首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fed-batch production of recombinant fuculose-1-phosphate aldolase (FucA) by Escherichia coli XL1 Blue MRF′ (pTrcfuc) has been automated by using a simple feedback specific growth rate control strategy. Non-induced continuous cultures were conducted in order to characterize substrate consumption and carbon dioxide production yields and rates. In fed-batch cultures, substrate feeding rate was adjusted using on-line biomass estimation based on exhaust gas analysis and macroscopic mass balances. Overexpression of recombinant protein induced by isopropyl-β-d-thiogalactopyranoside (IPTG) under trc promoter did not affect significantly the control of specific growth rate during 7 h after induction. Growth and protein production curves were parallel until high level of protein expression started to inhibit cell growth. The proposed specific growth rate control strategy has been successfully applied to both non-induced and induced fed-batch cultures that do not exhibit severe growth rate depression.  相似文献   

2.
A fed-batch culture strategy for the production of recombinant Escherichia coli cells anchoring surface-displayed transglucosidase for use as a whole-cell biocatalyst for α-arbutin synthesis was developed. Lactose was used as an inducer of the recombinant protein. In fed-batch cultures, dissolved oxygen was used as the feed indicator for glucose, thus accumulation of glucose and acetate that affected the cell growth and recombinant protein production was avoided. Fed-batch fermentation with lactose induction yielded a biomass of 18 g/L, and the cells possessed very high transglucosylation activity. In the synthesis of α-arbutin by hydroquinone glucosylation, the whole-cell biocatalysts showed a specific activity of 501 nkat/g cell and produced 21 g/L of arbutin, which corresponded to 76% molar conversion. A sixfold increased productivity of whole cell biocatalysts was obtained in the fed-batch culture with lactose induction, as compared to batch culture induced by IPTG.  相似文献   

3.
A process for maximizing the volumetric productivity of recombinant ovine growth hormone (r-oGH) expressed in Escherichia coli during high cell density fermentation process has been devised. Kinetics of r-oGH expression as inclusion bodies and its effect on specific growth rates of E. coli cells were monitored during batch fermentation process. It was observed that during r-oGH expression in E. coli, the specific growth rate of the culture became an intrinsic property of the cells which reduced in a programmed manner upon induction. Nutrient feeding during protein expression phase of the fed-batch process was designed according to the reduction in specific growth rate of the culture. By feeding yeast extract along with glucose during fed-batch operation, high cell growth with very little accumulation of acetic acid was observed. Use of yeast extract helped in maintaining high specific cellular protein yield which resulted in high volumetric productivity of r-oGH. In 16 h of fed-batch fermentation, 3.2 g l-1 of r-oGH were produced at a cell OD of 124. This is the highest concentration of r-oGH reported to date using E. coli expression system. The volumetric productivity of r-oGH was 0.2 g l-1 h-1, which is also the highest value reported for any therapeutic protein using IPTG inducible expression system in a single stage fed-batch process.  相似文献   

4.
5.
A simple fed-batch process for high cell density cultivation of Escherichia coli TG1 was developed. A pre-determined feeding strategy was chosen to maintain carbon-limited growth using a defined medium. Feeding was carried out to increase the cell mass concentration exponentially in the bioreactor controlling biomass accumulation at growth rates which do not cause the formation of acetic acid (μ < μcrit). Cell concentrations of 128 and 148 g per 1 dry cell weight (g 1−1 DCW) were obtained using glucose or glycerol as carbon source, respectively.  相似文献   

6.
Iron bioavailability is a major limiter of bacterial growth in mammalian host tissue and thus represents an important area of study. Escherichia coli K-12 metabolism was studied at four levels of iron limitation in chemostats using physiological and proteomic analyses. The data documented an E. coli acclimation gradient where progressively more severe iron scarcity resulted in a larger percentage of substrate carbon being directed into an overflow metabolism accompanied by a decrease in biomass yield on glucose. Acetate was the primary secreted organic by-product for moderate levels of iron limitation, but as stress increased, the metabolism shifted to secrete primarily lactate (∼70% of catabolized glucose carbon). Proteomic analysis reinforced the physiological data and quantified relative increases in glycolysis enzyme abundance and decreases in tricarboxylic acid (TCA) cycle enzyme abundance with increasing iron limitation stress. The combined data indicated that E. coli responds to limiting iron by investing the scarce resource in essential enzymes, at the cost of catabolic efficiency (i.e., downregulating high-ATP-yielding pathways containing enzymes with large iron requirements, like the TCA cycle). Acclimation to iron-limited growth was contrasted experimentally with acclimation to glucose-limited growth to identify both general and nutrient-specific acclimation strategies. While the iron-limited cultures maximized biomass yields on iron and increased expression of iron acquisition strategies, the glucose-limited cultures maximized biomass yields on glucose and increased expression of carbon acquisition strategies. This study quantified ecologically competitive acclimations to nutrient limitations, yielding knowledge essential for understanding medically relevant bacterial responses to host and to developing intervention strategies.  相似文献   

7.
The optimum conditions for mass production of fusion proinsulin were studied in recombinantEscherichia coli strain BL21 (DE3) [pT7-PI] using fed-batch culture employing pH-stat method. Yeast extract was found to enhance both the growth rate of recombinantE. coli strain BL21 (DE3) [pT7-PI] and its cell mass yield. When the glucose concentration was 10 g/L in the initial medium, 10 g/L concentration of yeast extract was found to be optimal to control the acetate production and to augment both the cell mass yield and the growth rate. Optimum ratio of glucose to yeast extract to minimize the cost of the feeding medium in the fed-batch culture was calculated to be 1.225 and verified by the subsequent experiments. The appropriate inducer concentration and induction time were examined with isopropyl-β-D-thiogalactopyranoside (IPTG). Irrespective of the induction time, IPTG induction resulted in the reduction of growth rate, but the expression level of the fusion protein was maintained at the level of about 20% of the total proteins. Since the volumetric productivity was well maintained in the range between 0.15 and 0.18 g/L.hr at the inducer concentration of above 0.025 mM, the appropriate inducer concentration, in relation to the inducer cost, is considered to be about 0.025 mM.  相似文献   

8.
An unsteady, unstructured, unsegregated and based on first principles mathematical model has been proposed to describe IPTG (isopropyl-β-d-tiogalactopiranoside) transport in induced fed-batch cultures of E. coli M15 ΔglyA [pQEαβrham] [pREP4] producing rhamnulose 1-phosphate aldolase (RhuA). The model predicts extracellular and intracellular IPTG concentration. Experimental extracellular IPTG concentrations under different operational conditions were obtained by HPLC–MS analysis. These experimental data were used to fit the parameters of the model. The model was also able to predict the experimental behavior of two different E. coli strains producing fuculose 1-phosphate aldolase (FucA). IPTG transport to cells was the contribution of three processes: a diffusion process, and two active processes (one non-specific and another specific).  相似文献   

9.
A five-layer fuzzy neural network (FNN) was developed for the control of fed-batch cultivation of recombinant Escherichia coli JM103 harboring plasmid pUR 2921. The FNN was believed to represent the membership functions of the fuzzy subsets and to implement fuzzy inference using previous experimental data. This FNN was then used for compensating the exponential feeding rate determined by the feedforward control element. The control system is therefore a feedforward-feedback type. The change in pH of the culture broth and the specific growth rate were used as the inputs to FNN to calculate the glucose feeding rate. A cell density of 84 g DWC/l in the fed-batch cultivation of the recombinant E. coli was obtained with this control strategy. Two different FNNs were then employed before and after induction to enhance plasmid-encoded β-galactosidase production. Before induction the specific growth rate was set as 0.31 h−1, while it was changed to 0.1 h−1 after induction. Compared to when only one FNN was used, the residual glucose concentration could be tightly controlled at an appropriate level by employing two FNNs, resulting in an increase in relative activity of β-galactosidase which was about four times greater. The present investigation demonstrates that a feedforward-feedback control strategy with FNN is a promising control strategy for the control of high cell density cultivation and high expression of a target gene in fed-batch cultivation of a recombinant strain.  相似文献   

10.
In most cases of E. coli high cell density fermentation process, maximizing cell concentration helps in increasing the volumetric productivity of recombinant proteins usually at the cost of lower specific cellular protein yield. In this report, we describe a process for maintaining the specific cellular yield of Ovine growth hormone (oGH) from E. coli by optimal feeding of yeast extract during high cell density fermentation process. Recombinant oGH was produced as inclusion bodies in Escherichia coli. Specific cellular yield of recombinant oGH was maintained by feeding yeast extract along with glucose during fed-batch fermentation. Glucose to yeast extract ratio of 0.75 was found to be optimum for maintaining the specific cellular oGH yield of 66 mg/g of E. coli cells. Continuous feeding of yeast extract along with glucose helped in reducing acetic acid secretion and promoted higher cell growth during fed-batch fermentation. High cell growth of E. coli and high specific yield of recombinant oGH thus helped in achieving high volumetric productivity of the expressed protein. A maximum of 2 g/l of ovine growth hormone was expressed as inclusion bodies in 12 h of fed-batch fermentation.  相似文献   

11.
The influence of proteolysis over recombinant protein quality has been studied using rhamnulose 1-phosphate aldolase (RhuA) production as case example. Progressive induction by means of continuous isopropyl-β-d-thiogalactopyranoside (IPTG) dosage in Escherichia coli fed-batch cultures led to high specific levels of recombinant protein. However, the specific activity profile did not correlate to the specific protein content when the process was run at 37 °C and there was a decrease of the enzyme activity along the induction phase. Specific activity loss depending on the presence of an energy source was observed at short term, but protein degradation due to the action of energy-independent metalloproteases occurred after a longer time period. The effects of lowering the temperature were analysed on both mechanisms, and a reduction of the specific activity loss was observed when the process temperature was decreased to 28 °C. Lower plasmid copy number and specific production rates probably alleviated the metabolic load on host cell during recombinant protein overexpression, and a high increase of the enzyme activity was achieved in high cell density fed-batch cultures under these conditions.  相似文献   

12.
Fermentation strategies for production of high concentrations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with different 3-hydroxyvalerate (3HV) fractions by recombinant Escherichia coli harboring the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes were developed. Fed-batch cultures of recombinant E. coli with the pH-stat feeding strategy facilitated production of high concentrations and high contents of P(3HB-co-3HV) in a chemically defined medium. When a feeding solution was added in order to increase the glucose and propionic acid concentrations to 20 g/liter and 20 mM, respectively, after each feeding, a cell dry weight of 120.3 g/liter and a relatively low P(3HB-co-3HV) content, 42.5 wt%, were obtained. Accumulation of a high residual concentration of propionic acid in the medium was the reason for the low P(3HB-co-3HV) content. An acetic acid induction strategy was used to stimulate the uptake and utilization of propionic acid. When a fed-batch culture and this strategy were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 141.9 g/liter, 88.1 g/liter, 62.1 wt%, and 15.3 mol%, respectively. When an improved nutrient feeding strategy, acetic acid induction, and oleic acid supplementation were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 203.1 g/liter, 158.8 g/liter, 78.2 wt%, and 10.6 mol%, respectively; this resulted in a high level of productivity, 2.88 g of P(3HB-co-3HV)/liter-h.  相似文献   

13.
An efficient induction strategy that consisted of multiple additions of small doses of isopropyl-β-D-thiogalactopyranoside (IPTG) in the early cell growth phase was developed for enhancing Pfu DNA polymerase production in Escherichia coli. In comparison to the most commonly used method of a single induction of 1 mM IPTG, the promising induction strategy resulted in an increase in the Pfu activity of 13.5 % in shake flasks, while simultaneously decreasing the dose of IPTG by nearly half. An analysis of the intracellular IPTG concentrations indicated that the cells need to maintain an optimum intracellular IPTG concentration after 6 h for efficient Pfu DNA polymerase production. A significant increase in the Pfu DNA polymerase activity of 31.5 % under the controlled dissolved oxygen concentration of 30 % in a 5 L fermentor was achieved using the multiple IPTG induction strategy in comparison with the single IPTG induction. The induction strategy using multiple inputs of IPTG also avoided over accumulation of IPTG and reduced the cost of Pfu DNA polymerase production.  相似文献   

14.
可溶性TRAIL蛋白的高密度培养及补料策略研究   总被引:3,自引:0,他引:3  
采用分批补料的方法高密度培养重组大肠杆菌C600/PbvTRAIL制备人可溶性TRAIL蛋白,优化发酵工艺,探索简单高效的分离纯化方法并测定蛋白生物活性。通过比较几种不同的补料策略:间歇流加、Dostat、pHstat,摸索了一种流加策略,即DOstatpHstat组合流加,有效的避免了发酵过程中,尤其是诱导表达阶段乙酸积累的增加,使TRAIL蛋白在高密度培养条件下,得到高效表达。菌体密度最终达到300g/L(WCW)以上,可溶性TRAIL蛋白占菌体总蛋白的4.2%,含量为1.1g/L。在整个发酵过程中,乙酸浓度接近于0,且未使用任何特殊手段,如纯氧、加压等,简化了发酵工艺,降低了发酵成本,为TRAIL的工业化生产创造了条件。  相似文献   

15.
denoregulin(ADR)是来源于南美树蛙Phyllomedusa bicolor皮肤的含有33个氨基酸的抗菌肽,在非极性环境中形成α_螺旋型结构,具有抗菌活性强、抗菌谱广的特点。将ADR基因克隆于pET32a载体上,转化大肠杆菌BL21(DE3),对这一工程菌株的培养条件进行了优化。通过正交试验,考察诱导时机、诱导剂量和诱导时间三个因素的不同水平对蛋白表达的影响,结果发现诱导时机的影响尤为显著,考察了9种不同培养基对表达量的影响,发现培养基中加入葡萄糖对目标蛋白的稳定表达起了重要的作用,确定最佳培养条件为:培养基为2×YT+0.5%葡萄糖,诱导时机为OD600=0.9左右,诱导剂IPTG加入的终浓度为0.1mmol/L,诱导时间为4h。采用前期恒pH、后期指数流加的策略进行工程菌BL21(DE3)/pET32a-adr的高密度培养,在整个流加过程中,通过控制葡萄糖的加入量,将菌株的比生长速率控制在015h-1,乙酸浓度也被控制在较低的水平(<2g/L),但是质粒丢失严重,在发酵结束时,约有40%的大肠杆菌中不带质粒,这导致了目标蛋白的表达量下降严重,但是表达的目标蛋白90%以上为可溶性形式。表达的融合蛋白无抑菌活性,而裂解后得到的ADR单体具有明显的抑菌活性。  相似文献   

16.
《Process Biochemistry》2010,45(11):1769-1778
A set of different green fluorescent protein (GFP) Escherichia coli reporter strains have been evaluated in mini- and stirred bioreactors operating in fed-batch mode with different degrees of perturbations in order to estimate their potential use as process-related stress biosensor. The mini-bioreactor platform comprises a set of parallel shake flasks operating in fed-batch mode. The advantage of this system is its high experimental throughput for the evaluation of the GFP synthesis capacity of our reporter strains. In the case of classical shake flask system, no significant evolution of GFP synthesis have been observed, considering the reduced microbial growth period allowed by the system, whereas in the case of fed-batch operated mini-bioreactors, evolution of GFP synthesis, as well as GFP distribution among the microbial population, has been observed for three preselected strains (prpoS, puspA and posmC::gfp). More interestingly, a binary mode of expression has been observed in the case of the cultures carried out with the reporter strains for which GFP synthesis is under the control of the rpoS promoter which is induced under carbon limitation conditions. However, the generation of controlled glucose perturbations is relatively limited in this system and, in a second step fully automated bioreactor with a sclae-down strategy has been used to correlate the response of a prpoS::gfp strains with extracellular glucose perturbations. In the case of the culture performed in perturbed bioreactor (glucose intermittent feeding or glucose addition at the level of the recycle loop of a two-compartment scale-down bioreactor), the slowdown of the GFP synthesis resulting in the observation of a binary repartition of GFP content among the microbial population, has been observed. This observation led to the conclusion that the prpoS::gfp can be used as a biosensor for the validation of a fed-batch profile in industrial-scale bioreactors.  相似文献   

17.
Acetate is a primary inhibitory metabolite in Escherichia coli cultivation which is detrimental to bacterial growth and the formation of desired products. It can be derived from acetyl coenzyme A by the phosphotransacetylase (Pta)–acetate kinase (AckA) pathway. In this study, the fermentation characteristics of Pta mutant strain E. coli TRTHΔpta were compared with those of the control strain E. coli TRTH in a 30-L fermentor. The effects of glucose concentration and dissolved oxygen (DO) level were investigated, and the results suggest that DO and glucose concentration are vital influencing parameters for the production of L-tryptophan. Based on our experimental results, we then tested a DO-stat fed-batch fermentation strategy. When DO was controlled at about 20 % during L-tryptophan fermentation in the DO-stat fed-batch system, the pta mutant was able to maintain a higher growth rate at the exponential phase, and the final biomass and L-tryptophan production were increased to 55.3 g/L and 35.2 g/L, respectively. Concomitantly, as the concentration of acetate decreased to 0.7 g/L, the accumulation of pyruvate and lactate increased in the mutant strain as compared with the control strain. This characterization of the recombinant mutant strain provides useful information for the rational modification of metabolic fluxes to improve tryptophan production.  相似文献   

18.
A high growth rate in bacterial cultures is usually achieved by optimizing growth conditions, but metabolism of the bacterium limits the maximal growth rate attainable on the carbon source used. This limitation can be circumvented by engineering the metabolism of the bacterium. Acinetobacter baylyi has become a model organism for studies of bacterial metabolism and metabolic engineering due to its wide substrate spectrum and easy-to-engineer genome. It produces naturally storage lipids, such as wax esters, and has a unique gluconate catabolism as it lacks a gene for pyruvate kinase. We engineered the central metabolism of A. baylyi ADP1 more favorable for gluconate catabolism by expressing the pyruvate kinase gene (pykF) of Escherichia coli. This modification increased growth rate when cultivated on gluconate or glucose as a sole carbon source in a batch cultivation. The engineered cells reached stationary phase on these carbon sources approximately twice as fast as control cells carrying an empty plasmid and produced similar amount of biomass. Furthermore, when grown on either gluconate or glucose, pykF expression did not lead to significant accumulation of overflow metabolites and consumption of the substrate remained unaltered. Increased growth rate on glucose was not accompanied with decreased wax ester production, and the pykF-expressing cells accumulated significantly more of these storage lipids with respect to cultivation time.  相似文献   

19.
Abstract

Batch and fed-batch production of recombinant human epidermal growth factor (hEGF) was studied in an E. coli secretary expression system. By using MMBL medium containing 5 g/L glucose, controlling the temperature at 32°C and maintaining the dissolved oxgen level over 20% saturation, a high yield of hEGF (32 mg/L) was obtained after an 18 hr batch cultivation with 0.2 mM IPTG induction at mid-log phase. Three different glucose feeding strategies were employed to further improve hEGF productivity in a bench top fermentor. Compared with the batch results, hEGF yield was improved up to 25.5% or 28.1%, respectively by intermittent or pH-stat glucose feeding, and up to 150% improvement of hEGF production was achieved by constant feeding of 200 g/L glucose solution at a rate of 0.11 mL/min. The effects of further combined feeding with other medium components and inducer on hEGF yield were also examined in the benchtop fermentor. This work is very helpful to further improve the productivity of extracellular hEGF in the recombinant E. coli system.  相似文献   

20.
 The DNA sequence encoding Thermus protease aqualysin I was inserted downstream from a bacteriophage T7 promoter in an expression vector. In the T7 expression system, using a strain lacking an F′ episome, aqualysin I was produced in soluble form without chemical induction. The deletions of part (30 amino acid residues) or all (105 residues) of the C-terminal pro-sequence from the C terminus significantly affected both cellular growth and the production of the enzyme. Complete deletion adversely affected both. In contrast, the 30-residue deletion markedly improved productivity by approximately four times compared to non-deletion, and shortened the time needed for the activation of a precursor to active enzyme. The concentration of inducer isopropyl β-D-thiogalactopyrano-side (IPTG) was varied to examine its effects, and it was found that a low concentration of IPTG improved aqualysin I production. To avoid the inhibitory effects of acetic acid accumulation in the culture medium, the use of other carbon sources besides glucose was examined. When cells were cultivated with glycerol, the acetic acid level remained relatively low, and both good cellular growth and a high level of production were attained. The aqualysin I productivity for a fed-batch culture using two carbon sources, glucose and glycerol, reached more than 150 kU/ml enzymatically active aqualysin I. Received: 19 May 1995/Received revision: 28 July 1995/Accepted: 22 August 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号