首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glucose isomerase gene (xylA) from the Streptomyces sp. SK strain encodes a 386-amino-acid protein (42.7 kDa) showing extensive identities with many other bacterial glucose isomerases. We have shown by gel filtration chromatography and SDS-PAGE analysis that the purified recombinant glucose isomerase (SKGI) is a 180 kDa tetramer of four 43 kDa subunits. Sequence inspection revealed that this protein, present some special characteristics like the abundance of hydrophobic residues and some original amino-acid substitutions, which distinguish SKGI from the other GIs previously reported. The presence of an Ala residue at position 103 in SKGI is especially remarkable, since the same amino-acid was found at the equivalent position in the extremely thermostable GIs from Thermus thermophilus and Thermotoga neapolitana; whereas a Gly was found in the majority of less thermostable GIs from Streptomyces. The Ala103Gly mutation, introduced in SKGI, significantly decreases the half-life time at 90 degrees C from 80 to 50 min and also shifts the optimum pH from 6.5 to 7.5. This confirms the implication of the Ala103 residue on SKGI thermostability and activity at low pH. A homology model of SKGI based on the SOGI (that of Streptomyces olivochromogenes) crystal structure has been constructed in order to understand the mutational effects on a molecular scale. Hence, the Ala103Gly mutation, affecting enzyme properties, is presumed to increase molecular flexibility and to destabilize, in particular at elevated temperature, the 91-109 loop that includes the important catalytic residue, Phe94.  相似文献   

2.
A β-glucosidase gene from Putranjiva roxburghii (PRGH1) was heterologously expressed in Saccharomyces cerevisiae to enable growth on cellobiose. The recombinant enzyme was secreted to the culture medium, purified and biochemically characterized. The enzyme is a glycoprotein with a molecular weight of ∼68 kDa and exhibited enzymatic activity with β‐linked aryl substrates like pNP-Fuc, pNP-Glc, pNP-Gal and pNP-Cel with catalytic efficiency in that order. Significant enzyme activity was observed for cellobiose, however the enzyme activity was decreased with increase in chain length of glycan substrates. Using cellobiose as substrate, the enzyme showed optimal activity at pH 5.0 and 65 °C. The enzyme was thermostable up to 75 °C for 60 min. The enzyme showed significant resistance towards both glucose and ethanol induced inhibition. The recombinant S. cerevisiae strain showed advantages in cell growth, glucose and bio-ethanol production over the native strain with cellobiose as sole carbon source. In simultaneous saccharification and fermentation (SSF) experiments, the recombinant strain was used for bio-ethanol production from two different cellulosic biomass sources. At the end of the SSF, we obtained 9.47 g L−1 and 14.32 g L−1 of bio-ethanol by using carboxymethyl cellulose and pre-treated rice straw respectively. This is first report where a β-glucosidase gene from plant origin has been expressed in S. cerevisiae and used in SSF.  相似文献   

3.
An FAD-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus terreus NIH2624 was expressed in Escherichia coli with a yield of 228 ± 16 U/L of culture. Co-expression with chaperones DnaK/DnaJ/GrpE and osmotic stress induced by simple carbon sources enhanced productivity significantly, improving the yield to 23883 ± 563 U/L after optimization. FAD-GDH was purified in two steps with the specific activity of 604 U/mg. Using d-glucose as substrate, the optimal pH and temperature for FAD-GDH were determined to be 7.5 and 50 °C, respectively. Activity was stable across the pH range 3.5–9.0, and the half-life was 52 min at 42 °C. Km and Vmax were calculated as 86.7 ± 5.3 mM and 928 ± 35 U/mg, and the molecular weight was approximately 65.6 kDa based on size exclusion chromatography, indicating a monomeric structure. The 3D structure of FAD-GDH was simulated by homology modelling using the structure of A. niger glucose oxidase (GOD) as template. From the model, His551, His508, Asn506 and Arg504 were identified as key residues, and their importance was verified by site-directed mutagenesis. Furthermore, three additional mutants (Arg84Ala, Tyr340Phe and Tyr406Phe) were generated and all exhibited a higher degree of substrate specificity than the native enzyme. These results extend our understanding of the structure and function of FAD-GDH, and could assist potential commercial applications.  相似文献   

4.
The HSPA6, one of the members of large family of HSP70, is significantly up-regulated and has been targeted as a biomarker of cellular stress in several studies. Herein, conditions were optimized to increase the yield of recombinant camel HSPA6 protein in its native state, primarily focusing on the optimization of upstream processing parameters that lead to an increase in the specific as well as volumetric yield of the protein. The results showed that the production of cHSPA6 was increased proportionally with increased incubation temperature up to 37 °C. Induction with 10 μM IPTG was sufficient to induce the expression of cHSPA6 which was 100 times less than normally used IPTG concentration. Furthermore, the results indicate that induction during early to late exponential phase produced relatively high levels of cHSPA6 in soluble form. In addition, 5 h of post-induction incubation was found to be optimal to produce folded cHSPA6 with higher specific and volumetric yield. Subsequently, highly pure and homogenous cHSPA6 preparation was obtained using metal affinity and size exclusion chromatography. Taken together, the results showed successful production of electrophoretically pure recombinant HSPA6 protein from Camelus dromedarius in Escherichia coli in milligram quantities from shake flask liquid culture.  相似文献   

5.
The lasB gene encoding a solvent-stable elastase from Pseudomonas aeruginosa (PAE) was isolated and heterologously expressed in Pichia pastoris, resulting in production of three heterogeneously glycosylated recombinant elastases (rPAEs). rPAEs showed higher solvent-stability and thermostability than native PAE, but these recombinant and native enzymes achieved similar values of specific activity (2393 U/mg and 2427 U/mg for rPAEs and the native one, respectively), apparent Km (2.55 and 2.48 g/l for rPAEs and the native one, respectively) and kcat (0.0489 and 0.0496/s for rPAEs and the native one, respectively) for casein hydrolysis. While rPAEs and their native counterpart displayed similar substrate specificity in bipeptide synthesis reactions in water-miscible organic solvents, the former gave higher synthesis rates and yields than the latter. The yields and rates of rPAEs-catalyzed bipeptide synthesis reactions substantially varied with the type of solvent, and dimethylsulfoxide (DMSO) was found to be more suitable for these reactions than methanol, ethanol, isopropanol, and n-butanol. The optimal reaction conditions for rPAEs-catalyzed Cbz-Ala-Phe-NH2 synthesis were the presence of 50% (v/v) DMSO, and at pH 8.0 and temperature 20–30 °C.  相似文献   

6.
7.
5-Aminovalerate (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and is a C5 platform chemical for synthesizing 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. Escherichia coli was metabolically engineered for the production of 5-aminovalerate (5AVA) and glutarate. When the recombinant E. coli WL3110 strain expressing the Pseudomonas putida davAB genes encoding delta-aminovaleramidase and lysine 2-monooxygenase, respectively, were cultured in a medium containing 20 g/L of glucose and 10 g/L of l-lysine, 3.6 g/L of 5AVA was produced by converting 7 g/L of l-lysine. When the davAB genes were introduced into recombinant E. coli strainXQ56allowing enhanced l-lysine synthesis, 0.27 and 0.5 g/L of 5AVA were produced directly from glucose by batch and fed-batch cultures, respectively. Further conversion of 5AVA into glutarate could be demonstrated by expression of the P. putida gabTD genes encoding 5AVA aminotransferase and glutarate semialdehyde dehydrogenase. When recombinant E. coli WL3110 strain expressing the davAB and gabTD genes was cultured in a medium containing 20 g/L glucose, 10 g/L l-lysine and 10 g/L α-ketoglutarate, 1.7 g/L of glutarate was produced.  相似文献   

8.
Novel benzamide derivatives were synthesized and tested at in vitro assay by measuring fold increase of glucokinase activity at 5.0 mM glucose concentration. Among the prepared compounds, YH-GKA was found to be an active glucokinase activator with EC50 of 70 nM. YH-GKA showed similar glucose AUC reduction of 29.6% (50 mg/kg) in an OGTT study with C57BL/J6 mice compared to 29.9% for metformin (300 mg/kg). Acute treatment of the compound in C57BL/J6 and ob/ob mice elicited basal glucose lowering activity. In subchronic study with ob/ob mice, YH-GKA showed significant decrease in blood glucose levels and no adverse effects on serum lipids or body weight. In addition, YH-GKA exhibited high bioavailability and moderate elimination in preclinical species.  相似文献   

9.
BackgroundSmall molecules targeting the dimerization interface of the C-terminal domain of Hsp90, a validated target for cancer treatment, have yet to be identified.MethodsThree peptides were designed with the aim to inhibit the dimerization of Hsp90. Computational and biophysical methods examined the α-helical structure for the three peptides. Based on the Autodisplay technology, a novel flow cytometer dimerization assay was developed to test inhibition of Hsp90 dimerization. Microscale thermophoresis was used to determine the KD of the peptides towards the C-terminal domain of Hsp90.ResultsMD simulations and CD spectroscopy indicated an α-helical structure for two of the three peptides. By flow cytometer analysis, IC50 values of 2.08 μM for peptide H2 and 8.96 μM for peptide H3 were determined. Dimer formation of the C-terminal dimerization domain was analyzed by microscale thermophoresis, and a KD of 1.29 nM was determined. Furthermore, microscale thermophoresis studies demonstrated a high affinity binding of H2 and H3 to the C-terminal domain, with a KD of 1.02 μM and 1.46 μM, respectively.ConclusionsThese results revealed the first peptidic inhibitors of Hsp90 dimerization targeting the C-terminal domain. Furthermore, it has been shown that these peptides bind to the C-terminal domain with a low micromolar affinity.General significanceThese results can be used to design and screen for small molecules that inhibit the dimerization of the C-terminal domain of Hsp90, which could open a new route for cancer therapy.  相似文献   

10.
We examined glucose 6-phosphate dehydrogenase (G6PD) production by fed-batch cultivation, using a recombinant strain of Saccharomyces cerevisiae W303-181 overexpressing this enzyme. The cultivations were carried out in a 3 L fermenter at pH 5.7, 30 °C, 2.0 vvm aeration, 200 rpm agitation and an inoculum concentration of 1.0 g/L. The volume of the culture medium in the fed-batch process varied from 1.333 to 2.0 L, due to the addition of 15.0 g/L glucose solution during 5 h. Different feeding rates were studied (exponentially increasing and decreasing feeding rates), and the feeding profile was determined by values of the parameter K (time constant), namely: 0.2, 0.5 and 0.8 h−1. The best enzyme production (847 U/L) was obtained with an exponentially increasing feeding rate and K = 0.2 h−1. The results attained also showed that this process is promising for G6PD production.  相似文献   

11.
Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5 kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100 kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24 h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24 h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220 ± 73% signal change (n = 4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0–400 mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay.  相似文献   

12.
The Cel6A deficiency has become one of the limiting factors for cellulose saccharification in biochemical conversion of cellulosic biomass to fuels and chemicals. The work attempted to use codon optimization to enhance Trichoderma reesei Cel6A expression in Pichia pastoris. Two recombinants P. pastoris GS115 containing AOX1 and GAP promotors were successfully constructed, respectively. The optimal temperatures and pHs of the expressed Cel6A from two recombinants were consistent with each other, were also in the extremely similar range to that reported on the native Cel6A from T. reesei. Based on the shake flask fermentation, AOX1 promotor enabled the recombinant to produce 265 U/L and 300 mg/L of the Cel6A enzyme, and the GAP promotor resulted in 145 U/L and 200 mg/L. High cell density fed batch (HCDFB) fermentation significantly improved the enzyme titer (1100 U/L) and protein yield (2.0 g/L) for the recombinant with AOX1 promotor. Results have showed that the AOX1 promotor is more suitable than the GAP for the Cel6A expression in P. pastoris. And the HCDFB cultivation is a favorable way to express the Cel6A highly in the methanol inducible yeast.  相似文献   

13.
《Process Biochemistry》2010,45(2):147-152
A highly active recombinant whole-cell biocatalyst, Escherichia coli pETAB2/pG-KJE1, was developed for the efficient production of (S)-styrene oxide from styrene. The recombinant E. coli overexpressed styAB the genes of styrene monooxygenase of Pseudomonas putida SN1 and coexpressed the genes encoding chaperones (i.e., GroEL–GroES and DnaK–DnaJ–GrpE). The styrene monooxygenases were produced to ca. 40% of the total soluble proteins, enabling the whole-cell activity of the recombinant of 180 U/g CDW. The high StyAB activity in turn appeared to direct cofactors and molecular oxygen to styrene epoxidation. The product yield on energy source (i.e., glucose) reached ca. 40%. In addition, biotransformation in an organic/aqueous two-liquid phase system allowed the product to accumulate to 400 mM in the organic phase within 6 h, resulting in an average specific and volumetric productivity of 6.4 mmol/g dry cells/h (106 U/g dry cells) and 67 mM/h (1110 U/Laq), respectively, under mild reaction conditions. These results indicated that the high productivity and the high product yield on energy source were driven by the high enzyme activity. Therefore, it was concluded that oxygenase activity of whole-cell biocatalysts is one of the critical factors to determine their catalytic performance.  相似文献   

14.
The myofibril-bound serine proteinase (MBSP) is effective in the degradation of myofibrillar proteins, including myosin heavy chain (MHC), α-actinin, actin, and tropomyosin and was thus regarded as an important proteinase responsible for the metabolism of fish muscle in vivo. In order to better understand the characteristic differences between native MBSP and recombinant MBSP (rMBSP) and to obtain large quantity of MBSP for its application in protein science study, the crucian carp MBSP gene was cloned (669 bp) and expressed in Pichia pastoris (P. pastoris). The recombinant P. pastoris strain was cultured in shake flasks, and 66.85 mg rMBSP/L in the fermentation supernatant was obtained. SDS-polyacrylamide gel electrophoresis (PAGE) showed a main protein band with molecular weight of approximately 36 kDa. Substrate specificity analysis revealed that the rMBSP specifically cleaved substrates at the carboxyl side of lysine residue which differed from native MBSP that cleaved substrates at the carboxyl side of arginine and lysine residues. The optimum temperature and optimum pH range of the rMBSP were 55 °C and pH 7.5, respectively. Furthermore, similar to native MBSP, the rMBSP also revealed high thermostability and pH stability and is effective in degradation of myofibrillar proteins from the skeletal muscle of crucian carp.  相似文献   

15.
LAT1 (SLC7A5) and CD98 (SLC3A2) constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. Whether one or both subunits are competent for transport is still unclear. The present work aims to solve this question using different experimental strategies. Firstly, LAT1 and CD98 were immuno-detected in protein extracts from SiHa cells. Under oxidizing conditions, i.e., without addition of SH (thiol) reducing agent DTE, both proteins were revealed as a 120 kDa major band. Upon DTE treatment separated bands, corresponding to LAT1(35 kDa) or CD98(80 kDa), were detected. LAT1 function was evaluated in intact cells as BCH sensitive [3H]His transport inhibited by hydrophobic amino acids. Antiport of [3H]His was measured in proteoliposomes reconstituted with SiHa cell extract in presence of internal His. Transport was increased by DTE. Hydrophobic amino acids were best inhibitors in addition to hydrophilic Tyr, Gln, Asn and Lys. Cys, Tyr and Gln, included in the intraliposomal space, were transported in antiport with external [3H]His. Similar experiments were performed in proteoliposomes reconstituted with the recombinant purified hLAT1. Results overlapping those obtained with native protein were achieved. Lower transport of [3H]Leu and [3H]Gln with respect to [3H]His was detected. Kinetic asymmetry was found with external Km for His lower than internal one. No transport was detected in proteoliposomes reconstituted with recombinant hCD98. The experimental data demonstrate that LAT1 is the sole transport competent subunit of the heterodimer. This conclusion has important outcome for following studies on functional characterization and identification of specific inhibitors with potential application in human therapy.  相似文献   

16.
The effects of post-induction nutrient feed rates, on recombinant streptokinase production in fed-batch processes, were investigated using various feed profiles. Recombinant streptokinase was produced using a secretory expression system and was induced by a temperature up-shift, using a temperature-sensitive λPL promoter. The specific growth rates decreased sharply upon induction of recombinant protein expression, thus necessitating a variable feed strategy in the post-induction phase. The various feed profiles employed in the post-induction phase included constant feed rates, linearly increasing feed rate and exponentially varying feed rates. Significant differences were obtained in the specific activity of streptokinase produced in these fed-batch processes. A maximum activity per unit biomass of 4.96 × 106 and 4.43 × 106 IU/g DCW was achieved for exponentially decreasing feed and linearly increasing feed, respectively. The decrease in specific growth rate during the post-induction phase was also less pronounced in these cases in comparison to other fed-batch experiments. It was observed that streptokinase productivity is governed by the nutrient feed rate per unit biomass at a critical juncture after induction. The highest activity per unit biomass was obtained when the nutrient feed rate per unit biomass was around 0.7–0.8 g glucose (g DCW)−1 h−1, between 2 and 4 h after induction.  相似文献   

17.
The expression of viral antigens in baculovirus-infected insect cells is often ineffective. As an alternative approach, therefore, we developed the recombinant polyhedra technology, which is an efficient strategy for the production of viral subunit vaccine. Here, we report a strategy for the large-scale production of a pseudorabies virus (PRV) gB or gC in the larvae of a baculovirus-infected silkworm, Bombyx mori. We constructed a recombinant B. mori nucleopolyhedrovirus (BmNPV) that expressed recombinant polyhedra together with the epitope regions of PRV gB or heparin-binding domains of PRV gC. Recombinant BmNPV-PRV-gB or BmNPV-PRV-gC-infected silkworm larvae expressed native polyhedrin and fusion protein that was detected using both anti-polyhedrin and anti-PRV gB or anti-PRV-gC antibodies. Electron and confocal microscopy demonstrated that the recombinant polyhedra contained both the fusion protein and native polyhedrin with a normal morphology and that the recombinant polyhedra contained PRV gB or gC. The yield of gB or gC antigen produced in BmNPV-PRV-gB or BmNPV-PRV-gC-infected silkworm larvae reached 0.69 or 0.46 mg per larva, respectively, at 6 days post-infection. These results demonstrate that the recombinant polyhedra strategy can be used for the large-scale production of PRV gB or gC antigen.  相似文献   

18.
Glucose isomerase is an important industrial enzyme that catalyzes the reversible isomerization of glucose to fructose. In this study, the effect of cobalt ions (Co2+) on the catalytic efficiency and thermostability of recombinant glucose isomerase from Thermobifida fusca was analyzed. The activity of glucose isomerase from engineered Escherichia coli supplemented with 1 mM Co2+ (C-GI) reached 41 U/ml, 2.1-fold higher than enzyme prepared from E. coli without additive (GI). The purified C-GI also exhibited an increased specific activity (23.8 U/mg compared to 12.1 U/mg for GI) and a greater thermostability (half-life of 17 h at 75 °C, 11.3-fold higher than GI (1.5 h)). The optimal temperature for C-GI shifted from 80 °C to 85 °C and demonstrated higher activity over pH 7.0–9.0. The kcat/Km value of C-GI (89.3 M?1 s?1) for the isomerization of glucose to fructose was nearly 1.75-fold higher than that of GI. In addition, the engineered cells were immobilized with the method of flocculation-cross linking. The immobilized cells supplemented with 1 mM Co2+ (C-IGI) had a better operational performance than cells without additives (IGI); at the end of 6 cycles, the conversion rate of C-IGI was still 43.1%, meeting the conversion rate requirement.  相似文献   

19.
The potential advantages of biological production of chemicals or fuels from biomass at high temperatures include reduced enzyme loading for cellulose degradation, decreased chance of contamination, and lower product separation cost. In general, high temperature production of compounds that are not native to the thermophilic hosts is limited by enzyme stability and the lack of suitable expression systems. Further complications can arise when the pathway includes a volatile intermediate. Here we report the engineering of Geobacillus thermoglucosidasius to produce isobutanol at 50 °C. We prospected various enzymes in the isobutanol synthesis pathway and characterized their thermostabilities. We also constructed an expression system based on the lactate dehydrogenase promoter from Geobacillus thermodenitrificans. With the best enzyme combination and the expression system, 3.3 g/l of isobutanol was produced from glucose and 0.6 g/l of isobutanol from cellobiose in G. thermoglucosidasius within 48 h at 50 °C. This is the first demonstration of isobutanol production in recombinant bacteria at an elevated temperature.  相似文献   

20.
Simultaneous saccharification and fermentation (SSF) of renewable cellulose for the production of 3-phenyllactic acid (PhLA) by recombinant Escherichia coli was investigated. Kraft pulp recovered from biomass fractionation processes was used as a model cellulosic feedstock and was hydrolyzed using 10–50 filter paper unit (FPU) g−1 kraft pulp of a commercial cellulase mixture, which increased the glucose yield from 21% to 72% in an enzyme dose-dependent manner. PhLA fermentation of the hydrolyzed kraft pulp by a recombinant E. coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens TK1 produced 1.9 mM PhLA. The PhLA yield obtained using separate hydrolysis and fermentation was enhanced from 5.8% to 42% by process integration into SSF of kraft pulp (20 g L−1) in a complex medium (pH 7.0) at 37 °C. The PhLA yield was negatively correlated with the initial glucose concentration, with a five-fold higher PhLA yield observed in culture medium containing 10 g L−1 glucose compared to 100 g L−1. Taken together, these results suggest that the PhLA yield from cellulose in kraft pulp can be improved by SSF under glucose-limited conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号