首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve the production of biodiesel by enzymatic conversion of triglycerides in cottonseed oil, compatible solutes were added to the solvent-free methanolysis system to prevent competitive methanol inhibition on the immobilized lipase (Novozym® 435). The results indicated that the addition of ectoine increased biodiesel synthesis using a three-step methanol addition process. The concentration of methyl ester (ME) reached a maximum of 95.0% in the presence of 1.1 mmol/l ectoine, an increase of 20.9% compared to that in the absence of ectoine. On the other hand, excess ectoine decreased the ME concentration. Ectoine was also shown to enhance reuse of the immobilized lipase, significantly improving ME concentrations in each recycling test. Total concentrations of ME with added ectoine were about 1.5 times that without ectoine during five recycling tests (molar ratio of cottonseed oil to methanol, 1:4). Enzymatic reaction kinetics showed, in the concentration ranges of 0.8–1.14 mol/l and 0.03–8 mol/l for triglyceride and methanol, respectively, that ectoine had no effect on the initial reaction rates when methanol concentrations were below 0.5 mol/l. When methanol concentration exceeded 0.5 mol/l, the addition of 0.8 mmol/l ectoine increased the initial reaction rates, and the lipase exhibited a lower affinity for methanol and higher affinity for triglyceride (kinetic parameters of KmA increase, KmTG decrease). However, the initial reaction rates decreased significantly when 8 mmol/l ectoine was added, with the lipase having higher affinity for methanol and lower affinity for triglyceride (KmA decrease, KmTG increase). The supplementation of ectoine provided a new method for the purpose of improving yield of biodiesel catalyzed by enzyme.  相似文献   

2.
The detrimental effects of waste cooking oil on sewer system attracted attention toward its proper management and reusing this waste oil for making biodiesel provides commercial and environmental advantage. In the present study, biodiesel has been successfully produced from waste cooking oil and dimethyl carbonate by transesterification, instead of the conventional alcohol. In this optimization study, the effect of various reaction conditions such as solvent, time and temperature, molar ratio of DMC to oil, enzyme loading and reusability, on the yield of fatty acid methyl ester (FAME) has been studied. The Maximum conversion of FAMEs achieved was 77.87% under optimum conditions (solvent free system, reaction time of 24 h, 60 °C, molar ratio of DMC to oil 6:1, catalyst amount 10% Novozym 435 (based on the oil weight)). Moreover, there was no obvious loss in the conversion after lipases were reused for 6 batches under optimized conditions.  相似文献   

3.
ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m2/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3–4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60 °C for 8 h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity.  相似文献   

4.
《Process Biochemistry》2007,42(6):951-960
Experimental determination of the separate effects of palm oil and methanol concentrations on the rate of their enzymatic transesterification was used to propose suitable mechanismic steps and to test the generated kinetic model. The reaction took place in n-hexane organic medium and the lipase used was from Mucor miehei. At a constant methanol concentration of 300 mol m−3, it was found that, initially as the palm oil concentration increased, the initial reaction rate increased. However, the initial rate dropped sharply at substrate concentrations larger than 1250 mol m−3. Similar behaviour was observed for methanol concentration effect, where at a constant substrate concentration of 1000 mol m−3, the initial rate of reaction dropped at methanol concentrations larger than 3000 mol m−3. Ping Pong Bi Bi mechanism with inhibition by both reactants was adopted as it best explains the experimental findings. A mathematical model was developed from a proposed kinetic mechanism and was used to identify the regions where the effect of inhibition by both substrates arised. The proposed model equation is essential for predicting the rate of methanolysis of palm oil in a batch or a continuous reactor and for determining the optimal conditions for biodiesel production.  相似文献   

5.
To develop a robust whole-cell biocatalyst that works well at moderately high temperature (40–50 °C) with organic solvents, a thermostable lipase from Geobacillus thermocatenulatus (BTL2) was introduced into an Aspergillus oryzae whole-cell biocatalyst. The lipase-hydrolytic activity of the immobilized A. oryzae (r-BTL) was highest at 50 °C and was maintained even after an incubation of 24-h at 60 °C. In addition, r-BTL was highly tolerant to 30% (v/v) organic solvents (dimethyl carbonate, ethanol, methanol, 2-propanol or acetone). The attractive characteristics of r-BTL also worked efficiently on palm oil methanolysis, resulting in a nearly 100% conversion at elevated temperature from 40 to 50 °C. Moreover, r-BTL catalyzed methanolysis at a high methanol concentration without a significant loss of lipase activity. In particular, when 2 molar equivalents of methanol were added 2 times, a methyl ester content of more than 90% was achieved; the yield was higher than those of conventional whole-cell biocatalyst and commercial Candida antarctica lipase (Novozym 435). On the basis of the results regarding the excellent lipase characteristics and efficient biodiesel production, the developed whole-cell biocatalyst would be a promising biocatalyst in a broad range of applications including biodiesel production.  相似文献   

6.
A highly active whole cell lipase (WCL) for efficient methanolysis of palm oil (PO) to biodiesel (BD) was prepared by isolation, cultivation and immobilization of lipase producing fungi. Fungi were screened from soil and the best isolate (PDA-6) identified as Aspergillus nomius exhibited maximum WCL methanolysis activity (1.4 g h−1 g−1) when inexpensive waste cooking oil was used as carbon source. The maximum BD yield with PDA-6 WCL reached 95.3% after 40 h at a lipase load 10% (w/w) of PO and methanol to PO molar ratio 5:1. The immobilization of PDA-6 cells within biomass suspended particle (BSP) made of polyurethane foam improved the repeated use of WCL and the remaining activity after 10 cycles was 88.2%. The PDA-6 WCL was more active in methanolysis of PO to BD than most WCLs previously reported. The newly isolated A. nomius is not only potential for producing WCL but also utilizing waste cooking oil.  相似文献   

7.
A large improvement in the thermostability of Candida antarctica lipase B (CALB) was achieved through double immobilization, i.e., physical adsorption and R1 silaffin-mediated biosilicification. The C-terminus of CALB was fused with the R1 silaffin peptide for biosilicification. The CALB-R1 fusion protein was adsorbed onto a macroporous polyacrylate carrier and then subsequently biosilicified with tetramethyl orthosilicate (TMOS). After R1 silaffin-mediated biosilicification, the double-immobilized CALB-R1 exhibited remarkable thermostability. The T5060 of the double-immobilized CALB-R1 increased dramatically from 45 to 72 °C and that was 27, 13.8, 9.8 and 9.9 °C higher than the T5060 values of free CALB-R1, CALB-R1 adsorbed onto a resin, commercial Novozym 435, and Novozym 435 treated with TMOS, respectively. In addition, the time required for the residual activity to be reduced to half (t1/2) of the double immobilized CALB-R1 elevated from 12.2 to 385 min, which is over 30 times longer life time compared free CALB-R1. The optimum pH for biosilicification was determined to be 5.0, and the double-immobilized enzyme showed much better reusability than the physically adsorbed enzyme even after 6 repeated reuses. This R1-mediated biosilicification approach for CALB thermostabilization is a good basis for the thermostabilization of industrial enzymes that are only minimally stabilized by protein engineering.  相似文献   

8.
《Process Biochemistry》2010,45(4):519-525
The production of biodiesel with soybean oil and methanol through transesterification by Novozym 435 (Candida antarctica lipase B immobilized on polyacrylic resin) were conducted under two different conditions—ultrasonic irradiation and vibration to compare their overall effects. Compared with vibration, ultrasonic irradiation significantly enhanced the activity of Novozym 435. The reaction rate was further increased under the condition of ultrasonic irradiation with vibration (UIV). Effects of reaction conditions, such as ultrasonic power, water content, organic solvents, ratio of solvent/oil, ratio of methanol/oil, enzyme dosage and temperature on the activity of Novozym 435 were investigated under UIV. Under the optimum conditions (50% of ultrasonic power, 50 rpm vibration, water content of 0.5%, tert-amyl alcohol/oil volume ratio of 1:1, methanol/oil molar ratio of 6:1, 6% Novozym 435 and 40 °C), 96% yield of fatty acid methyl ester (FAME) could be achieved in 4 h. Furthermore, repeated use of Novozym 435 after five cycles showed no obvious loss in enzyme activity, which suggested this enzyme was stable under the UIV condition. These results indicated that UIV was a fast and efficient method for biodiesel production.  相似文献   

9.
A simple and convenient method was proposed in this paper to develop a flow-through enzymatic micro-reactor made from polytetrafluoroethylene (PTFE). It consisted of the polydopamine layer (functioned as a primer) and layer by layer (LBL) coatings composed of polyethylenimine (PEI) and lipase. The multiple deposition of PEI and lipase was the key factor of increasing the enzyme loading on microreactor. After 8 PEI/lipase layers, enzyme loading on the inner surface of 5-m microchannel reached a maximum (350 μg to 400 μg), compared with approximately 20 μg in single layer. Microreactor with higher enzyme loading was successfully applied on transesterification of soybean oil for effective fatty acid methyl ester (FAME, biodiesel) production. A 95.2% conversion rate of biodiesel can be achieved in 53 min under optimized conditions, instead of a couple of hours in the traditional batch reaction.  相似文献   

10.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

11.
An inexpensive self-made immobilized lipase from Penicillium expansum was shown to be an efficient biocatalyst for biodiesel production from waste oil with high acid value in organic solvent. It was revealed that water from the esterification of free fatty acids and methanol prohibited a high methyl ester yield. Adsorbents could effectively control the concentration of water in the reaction system, resulting in an improved methyl ester yield. Silica gel was proved to be the optimal adsorbent, affording a ME yield of 92.8% after 7 h. Moreover, the enzyme preparation displayed a higher stability in waste oil than in corn oil, with 68.4% of the original enzymatic activity retained after being reused for 10 batches.  相似文献   

12.
4-Chloro-2-methylphenoxyacetic acid (MCPA) is a selective systemic herbicide which is absorbed by leaves and roots. MCPA esters are preferred due to their low water solubility and environmental friendliness. Esterification of MCPA with n-butanol was investigated as a model reaction using immobilized enzymes under the influence of microwave irradiation. Different immobilized enzymes such as Novozym 435, Lipozyme TL IM, Lipozyme RM IM and Lipase AYS Amano were studied under microwave irradiation amongst which Novozym 435 (immobilized Candida antarctica lipase B) was the best catalyst. Effects of various parameters were systematically studied on rates and conversion. Under microwave irradiation, the initial rates were observed to increase up to 2-fold. Under optimized conditions of 0.1 mmol MCPA and 0.3 mmol n-butanol in 15 mL 1,4-dioxane as solvent, Novozym 435 showed a conversion of 83% at 60 °C in 6 h. Based on initial rate and progress curve data, the reaction was shown to follow the Ping Pong bi–bi mechanism with inhibition by MCPA and n-butanol. Esterification of MCPA was also studied with different alcohols such as isopropyl alcohol, n-pentanol, n-hexanol, benzyl alcohol and 2-ethyl-1-hexanol.  相似文献   

13.
《Process Biochemistry》2010,45(10):1677-1682
A combination of two lipases was employed to catalyze methanolysis of soybean oil in aqueous medium for biodiesel production. The two lipase genes were cloned from fungal strains Rhizomucor miehei and Penicillium cyclopium, and each expressed successfully in Pichia pastoris. Activities of the 1,3-specific lipase from R. miehei (termed RML) and the non-specific mono- and diacylglycerol lipase from P. cyclopium (termed MDL) were 550 U and 1545 U per ml respectively, and enzymatic properties of these supernatant of fermentation broth (liquid lipase) were stable at 4 °C for >3 months. Under optimized conditions, the ratio of biodiesel conversion after 12 h at 30 °C, using RML alone, was 68.5%. When RML was assisted by addition of MDL, biodiesel conversion ratio was increased to >95% under the same reaction conditions. The results suggested that combination of lipases with different specificity, for enzymatic conversion of more complex lipid substrates, is a potentially useful strategy for biodiesel production.  相似文献   

14.
This paper studies the synthesis of structured triacylglycerols (STAGs), rich in polyunsaturated fatty acids (PUFAs) by a two-step enzymatic process: (i) alcoholysis of fish oils (cod liver and tuna oils) with ethanol to obtain 2-monoacylglycerols (2-MAGs), catalyzed by 1,3 specific lipases and (ii) esterification of these 2-MAGs with caprylic acid (CA, 8:0), also catalyzed by a 1,3 specific lipase, to produce STAGs of structure CA–PUFA–CA. As regards the alcoholysis reaction, three factors have been studied: the influence of the type of lipase used (lipase D from Rhizopus oryzae, immobilized on Accurel MP1000, and Novozym 435 from Candida antarctica), the operational mode of a stirred tank reactor (STR operating in discontinuous and continuous mode) and the intensity of treatment (IOT = lipase amount × reaction time/oil amount). Although higher 2-MAG yields were obtained with lipase D, Novozym 435 was selected due to its greater stability in the operational conditions. The highest 2-MAG yield (63%) was attained in the STR operating in discontinuous mode at an IOT of 1 g lipase × h g oil?1 (at higher IOT the 2-MAGs were degraded to glycerol). This system was scaled up to 100 times the initial volume, achieving a similar yield (65%) at the same IOT. The 2-MAGs in the final alcoholysis reaction mixture were separated from ethyl esters by solvent extraction using solvents of low toxicity (ethanol and hexane); the 2-MAG recovery yield was over 90% and the purity was approximately 87–90%. Regarding the esterification of the 2-MAGs, the following factors were studied: the influence of the lipase type used, the presence or absence of solvent (hexane) and the reaction time or intensity of treatment (IOT = lipase amount × reaction time/2-MAG amount). Of the five lipases tested, the highest STAG percentages (over 90%) were attained with lipases D and DF, immobilized on Accurel MP1000. These STAGs contain 64% CA, of which 98% is at positions 1 and 3. Position 2 contains 5% CA and 45% PUFAs, which means that all the PUFAs that were located at position 2 in the original oil remain in that position in the final STAGs. The lipase D immobilized on Accurel MP1000 is stable in the operational conditions used in the esterification reaction. Finally the purification of STAGs was carried out by neutralization of free fatty acids with hydroethanolic solution of KOH and extraction of STAGs with hexane. By this method purity was over 95% and separation yields were about 80%.  相似文献   

15.
Candida antarctica lipase B (CAL-B, Novozyme 435) catalyzes the transacylation of methyl acrylate and methyl methacrylate with diols and triols in 2-methyl-2-butanol at 50 °C. Under the experimental conditions, up to 70 mol% of the acyl donor methyl acrylate was converted. Methyl methacrylate is the less efficient acyl donor (up to 60 mol%) due to the higher sterical hindrance in the enzymatic transacylation. Under the reaction conditions high yields of the mono-acylated products are obtained, which contain minor amounts of bis(meth)acrylates. In addition it was observed that Novozyme 435 catalyzes regioselectively the acylation of the primary hydroxyl groups. In comparison with the chemical catalyzed route no selectivity was observed for unsubstituted diols. For substituted diols more mono-acylated product was formed in the lipase-catalyzed reaction than in the chemical catalyzed reaction.  相似文献   

16.
Cross-linked enzyme aggregates (CLEAs), protein coated microcrystals (PCMCs), cross-linked protein coated microcrystals (CLPCMCs) of Candida antarctica lipase B (CALB) were used for esterification of glycerol with palmitic acid in acetone under low water condition. With CLEAs, 81% monoglyceride (MG) along with 4.5% diglyceride (DG) were produced at 1% (v/v) water content in 24 h. The water content in the medium was managed by stepwise addition of the molecular sieves at appropriate time intervals. With PCMCs (potassium sulfate as a core material), 82% monoglyceride along with 4.0% diglyceride were obtained, with 0.5% water (v/v) added initially to anhydrous acetone with molecular sieves present in the reaction medium. With CLPCMC (prepared by cross-linking with 200 mM glutaraldehyde), 87% monoglyceride and 3.3% diglyceride were produced in 24 h in presence of 1% (v/v) water (added initially) and with appropriate amount of molecular sieves added in the reaction medium. The results offer a comparative study on the performance of three high activity preparations of CALB for preparation of monopalmitin with ≤10% of the diglyceride content.  相似文献   

17.
Sugar esters of fatty acids have many applications as biocompatible and biodegradable emulsifiers, which are determined by their degrees of esterification (DE). Direct esterification of fructose with lauric acid in organic media used commercial immobilized Candida antarctica lipase B (CALB) was investigated for DE. Significant difference of DE was observed between 2-methyl-2-butanol (2M2B) and methyl ethyl ketone (MEK), as di-ester/mono-ester molar ratio of 1.05:1 in 2M2B and 2.79:1 in MEK. Fourier transform infrared (FTIR) spectra showed that the secondary structure of the enzyme binding mono-ester presented distinct difference in 2M2B and MEK. Contents of β-turn and antiparallel β-sheet of CALB in 2M2B were 26.9% and 16.2%, respectively, but 19.1% and 13.2% in MEK. To understand the relationship between the conformational changes and differences of DE, mono-ester and fatty acid were directly employed for synthesis of di-ester. The maximum initial velocity of di-ester synthesis in MEK was 0.59 mmol g (enzyme)−1 h−1, which was 2.19-fold as greater as that in 2M2B, indicating that CALB conformation in MEK was preferred for the synthesis of di-ester. These results demonstrated that the conformation of CALB binding mono-ester affected by organic solvents essentially determined DE.  相似文献   

18.
In human milk fat (HMF), palmitic acid (20–30%), the major saturated fatty acid, is mostly esterified at the sn-2 position of triacylglycerols, while unsaturated fatty acids are at the sn-1,3 positions, conversely to that occurring in vegetable oils.This study aims at the production of HMF substitutes by enzyme-catalyzed interesterification of tripalmitin with (i) oleic acid (system I) or (ii) omega-3 polyunsaturated fatty acids (omega-3 PUFA) (system II) in solvent-free media. Interesterification activity and batch operational stability of commercial immobilized lipases from Rhizomucor miehei (Lipozyme RM IM), Thermomyces lanuginosa (Lipozyme TL IM) and Candida antarctica (Novozym 435) from Novozymes, DK, and Candida parapsilosis lipase/acyltransferase immobilized on Accurel MP 1000 were evaluated. After 24-h reaction at 60 °C, molar incorporation of oleic acid was about 27% for all the commercial lipases tested and 9% with C. parapsilosis enzyme. Concerning omega-3 PUFA, the highest incorporations were observed with Novozym 435 (21.6%) and Lipozyme RM IM (20%), in contrast with C. parapsilosis enzyme (8.5%) and Lipozyme TL IM (8.2%). In system I, Lipozyme RM IM maintained its activity for 10 repeated 23-h batches while for Lipozyme TL IM, Novozym 435 and C. parapsilosis enzyme, linear (half-life time, t1/2 = 154 h), series-type (t1/2 = 253 h) and first-order (t1/2 = 34.5 h) deactivations were respectively observed. In system II, Lipozyme RM IM showed linear deactivation (t1/2 = 276 h), while Novozym 435 (t1/2 = 322 h) and C. parapsilosis enzyme (t1/2 = 127 h), presented series-type deactivation. Both activity and stability of the biocatalysts depended on the acyl donor used.  相似文献   

19.
Partial hydrolysis catalyzed by phospholipase A1 (Lecitase Ultra) in a solvent free system was firstly used to produce diacylglycerols (DAGs)-enriched soybean oil. In this study, five reaction parameters namely agitation speed (100–500 rpm), reaction time (2–10 h), water content (10–50 wt% of oil mass), enzyme load (5–40 U/g of oil mass), and reaction temperature (30–70 °C) were investigated. The reaction was up-scaled to 1 kg of soybean oil at 40 °C of reaction temperature, with 300 rpm of agitation speed, 40 wt% of water content, 6 h of reaction time and 22 U/g of enzyme load. Purification by molecular distillation yielded 70% DAG-enriched oil with 42.64 wt% of DAG. The composition of acylglycerols of soybean oil and the DAG-enriched soybean oil was analyzed and identified by high performance liquid chromatography (HPLC) and HPLC/electrospray ionization/mass spectrometer. The released fatty acid from the partial hydrolysis of soybean oil catalyzed by phospholipase A1 showed a higher saturated fatty acid content than that of the raw material. Compared to the lipase catalyzed process, this new phospholipase A1 catalyzed one showed the advantages of low amount production of byproduct, namely, monoacylglycerols.  相似文献   

20.
The castor bean (Ricinus communis) represents a potential candidate for biodiesel production. The Petrobras Research Center is developing a biodiesel production process from castor bean seeds, in which an unwanted byproduct named castor bean waste is produced. This extremely alkaline waste is toxic and allergenic and, as such, poses a significant environmental problem. Solid-state fermentation (SSF) of castor bean waste was carried out to achieve ricin detoxification, reduce allergenic potential and stimulate lipase production. The fungus, Penicillium simplicissimum, an excellent lipase producer, was able to grow and produce lipase enzyme. After an optimization process, the maximum lipase activity achieved was 44.8 U/g. Moreover, the fungus P. simplicissimum was able to reduce the ricin content to non-detectable levels in addition to diminishing castor bean waste allergenic potential by approximately 16%. In this way, SSF of castor bean waste by P. simplicissimum may increase the utility of the waste by promoting enzyme production and eliminating the principal toxic element, ricin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号