‐C structures found in carbohydrate and holocellulose biomolecules, some labile aliphatic‐C functionalities, (ii) by side‐chain oxidation of phenylpropane units of lignin and (iii) by the continued aromatization and aliphatization of the humic fractions possibly through selective accumulation of recalcitrant H and C substituted aryl‐C and aliphatic‐C components such as (poly)‐methylene units, respectively. These changes appeared as early as the fourth year after transition, and their intensity increased with duration of cultivation until a new quasi‐equilibrium of SOC was approached at about 20 years after conversion. However, subtle but persistent changes in molecular structures of the resultant SOM continued long after (up to 100 years) a steady state for SOC was approached. These molecular level changes in the inherent structural composition of SOC may exert considerable influence on biogeochemical cycling of C and bioavailability of essential nutrients present in association with SOM, and may significantly affect the sustainability of agriculture as well as potentials of the soils to sequester C in these tropical and subtropical highland agroecosystems.  相似文献   

17.
Increased use of N fertilizer and more intensive cropping due to the rising food demand in the tropics requires design and evaluation of sustainable cropping systems with minimum soil acidification. The objectives of this study were to quantify acidification of an Oxic Kandiustalf with different types of N fertilizer in two cropping systems under no-tillage and its effect on crop performance. Chemical soil properties in continuous maize (Zea mays L.) and maize-cowpea (Vigna unguiculata (L.) Walp) rotation were determined with three N sources (urea (UA), ammonium sulfate (AS) and calcium ammonium nitrate (CAN)) in Nigeria, West Africa, during five years. Chemical soil properties were related to grain yield and diagnostic plant nutrient concentrations. For the three N sources, the rate of decline in soil pH in maize-cowpea rotation was 57±7.5% of that in continuous maize, where double the amount of N fertilizer was applied. The rate of soil acidification during the five years was greater for AS than for UA or CAN in continuous maize, and not different for UA and CAN in both cropping systems. With AS, soil pH decreased from 5.8 to 4.5 during five years of continuous maize cropping. Exchangeable acidity increased with N fertilization, but did not reach levels limiting maize or cowpea growth. Return of residues to the soil surface may have reduced soluble and exchangeable Al levels by providing a source of organic ligands. Soil solution Mn concentrations increased with N fertilization to levels likely detrimental for crop growth. Symptoms of Mn toxicity were observed on cowpea leaves where AS was applied to the preceding maize crop, but not on maize plants. Soil acidification caused significant reductions in exchangeable Ca and effective CEC. Main season maize yield with N fertilization was lower with AS than with UA or CAN, but not different between UA and CAN during the six years of cropping. The lower maize grain yield with AS than with the other N sources was attributed to lower pH and a greater extractable Mn concentration with AS. When kaolinitic Alfisols are used for continuous maize cropping, even under no-tillage with crop residues returned as mulch, the soil may become acidifed to pH values of 5.0 and below after a few years. The no-till cereal-legume rotation with judicial use of urea or CAN as N sources for the cereal crop is a more suitable system for these poorly buffered, kaolinitic soils than continuous maize cropping. The use of AS as N source should be avoided. H Marschner Section editor  相似文献   

18.
The labile organic C (LC) and C management index (CMI) may be useful indicators of alterations of soil organic matter (SOM) in areas undergoing land use change (LUC) for biofuels production. However, there is no consensus on which methodology is best suited for quantifying LC and CMI. The main goal of this study was to assess alterations on LC contents and CMI values in sites undergoing the LUC native vegetation (NV)-pasture (PA)-sugarcane (SC) in south-central Brazil, and evaluated the sensitivity of different methods commonly used to assess LC and CMI, in order to select a best-suited method to quantify these indicators in tropical regions. The conversion NV-PA decreased the LC and CMI, whilst the conversion of PA-SC tended to increase the CMI. Accordingly, cropping sugarcane in areas previously used as pastures, as currently has been observed in Brazil, enhance SOM quality. The methodology used to quantify the LC and the CMI is critical to infer about LUC effects. Both methods proposed by Blair et al. (1995) and Diekow et al. (2005) were highly sensitive to the conversions evaluated in this research. However, Diekow et al. (2005) is the most suitable method to estimate the LC and CMI in sites undergoing LUC in Brazil, since the approach of Blair et al. (1995) notably overestimates these SOM quality indicators. We reiterate that the SOM changes are well expressed by the total soil organic C in areas undergoing LUC and, integrated approaches, such as the CMI, are quite suitable to evaluate the effects of LUC on SOM.  相似文献   

19.
We used the Hedley sequential extraction procedure to measure nine different organic inorganic soil phosphorus fractions in forest soil of the Bragantina region of Para, Brazil. We compared the labile fractions (resin‐extractable P + HCO3‐extractable inorganic and organic P) in Oxisols from three secondary forests (10, 20, and 40 years old) and a primary forest. These stands were located in an area that has supported shifting agriculture for approximately a century. After agricultural use, total P and labile P in soils of young secondary forests are diminished compared to the amounts presents in the primary forest soil. Within each stand, organic carbon content was a good predictor of labile organic and inorganic P, consistent with the large body of research indicating that mineralization of organic matter is important to plant nutrition in tropical ecosystems. During the reorganization of P pools during forest development, the pool of labile organic P (HCO3‐extractable) diminishes more than the other labile fractions, suggesting that it is directly or indirectly an important source of P for the regrowing forest vegetation. Across the four age classes of forest, the soil reservoir of labile P was equal to or greater than the total amount of P in the vegetation. If labile P measured by this method adequately represents P available to plants in the short term (as suggested by the current consensus), we would conclude that plant‐available P is reasonable abundant, and that the effects of agriculture on available P pools are detectable but not sufficient to compromise forest regrowth in this area.  相似文献   

20.
Davidson  Robert  Gagnon  Daniel  Mauffette  Yves 《Plant and Soil》1999,208(1):135-147
Land reclamation in the humid tropics, using native tree plantations, requires a better knowledge of plant-soil interactions, and of patterns of growth of several poorly known species. We examined the establishment and mineral nutrition of two early-successional native tree species, Inga densiflora (N-fixing) and Pollalesta discolor, in relation to properties of a degraded Hydrandept volcanic soil in Ecuadorian Amazon. Initial content of organic matter was the most significant soil variable in explaining the growth of pure stands of both species and was strongly related to effective cation exchange capacity (ECEC) and to net total N mineralization. Leaves of Pollalesta discolor had greater concentration of nutrients than Inga densiflora, which led to a litter-layer rich in nutrients. Deficient concentrations of foliar P, detected on plots with low soil organic matter, were linked to poor growth of Inga densiflora, and indicate that this species may be P-limited. The inclusion of Inga densiflora did not stimulate the growth of Pollalesta discolor in mixed stands. This study indicates that soil organic matter management is an important issue on these degraded volcanic soils. We suggest that a reduction of the pool of labile organic matter appears to hamper tree productivity through a nutrient shortage. The high variability of the degraded soil studied proved to be an obstacle to tree growth and establishment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号