首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
A product of microbiological cleavage of the sterols side chain, androsta-1,4-diene-3,17-dione, is toxic for bacteria, in particular, actinobacteria of the genera Mycobacterium and Arthrobacter. Sterols were transformed into androsta-1,4-diene-3,17-dione by culturing the M. neoaurum VKPM Ac-1656 strain in a high yield, provided that a sorbent was used for elimination of contact between the bacterial cells and the product. Unlike the cholesterol side chain, the more branched chains of phytosterols were cleaved in the presence of M. neoaurum at a high rate only under turbulent stirring of the culture medium, which intensified the formation of hydrocarbonate ion from NaNI3 in situ.  相似文献   

2.
The possible presence of steroids in the tissue of induced hormone-dependent rat mammary tumours was investigated. The method used involves a preliminary extraction of tumours followed by chemical separation and thin-layer chromatography. The identified compounds were cholesterol, androst-4-ene-3,17-dione, 5β-androst-1-ene-3,17-dione, androsta-1,4-diene-3,17-dione and oestrone. This is the first report of the presence of these steroids in the tissue of an experimental tumour of a non-endocrine organ. In particular 5β-androst-1-ene-3,17-dione has not previously been identified from natural sources.  相似文献   

3.
Soybean sterols were converted into androst-4-ene-3,17-dione (AD) and 9α-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) using three actinobacterium strains. The transformation of a microcrystallic substrate (particle size 5–15 μm) or the transformation in the presence of randomly methylated β-cyclodextrin (MCD) were carried out by Mycobacterium neoaurum with a phytosterol load of 30 g/l over 144 h with an AD content of 14.5 and 15.2 g/l, respectively. AD obtained in the presence of MCD was transformed into ADD (13.5 g/l) by Pimelobacter simplex cells over 3 h and into 9-OH-AD by Rhodococcus erythropolis cells after 22 h without the isolation of AD from the cultural liquid. The crude product ADD was obtained in 75% yield, based on phytosterol. It contained as by-products 1.25% of AD and 1.5% of 1,2-dehydrotestosterone. In a control experiment—the process of 1,2-dehydrogenation of 20 g/l AD in the water solution of MCD—no by-products were isolated. Thus, it is more expedient to introduce the 1,2-double bond into pure AD, whereas R. erythropolis strain with low destructive activity towards steroid nucleus can be used in the mixed culture with M. neoaurum. The crystal product contained, according to HPLC, 80% of 9-OH-AD, and 1.5% AD was obtained. The yield of 9-OH-AD (m.p. 218–220°C) based on transformed phytosterol was 56%.  相似文献   

4.
A new series of 16E-arylidene androstene derivatives has been synthesized and evaluated for aromatase inhibitory activity. The impact of various aryl substituents at 16 position of the steroid skeleton on aromatase inhibitory activity has been observed. The 16E-arylidenosteroids 6, 10 and 11 exhibited significant inhibition of the aromatase enzyme. 16-(4-Pyridylmethylene)-4-androstene-3,17-dione (6, IC50: 5.2 μM) and 16-(benzo-[1,3]dioxol-5-ylmethylene)androsta-1,4-diene-3,17-dione (11, IC50: 6.4 μM) were found to be approximately five times more potent in comparison to aminoglutethimide.  相似文献   

5.
The strain of Mycobacterium sp. VKM Ac-1815D was found to convert ergosterol and its 3-acetate mainly to androst-4-ene-3,17-dione (AD) thus demonstrating ability to reduce 7(8)-double bond and hydrolyze sterol ester in addition to oxidation of 3β-hydroxy group, Δ54 isomerization and side-chain degradation. Ergosterol bioconversion in the presence of isoflavones and ions of some bivalent metals - known inhibitors of 3β-hydroxysteroid dehydrogenase, did not alter products composition. Protection of ergosterol 3β-hydroxyl with methoxymethyl group allowed the formation of bioconversion products retaining the Δ5,7-configuration. The major product was identified by mass-spectrometry and proton NMR as 3-methoxymethoxy-androsta-5,7-diene-17-one (MA). The MA producing activity was found to be inducible with sterols, cholestenone or lithocholic acid, but not with dehydroepiandrosterone, AD, androsta-1,4-ene-3,17-dione or organic acids. Under the optimized conditions, the yield of MA reached 5 g/l from 10 g/l O-methoxymethyl-ergosterol (approx. 60% molar conversion) for 120 h. The results might be applied at the production of novel vitamin D derivatives.  相似文献   

6.
The biotransformation of dehydroepiandrosterone (1) with Macrophomina phaseolina was investigated. A total of eight metabolites were obtained which were characterized as androstane-3,17-dione (2), androst-4-ene-3,17-dione (3), androst-4-ene-17β-ol-3-one (4), androst-4,6-diene-17β-ol-3-one (5), androst-5-ene-3β,17β-diol (6), androst-4-ene-3β-ol-6,17-dione (7), androst-4-ene-3β,7β,17β?triol (8), and androst-5-ene-3β,7α,17β-triol (9). All the transformed products were screened for enzyme inhibition, among which four were found to inhibit the β-glucuronidase enzyme, while none inhibited the α-chymotrypsin enzyme.  相似文献   

7.
The use of free, immobilized and reused immobilized cells of the microalga Nostoc muscorum was studied for bioconversion of androst-4-en-3,17-dione (AD) to testosterone in hexadecane. Among polymers such as agar, agarose, κ-carrageenan, polyacrylamide, polyvinyl alcohol, and sodium alginate that were examined for cell entrapment, sodium alginate with a concentration of 2% (w/v) proved to be the proper matrix for N. muscorum cells immobilization. The bioconversion characteristics of immobilized whole algal cells at ranges of temperatures, substrate concentrations, and shaking speeds were studied followed by a comparison with those of free cells. The conditions were 30 °C, 0.5 g/L, and 100 rpm, respectively. The immobilized N. muscorum showed higher yield (72 ± 2.3%) than the free form (24 ± 1.3%) at the mentioned conditions. The bioconversion yield did not decrease during reuse of immobilized cells and remained high even after 5 batches of bioreactions while Na-alginate 3% was used; however, reuse of alginate 2% beads did not give a satisfactory result.  相似文献   

8.
An attempt was made to clarify how Pellicularia filamentosa f. sp. microsclerotia IFO 6298 capable of hydroxylating C21-steroids at the C-19 position converts C19-steroids, especially monohydroxyderivatives of androst-4-ene-3, 17-dione. Such substrates as 11β-hydroxyandrost-4-ene-3,17-dione (I), androst-4-ene-3, 11, 17-trione (II), androsta-1,4-diene-3, 17-dione (III), 11β-hydroxyandrosta-1,4-diene-3,17-dione (IV), 14α-hydroxyandrost-4-ene-3, 17-dione (V), 15α-hydroxyandrost-4-ene-3, 17-dione (VI) and 9α-hydroxyandrost-4-ene-3, 17-dione (VII) were converted by the organism. All the main and several minor products were then isolated and identified. As a result it is concluded that this organism converts I and II into 14α-hydroxyandrost-4-ene-3,11,17-trione, III and IV into 14α-hydroxyandrosta-1,4-diene-3,1l,17-trione, V into 11α 14α dihydroxyandrost-4-ene-3, 17-dione (main) and 11β, 14α-dihydroxyandrost-4-ene-3, 17-dione (minor, a tentative structure), VI into 11β, 15α-dihydroxyandrost-4-ene-3,17-dione (main) and 15α-hydroxyandrost-4-ene-3,11,17-trione (minor, a tentative structure) and VII into 9α, 14α-dihydroxyandrost-4-ene-3, 17-dione (main) and 6β, 9α-dihydroxyandrost-4-ene-3,17-dione (minor).

In addition, the structural requirement of substrate for the 19-hydroxylation catalyzed by the organism and the influence of a hydroxyl group on steroid nucleus upon the 11β- and 14α-hydroxylations and the 11β-OH-dehydrogenation was discussed.  相似文献   

9.
《Process Biochemistry》2007,42(5):899-903
Solanum lyratum, a medicinal plant, has been used to treat cancers, tumors, and warts for many years. Undifferentiated cell cultures were mainly used to study the precursor-feeding strategy for the production of secondary metabolites of α-solanine, solanidine, and solasodine for pharmaceutical usage. In this study, S. lyratum cells were fed with exogenous plant sterols including cholesterol, stigmasterol, and mixed sterols (β-sitosterol, campesterol, and dihydrobrassicasterol). The results showed that none of the plant sterols exhibited an effect on cell growth as compared to that of the control. Cellular concentrations of solanidine and solasodine were relatively higher than α-solanine levels in all the treatments. The maximal solasodine level in cells was 11.19 mg/g dry weight (DW) after 0.05–1 mg/l stigmasterol feeding, which was about 10-fold higher than the control. With regard to solanidine levels, the maximal level in cells was 5.84 mg/g DW after feeding with 20 mg/l cholesterol. This is the first report on the in vitro enhancement of solanidine and solasodine, steroidal alkaloids with medicinal value, from S. lyratum.  相似文献   

10.
To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based on this phenomenon, two-stage fermentation by using fructose as the initial carbon source and feeding glucose to maintain strain metabolism was designed. By applying this strategy, the fermentation duration was decreased from 168 h to 120 h with the ADD productivity increased from 0.071 g/(L·h) to 0.108 g/(L·h). Further, three-stage fermentation by adding phytosterol to improve ADD production at the end of the two-stage fermentation was carried out and the final ADD production reached 18.6 g/L, which is the highest reported ADD production using phytosterol as substrate. Thus, this strategy provides a possible way in enhancing the ADD production in pharmaceutical industry.  相似文献   

11.
Lactobacillus helveticus, grown at 37°C in MRS medium supplemented with 3 mM cholesterol, assimilated all the cholesterol in 42 h having 68 U mg−1 of intracellular cholesterol oxidase activity. The strain transformed 1 g cholesterol to 0.05 g of androsta-1, 4-diene-3, 17-dione and 0.04 g of androst-4-ene-3, 17 dione within 48 h at 37°C with extracellular cholesterol oxidase activity at 12 U mg−1 and intracellular oxidase at 0.5 U mg−1.  相似文献   

12.
3-Ketosteroid-Δ1-dehydrogenases (KsdD) from Mycobacterium neoaurum could transform androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione. This reaction has a significant effect on the product of pharmaceutical steroid. The crystal structure and active site residues information of KsdD from Mycobacterium is not yet available, which result in the engineering of KsdD is tedious. In this study, by the way of protein modeling and site-directed mutagenesis, we find that, Y122, Y125, S138, E140 and Y541 from the FAD-binding domain and Y365 from the catalytic domain play a key role in this transformation. Compared with the wild type, the decline in AD conversion for mutants illustrated that Y125, Y365, and Y541 were essential to the function of KsdD. Y122, S138 and E140 contributed to the catalysis of KsdD. The following analysis revealed the catalysis mechanism of these mutations in KsdD of Mycobacterium. These information presented here facilitate the manipulation of the catalytic properties of the enzyme to improve its application in the pharmaceutical steroid industry.  相似文献   

13.
Rice bran sample (12 Kg) was extracted and rice bran oil (RBO ≅ 76.8 g) was saponified. The resulted unsaponifiable matter of RBO (RBO unsap) was qualitatively and quantitatively estimated using different chromatographic analyses. RBO, produced 9.65% unsaponifiable matter with the following contents, cholesterol, 6.75%; stigmasterol, 3.4%; β. sitosterol, 10.23% and campesterol, 4.2%, in addition to unknown phytosterols, hydrocarbons and waxes. Microbial transformation process started by screening of 35 bacterial strains, locally isolated from rice bran, air and soil, using RBO unsap as a carbon and an energy source to produce some pharmaceutically useful C18 and C19 steroids. Moraxella ovis was the most potent isolate for its highest capability to utilize RBO unsap and selectively degrade the phytosterols side-chain producing androst-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), testosterone (T) and estrone (E). The RBO unsap was the best carbon and energy source. Maximum production of the desired products was observed in 36 h, pH 7 and at 30°C by M. ovis.  相似文献   

14.
Mycobacterium neoaurum ST-095 and its mutant M. neoaurum JC-12, capable of transforming phytosterol to androst-1,4-diene-3,17-dione (ADD) and androst-4-ene-3,17-dione (AD), produce very different molar ratios of ADD/AD. The distinct differences were related to the enzyme activity of 3-ketosteroid-Δ1-dehydrogenase (KSDD), which catalyzes the C1,2 dehydrogenation of AD to ADD specifically. In this study, by analyzing the primary structure of KSDDI (from M. neoaurum ST-095) and KSDDII (from M. neoaurum JC-12), we found the only difference between KSDDI and KSDDII was the mutation of Val366 to Ser366. This mutation directly affected KSDD enzyme activity, and this result was confirmed by heterologous expression of these two enzymes in Bacillus subtilis. Assay of the purified recombinant enzymes showed that KSDDII has a higher C1,2 dehydrogenation activity than KSDDI. The functional difference between KSDDI and KSDDII in phytosterol biotransformation was revealed by gene disruption and complementation. Phytosterol transformation results demonstrated that ksdd I and ksdd II gene disrupted strains showed similar ADD/AD molar ratios, while the ADD/AD molar ratios of the ksdd I and ksdd II complemented strains were restored to their original levels. These results proved that the different ADD/AD molar ratios of these two M. neoaurum strains were due to the differences in KSDD. Finally, KSDD structure analysis revealed that the Val366Ser mutation could possibly play an important role in stabilizing the active center and enhancing the interaction of AD and KSDD. This study provides a reliable theoretical basis for understanding the structure and catalytic mechanism of the Mycobacteria KSDD enzyme.  相似文献   

15.
The following steroids and steroidal alkaloids have been incubated with the blight fungus Phytophthora infestans: androst-4-ene-3,17-dione, cholesterol, cholesteryl acetate, cholesteryl myristate, cholesteryl palmitate,cholesteryl stearate, dehydroisoandrosterone, 6α-hydroxy-androst-4-ene-3,17-dione, 6β-hydroxyandrost-4-ene-3,17-dione, 11α-hydroxyprogesterone, pregnenolone, progesterone, sitosterol, sitosteryl acetate, solanidine, solanine, stigmasterol, stigmasteryl acetate and testosterone. No hydroxylation was observed, but the fungus is able to oxidize alcohol functions at C-3β, C-6α, C-11β and C-17β to carbonyl. In addition, hydrolysis of acetate to hydroxyl at C-3β, and of solanine to solanidine, was observed. The relationship between metabolism and the nature of substitution at C-17β is discussed.  相似文献   

16.
微生物降解甾醇侧链转化雄甾-4-烯-3,17-二酮的研究进展   总被引:9,自引:0,他引:9  
杨英  姜绍通   《微生物学通报》2006,33(6):142-145
甾体激素类药物是临床上不可缺少的一类重要药物。雄甾-4-烯-3,17-二酮是甾体激素类药物不可替代的中间体,对机体起着非常重要的调节作用。可以说几乎所有甾体激素类药物都是以其作为起始原料进行生产的。近年来研究表明,通过微生物转化技术,将甾醇边链选择性切除,可得到甾体药物的这一关键中间体.综述了该项技术近期的研究进展,指出该领域工业化生产尚待解决的问题。  相似文献   

17.
A new labdane diterpenoid, leojaponicin (1), a novel norlabdane, methyl 15,16-dinor-7-oxolabda-8-ene-14-oate (2), along with four known labdanes, hispanone (3), leoheteronins A (4) and B (5), 15-methoxyleoheteronin B (6), and three norlabdanes, 14,15,16-trinor-7-oxolabda-8-ene-13-oic acid (7), methyl 14,15,16-trinor-7-oxolabda-8-ene-13-oate (8), 14,15-dinor-8-labdene-7,13-dione (9), and a steroid, stigmast-4-ene-3-one (10), were isolated from a hexane extract of Leonurus japonicus. Their structures were determined using spectroscopic methods, mainly 1-D and 2-D NMR. Compounds 7 and 8 were previously semisynthesized but are reported here for the first time as naturally occurring compounds. In addition, α-glucosidase inhibitory activity of the isolated compounds was evaluated and compound 6 exhibited the strongest effect with IC50 value of 26.7 μM (compared with the positive control acarbose, IC50 = 214.5 μM).  相似文献   

18.
Two novel spirostanols, (23S,24R,25S)-18-norspirost-1,4,13-triene-21,23,24-triol-3,15-dione (1) and (23S,24S,25S)-spirost-5-ene-1β,3β,21,23,24-pentaol (2), a new natural product (3), and two known analogues (4 and 5) were isolated from the ethyl acetate-soluble portion of the ethanolic extract of Trillium tschonoskii Maxim. Their structures were elucidated by extensive spectroscopic analyses, and their cytotoxic activities on four kinds of human tumor cells were studied in vitro. Compound 4 showed significant cytotoxic activity against MCF-7 and A549 with IC50 values of 6.16 ± 2.21 and 28.5 ± 11.5 μM, respectively, while 5 exhibited selective cytotoxicity against A549 with an IC50 value of 13.0 ± 4.51 μM.  相似文献   

19.
R A Meigs 《Life sciences》1990,46(5):321-327
All oxidative functions of aromatase, i.e., estrogen production, 19-oxygenated androgen production and 7-ethoxycoumarin deethylation, were inhibited in parallel in placental microsomes from non-smokers by the mechanism-based, time-dependent inactivators (suicide substrates) 10 beta-(2-propynyl)estr-4-ene-3,17-dione and 4-hydroxyandrost-4-ene-3,17-dione. In contrast, the aromatase suicide substrate androst-4-ene-3,6,17-trione had little or no effect on the conversion of androst-4-ene-3,17-dione to 19-hydroxyandrost-4-ene-3,17-dione or on the conversion of the latter to 3,17-dioxoandrost-4-en-19-al while severely limiting the capacity for estrogen production from androst-4-ene-3,17-dione and 19-hydroxyandrost-4-ene-3,17-dione in such microsomal preparations. Androst-4-ene-3,6,17-trione, therefore, appears to uncouple the 19-hydroxylation of androgens from estrogen synthesis. This agent also produced only a minimal inhibition of 7-ethoxycoumarin deethylation, indicating that this major constitutive transformation of a xenobiotic chemical is associated with the steroid 19-hydroxylating function of the aromatase system.  相似文献   

20.
Chitin, which is a polymer of β-(1–4) linked N-acetyl-d-glucosamine (GlcNAc) residues, is one of the most abundant renewable resources in nature, after cellulose. In this study, we found some native Mucor strains, which can use GlcNAc and chitin substrates as carbon sources for growth and ethanol production. One of these strains, M. circinelloides NBRC 6746 produced 18.6 ± 0.6 g/l of ethanol from 50 g/l of GlcNAc after 72 h and the maximum ethanol production rate was 0.75 ± 0.1 g/l/h. Furthermore, M. circinelloides NBRC 4572 produced 6.00 ± 0.22 and 0.46 ± 0.04 g/l of ethanol from 50 g/l of colloidal chitin and chitin powder after 16 and 12 days, respectively. We also found an extracellular chitinolytic enzyme producing strain M. ambiguus NBRC 8092, and successfully improved ethanol productivity of NBRC 4572 from colloidal chitin using crude chitinolytic enzyme derived from NBRC 8092. The ethanol titer reached 9.44 ± 0.10 g/l after 16 days. These results were the first bioethanol production from GlcNAc and chitin substrates by native organisms, and also suggest that these Mucor strains have great potential for the simultaneous saccharification and fermentation (SSF) of chitin biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号