首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous site-directed mutagenesis experiments have provided new insights into the stabilizing role of the individual forces and interactions within a globular protein molecule. Some useful guidelines and procedures are now available for producing genetically more stable proteins. Examples are the introduction of disulfide bonds, ion-binding sites, salt bridges, hydrophobic residues or hydrogen bonds, and the improvement of hydrophobic packing or alpha-helix propensity. Moreover, it is now clearly recognized that thermophilic (and, in general, extremophilic) bacteria produce highly stable proteins and enzymes of practical interest.  相似文献   

2.
We propose a simple yet reliable computational framework that characterizes the differential mass and hydrophobicity distribution within structural classes of proteins. Radial partitioning of protein interior that could successfully distinguish the mass and hydrophobicity distribution patterns in extremophilic proteins from that in their structurally aligned mesophilic counterparts. Distance-dependent mass and hydrophobicity magnitudes could retrieve vital structural insights; needed to probe the hidden connections between packing, folding and stability within different structural classes of proteins, with causality. New computational markers; one, to represent the total mass content; other, related to hydrophobic centrality of proteins, are proposed as well. Results reveal that mass and hydrophobicity packing within extremophilic proteins is indeed more compact than that in their mesophilic counterparts. Analysis of structural constraints within them vindicate it. Total mass (and hydrophobicity) content is found to be maximum in α/β thermophilic proteins and minimum for the all-α mesophilic proteins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The structures of enzymes reflect two tendencies that appear opposed. On one hand, they fold into compact, stable structures; on the other hand, they bind a ligand and catalyze a reaction. To be stable, enzymes fold to maximize favorable interactions, forming a tightly packed hydrophobic core, exposing hydrophilic groups, and optimizing intramolecular hydrogen-bonding. To be functional, enzymes carve out an active site for ligand binding, exposing hydrophobic surface area, clustering like charges, and providing unfulfilled hydrogen bond donors and acceptors. Using AmpC beta-lactamase, an enzyme that is well-characterized structurally and mechanistically, the relationship between enzyme stability and function was investigated by substituting key active-site residues and measuring the changes in stability and activity. Substitutions of catalytic residues Ser64, Lys67, Tyr150, Asn152, and Lys315 decrease the activity of the enzyme by 10(3)-10(5)-fold compared to wild-type. Concomitantly, many of these substitutions increase the stability of the enzyme significantly, by up to 4.7kcal/mol. To determine the structural origins of stabilization, the crystal structures of four mutant enzymes were determined to between 1.90A and 1.50A resolution. These structures revealed several mechanisms by which stability was increased, including mimicry of the substrate by the substituted residue (S64D), relief of steric strain (S64G), relief of electrostatic strain (K67Q), and improved polar complementarity (N152H). These results suggest that the preorganization of functionality characteristic of active sites has come at a considerable cost to enzyme stability. In proteins of unknown function, the presence of such destabilized regions may indicate the presence of a binding site.  相似文献   

4.
To quantify the relationship between sequence and transmembrane dimer stability, a systematic mutagenesis and thermodynamic study of the protein-protein interaction residues in the glycophorin A transmembrane helix-helix dimer was carried out. The results demonstrate that the glycophorin A transmembrane sequence dimerizes when its GxxxG motif is abolished by mutation to large aliphatic residues, suggesting that the sequence encodes an intrinsic propensity to self-associate independent of a GxxxG motif. In the presence of an intact GxxxG motif, the glycophorin A dimer stability can be modulated over a span of -0.5 kcal mol(-1) to +3.2 kcal mol(-1) by mutating the surrounding sequence context. Thus, these flanking residues play an active role in determining the transmembrane dimer stability. To assess the structural consequences of the thermodynamic effects of mutations, molecular models of mutant transmembrane domains were constructed, and a structure-based parameterization of the free energy change due to mutation was carried out. The changes in association free energy for glycophorin A mutants can be explained primarily by changes in packing interactions at the protein-protein interface. The energy cost of removing favorable van der Waals interactions was found to be 0.039 kcal mol(-1) per A2 of favorable occluded surface area. The value corresponds well with estimates for mutations in bacteriorhodopsin as well as for those mutations in the interiors of soluble proteins that create packing defects.  相似文献   

5.
6.
Takano K  Tsuchimori K  Yamagata Y  Yutani K 《Biochemistry》2000,39(40):12375-12381
Salt bridges play important roles in the conformational stability of proteins. However, the effect of a surface salt bridge on the stability remains controversial even today; some reports have shown little contribution of a surface salt bridge to stability, whereas others have shown a favorable contribution. In this study, to elucidate the net contribution of a surface salt bridge to the conformational stability of a protein, systematic mutant human lysozymes, containing one Glu to Gln (E7Q) and five Asp to Asn mutations (D18N, D49N, D67N, D102N, and D120N) at residues where a salt bridge is formed near the surface in the wild-type structure, were examined. The thermodynamic parameters for denaturation between pH 2.0 and 4.8 were determined by use of a differential scanning calorimeter, and the crystal structures were analyzed by X-ray crystallography. The denaturation Gibbs energy (DeltaG) of all mutant proteins was lower than that of the wild-type protein at pH 4, whereas there was little difference between them near pH 2. This is caused by the fact that the Glu and Asp residues are ionized at pH 4 but protonated at pH 2, indicating a favorable contribution of salt bridges to the wild-type structure at pH 4. Each contribution was not equivalent, but we found that the contributions correlate with the solvent inaccessibility of the salt bridges; the salt bridge contribution was small when 100% accessible, while it was about 9 kJ/mol if 100% inaccessible. This conclusion indicates how to reconcile a number of conflicting reports about role of surface salt bridges in protein stability. Furthermore, the effect of salts on surface salt bridges was also examined. In the presence of 0.2 M KCl, the stability at pH 4 decreased, and the differences in stability between the wild-type and mutant proteins were smaller than those in the absence of salts, indicating the compensation to the contribution of salt bridges with salts. Salt bridges with more than 50% accessibility did not contribute to the stability in the presence of 0.2 M KCl.  相似文献   

7.
Enzymes from thermophilic and, particularly, from hyperthermophilic organisms are surprisingly stable. Understanding the molecular origin of protein thermostability and thermoactivity attracted the interest of many scientists both for the perspective comprehension of the principles of protein structure and for the possible biotechnological applications through protein engineering. Comparative studies at sequence and structure levels were aimed at detecting significant differences of structural parameters related to protein stability between thermophilic and hyperthermophilic proteins and their mesophilic homologs. In a recent work, we focused attention on structural adaptation occurring at the subunit interface of oligomeric hyper- and thermostable enzymes. A set of structural and chemico-physical parameters were compared to those observed at the corresponding interfaces of homologous mesophilic proteins. Among the most significant variations, a general increase of interface apolarity and packing density in hyperthermophilic enzymes were found. This work was therefore aimed at elucidating whether the increased packing observed is reached also through the reduction of interface cavity number and volume. The results indicate that number of cavities tends to be relatively constant while cavity volume tends to decrease in the hyperthermophilic interfaces. The cavity apolarity increases in thermophiles but, apparently, not in hyperthermophiles. Moreover, interface hot spot residues of the mesophilic interfaces tend to be conserved in the extremophilic counterparts.  相似文献   

8.
Consensus-designed ankyrin repeat (AR) proteins are thermodynamically very stable. The structural analysis of the designed AR protein E3_5 revealed that this stability is due to a regular fold with highly conserved structural motifs and H-bonding networks. However, the designed AR protein E3_19 exhibits a significantly lower stability than E3_5 (9.6 vs. 14.8 kcal/mol), despite 88% sequence identity. To investigate the structural correlations of this stability difference between E3_5 and E3_19, we determined the crystal structure of E3_19 at 1.9 A resolution. E3_19 as well has a regular AR domain fold with the characteristic H-bonding patterns. All structural features of the E3_5 and E3_19 molecules appear to be virtually identical (RMSD(Calpha) approximately 0.7 A). However, clear differences are observed in the surface charge distribution of the two AR proteins. E3_19 features clusters of charged residues and more exposed hydrophobic residues than E3_5. The atomic coordinates of E3_19 have been deposited in the Protein Data Bank. PDB ID: 2BKG.  相似文献   

9.
Two designed ankyrin repeat (AR) proteins (E3_5 and E3_19) are high homologous (with about 87% sequence identity) and their crystal structures have a Calpha atom-positional root-mean-square difference of about 0.14 nm. However, it was found that E3_5 is considerably more stable than E3_19 in guanidinium hydrochloride and thermal denaturation experiments. With the goal of providing insights into the various factors contributing to the stabilities of the designed AR proteins and suggesting possible mutations to enhance their stabilities, homology modeling and molecular dynamics (MD) simulations with explicit solvent have been performed. Because the crystal structure of E3_19 was solved later than that of E3_5, a homology model of E3_19 based on the crystal structure of E3_5 was also used in the simulations. E3_5 shows a very stable trajectory in both crystal and solution simulations. In contrast, the C-terminal repeat of E3_19 unfolds in the simulations starting from either the modeled structure or the crystal structure, although it has a sequence identical to that of E3_5. A continuum electrostatic model was used to estimate the effect of single mutations on protein stability and to study the interaction between the internal ARs and the C-terminal capping AR. Mutations involving charged residues were found to have large effects on stability. Due to the difference in charge distribution in the internal ARs of E3_19 and E3_5, their interaction with the C-terminal capping AR is less favorable in E3_19. The simulation trajectories suggest that the stability of the designed AR proteins can be increased by optimizing the electrostatic interactions within and between the different repeats.  相似文献   

10.
The influence of inserting certain residues (X) into a polytripeptide sequence conformed into a poly-L -proline II helix is examined theoretically. It is found that for sequences such as -Gly-Pro-X- and -Gly-X-Pro-, the introduction of glycyl, L -alanyl or L -seryl residues in the X position destabilizes the helix so that it is no longer the most stable intramolecular form. On the other hand, L -prolyl and L -hydroxyprolyl residues cause the PP II helix to be most stable. Of the many stable intramolecular forms, the majority will not pack efficiently to form fiber or solid-state structures. The Rich-Crick and Ramachandran collagen model structures were examined in terms of a Gly-Pro-Ala sequence, the Ramachandran, one-hydrogen-bond structure, being the most stable. However, another triple-strand structure for (Gly-Pro-Ala)n, is much more energetically favorable. Hence, it may be concluded that none of the aforementioned is an entirely satisfactory collagen model. The new triple helix conformation proposed by Traub, Yonath, and Segal for (Gly-Pro-Pro) is found to give a more favorable intramolecular conformation for (Gly-Pro-Ala)n than those derived from other collagen models. It is concluded that the collagen molecule derives its stability from interchain interactions in proline-sparse regions and intrachain stability in proline-rich regions.  相似文献   

11.
ABSTRACT: Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology.  相似文献   

12.
Maltoporin in the outer membrane of Escherichia coli contains two cysteine residues, at positions 22 and 38 in the primary sequence. The role of these residues in determining structural stability, and their contributions to the maltoporin binding sites for maltodextrins and bacteriophage lambda, was investigated. Site-directed mutagenesis was used to alter each of these residues to a serine. A double mutant lacking both cysteines was also isolated. None of the substitutions affected maltodextrin binding or the binding of phage lambda, suggesting the variant proteins retain a native binding-site conformation. The mutants were assembled at wild-type levels into the outer membrane as maltoporin trimers but the temperature-stability of the trimer greater than monomer dissociation was slightly reduced in the presence of the Cys 38 substitution. However, it is unlikely that the stability of trimers was due to disulfide linkages between subunits since the native trimers are stable under highly reducing conditions in the presence of SDS; more likely the Cys greater than Ser substitutions slightly perturb intra- or inter-subunit hydrophobic interactions in regions predicted to span across the outer membrane.  相似文献   

13.
J Sancho  L Serrano  A R Fersht 《Biochemistry》1992,31(8):2253-2258
A single histidine residue has been placed at either the N-terminus or the C-terminus of each of the two alpha-helices of barnase. The pKa of that histidine residue in each of the four mutants has been determined by 1H NMR. The pKas of the two residues at the C-terminus are, on average, 0.5 unit higher, and those of the residues at the N-terminus are 0.8 unit lower, than the pKa of histidines in unfolded barnase at low ionic strength. The conformational stability of the mutant proteins at different values of pH has been measured by urea denaturation. C-Terminal histidine mutants are approximately 0.6 kcal mol-1 more stable when the introduced histidine is protonated, both at low and high ionic strength. N-Terminal mutants with a protonated histidine residue are approximately 1.1 kcal mol-1 less stable at low ionic strength and 0.5 kcal mol-1 less stable at high ionic strength (1 M NaCl). The low-field 1H NMR spectra of the mutant proteins at low pH suggest that the C-terminal histidines form hydrogen bonds with the protein while the N-terminal histidines do not form the same. The perturbations of pKa and stability result from a combination of different electrostatic environments and hydrogen-bonding patterns at either ends of helices. The value of 0.6 kcal mol-1 represents a lower limit to the favorable electrostatic interaction between the alpha-helix dipole and a protonated histidine residue at the C-terminal end of the helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Incubation of 5-azacytosine-substituted DNA ([5-aza-C]DNA) with nuclear proteins leads to the formation of highly stable DNA . protein complexes which remain intact in the presence of 1 M NaCl and/or 0.6% Sarkosyl. The proteins involved in binding double-stranded [5-aza-C]DNA in these stable complexes comprise a specific subset of non-histone nuclear proteins that includes DNA methyltransferase. Complex formation does not require S-adenosylmethionine and does not involve covalent linkage of protein to DNA or modification of 5-azacytosine residues. Non-histone nuclear proteins do not form complexes with double-stranded unsubstituted DNA that are resistant to dissociation with NaCl and Sarkosyl but are capable of forming such complexes with single-stranded DNA regardless of whether it contains 5-azacytosine residues or not. However, it can be demonstrated 1) that single-stranded regions do not account for stable binding of proteins to native [5-aza-C]DNA and 2) that many nuclear proteins which form stable complexes with single-stranded DNA are incapable of forming such complexes with double-stranded [5-aza-C]DNA. Synthesis of [5-aza-C]DNA by cells growing in the presence of either 5-azacytidine or 5-aza-2'-deoxycytidine leads to rapid loss of extractable DNA methyltransferase (Creusot, F., Acs, G., and Christman, J.K. (1982) J. Biol. Chem. 257, 2041-2048). Analogous depletion of non-histone nuclear proteins capable of forming stable complexes with [5-aza-C]DNA in vitro is observed, suggesting that the same proteins can form highly stable complexes with [5-aza-C]DNA in vitro and in vivo. Formation of stable complexes between non-histone nuclear proteins and [5-aza-C]DNA could potentially affect not only the activity of DNA methyltransferase but the action of other regulatory proteins or enzymes that interact with DNA. Such interactions could explain effects of 5-azacytidine on gene expression that cannot be directly linked to loss of methyl groups from DNA.  相似文献   

15.
Dominy BN  Minoux H  Brooks CL 《Proteins》2004,57(1):128-141
Two factors provide key contributions to the stability of thermophilic proteins relative to their mesophilic homologues: electrostatic interactions of charged residues in the folded state and the dielectric response of the folded protein. The dielectric response for proteins in a "thermophilic series" globally modulates the thermal stability of its members, with the calculated dielectric constant for the protein increasing from mesophiles to hyperthermophiles. This variability results from differences in the distribution of charged residues on the surface of the protein, in agreement with structural and genetic observations. Furthermore, the contribution of electrostatic interactions to the stability of the folded state is more favorable for thermophilic proteins than for their mesophilic homologues. This leads to the conclusion that electrostatic interactions play an important role in determining the stability of proteins at high temperatures. The interplay between electrostatic interactions and dielectric response also provides further rationalization for the enhanced stability of thermophilic proteins with respect to cold-denaturation. Taken together, the distribution of charged residues and their fluctuations have been shown to be factors in modulating protein stability over the entire range of biologically relevant temperatures.  相似文献   

16.
Molecular Dynamics (MD) simulations at low dielectric constant have been carried out for peptides matching the double spanning segments of transmembrane proteins. Different folding dynamics have been observed. The peptides folded into the stable helix-turn-helix conformation-alpha-hairpin-with antiparallel-oriented strands or unstable alpha-hairpin conformation that unfolded later into the straight helical structure. The peptide having flexible residues in the TM helices often misfolded into a tangled structure that can be avoided by restricting the flexibility of these residues. General conclusions can be drawn from the observed folding dynamics. The stability and folding of some double spanning transmembrane fragments are self-assembling. The following and/or neighboring peptide chains of the protein may support the stability of the hairpin structure of other fragments. The stability of the TM helices containing flexible residues could be maintained due to contacts with neighboring TM segments.  相似文献   

17.
The Runt domain (RD) is the DNA-binding region of the Runx genes. A related protein, known as core binding factor β (CBFβ) also binds to the RD to enhance RD–DNA interaction by 6- to 10-fold. Here, we report results from molecular dynamics (MD) simulations of RD alone, as a dimer in complexes with DNA and CBFβ and in a ternary complex with DNA and CBFβ. Consistent with the experimental findings, in the presence of CBFβ the estimated free energy of binding of RD to the DNA is more favorable, which is shown to be due to more favorable intermolecular interactions and desolvation contributions. Also contributing to the enhanced binding are favorable intramolecular interactions between the ‘wing’ residues (RD residues 139–145) and the ‘wing1’ residues (RD residues 104–116). The simulation studies also indicate that the RD–CBFβ binding is more favorable in the presence of DNA due to a more favorable RD–CBFβ interaction energy. In addition, it is predicted that long-range interactions involving ionic residues contribute to binding cooperativity. Results from the MD calculations are used to interpret a variety of experimental mutagenesis data. A novel role for RD Glu116 to the RD–CBFβ interaction is predicted.  相似文献   

18.
The purpose of this research work was to formulate and characterize self-micro emulsifying drug delivery system containing exemestane. The solubility of exemestane was determined in various vehicles. Pseudo ternary phase diagram was used to evaluate the micro-emulsification existence area. SMEDDS formulations were tested for micro-emulsifying properties, and the resultant formulations loaded with exemestane (ME1, ME2, ME3, ME4 and ME5) were investigated for clarity, phase separation, globule size and shape, zeta potential, effect of various diluents and dilutions, thermodynamic and thermal stability. From the results it is concluded that increase in droplet size is proportional to the concentration of oil in SMEDDS formulation. Minor difference in the droplet size and zeta potential was observed by varying the diluents (deionized water and 0.1 N HCl) and dilutions (1:10, 1:50 and 1:100). Formulations, which were found to be thermodynamically stable (ME1, ME2, ME3 and ME4), were subjected to stability studies as per International Conference on Harmonization (ICH) guidelines. No significant variations were observed in the formulations over a period of 3 months at accelerated and long-term conditions. TEM photographs of microemulsions formulations further conformed the spherical shape of globules. Among the various SMEDDS formulations, ME4 offer the advantages of good clarity systems at high oil content and thus offer good solubilization of exemestane. Thus this study indicates that the SMEDDS can be used as a potential drug carrier for dissolution enhancement of exemestane and other lipophilic drug(s).  相似文献   

19.
Evolution minimizes the number of highly conserved amino acid residues in proteins to ensure evolutionary robustness and adaptability. The roles of all highly conserved, non‐catalytic residues, 11% of all residues, in class A β‐lactamase were analyzed by studying the effect of 146 mutations on in cell and in vitro activity, folding, structure, and stability. Residues around the catalytic residues (second shell) contribute to fine‐tuning of the active site structure. Mutations affect the structure over the entire active site and can result in stable but inactive protein. Conserved residues farther away (third shell) ensure a favorable balance of folding versus aggregation or stabilize the folded form over the unfolded state. Once folded, the mutant enzymes are stable and active and show only localized structural effects. These residues are found in clusters, stapling secondary structure elements. The results give an integral picture of the different roles of essential residues in enzymes.  相似文献   

20.
Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are −3.0 kcal mol−1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of −5.0 kcal mol−1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (−10 kcal mol−1) exceeds than that of bridge term (−7 kcal mol−1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its specific electrostatic interactions which we hope would help in protein engineering and bioinformatics studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号