首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Riparian zones are central landscape features providing several ecosystem services and are exceptionally rich in biodiversity. Despite their relatively low area coverage, riparian zones consequently represent a major concern for land and water resource managers confirmed within several European directives. These directives involve effective multi-scale monitoring to assess their conditions and their ability to carry out their functions. The objective of this research was to develop automated tools to provide from a single aerial LiDAR dataset new mapping tools and keystone riparian zone attributes assessing the ecological integrity of the riparian zone at a network scale (24 km).Different metrics were extracted from the original LiDAR point cloud, notably the Digital Terrain Model and Canopy Height Model rasters, allowing the extraction of riparian zones attributes such as the wetted channel (0.89 m; mean residual) and floodplain extents (6.02 m; mean residual). Different riparian forest characteristics were directly extracted from these layers (patch extent, overhanging character, longitudinal continuity, relative water level, mean and relative standard deviation of tree height). Within the riparian forest, the coniferous stands were distinguished from deciduous and isolated trees, with high accuracy (87.3%, Kappa index).Going further the mapping of the indicators, our study proposed an original approach to study the riparian zone attributes within different buffer width, from local scale (50 m long channel axis reach) to a network scale (ca. 2 km long reaches), using a disaggregation/re-agraggation process. This novel approach, combined to graphical presentations of the results allow natural resource managers to visualise the variation of upstream–downstream attributes and to identify priority action areas.In the case study, results showed a general decrease of the riparian forests when the river crosses built-up areas. They also highlighted the lower flooding frequency of riparian forest patches in habitats areas.Those results showed that LiDAR data can be used to extract indicators of ecological integrity of riparian zones in temperate climate zone. They will enable the assessment of the ecological integrity of riparian zones to be undertaken at the regional scale (13,000 km, completely covered by an aerial LIDAR survey in 2014).  相似文献   

2.
Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5 km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators (R2 = 0.99 for streambed width, R2 = 0.82 for riparian zone width, R2 = 0.89 for PPC, R2 = 0.40 for bank stability). These research findings will be used in a 26,000 km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia.  相似文献   

3.
The aim of this study was to determine the effects of catchment and riparian stream buffer-wide urban and non-urban land cover/land use (LC/LU) on total nitrogen (TN) and total phosphorus (TP) runoff to the Chesapeake Bay. The effects of the composition and configuration of LC/LU patches were explored in particular. A hybrid-statistical-process model, the SPAtially Referenced Regression On Watershed attributes (SPARROW), was calibrated with year 1997 watershed-wide, average annual TN and TP discharges to Chesapeake Bay. Two variables were predicted: (1) yield per unit watershed area and (2) mass delivered to the upper estuary. The 166,534 km2 watershed was divided into 2339 catchments averaging 71 km2. LC/LU was described using 16 classes applied to both the catchments and also to riparian stream buffers alone. Seven distinct landscape metrics were evaluated. In all, 167 (TN) and 168 (TP) LC/LU class metric combinations were tested in each model calibration run. Runs were made with LC/LU in six fixed riparian buffer widths (31, 62, 125, 250, 500, and 1000 meters (m)) and entire catchments. The significance of the non-point source type (land cover, manure and fertilizer application, and atmospheric deposition) and factors affecting land-to-water delivery (physiographic province and natural or artificial land surfaces) was assessed. The model with a 31 m riparian stream buffer width accounted for the highest variance of mean annual TN (r2 = 0.9366) and TP (r2 = 0.7503) yield (mass for a specified time normalized by drainage area). TN and TP loadings (mass for a specified time) entering the Chesapeake Bay were estimated to be 1.449 × 108 and 5.367 × 106 kg/yr, respectively. Five of the 167 TN and three of the 168 TP landscape metrics were shown to be significant (p-value  0.05) either for non-point sources or land-to-water delivery variables. This is the first demonstration of the significance of riparian LC/LU and landscape metrics on water quality simulation in a watershed as large as the Chesapeake Bay. Land cover metrics can therefore be expected to improve the precision of estimated TN and TP annual loadings to the Chesapeake Bay and may also suggest changes in land management that may be beneficial in control of nutrient runoff to the Chesapeake Bay and similar watersheds elsewhere.  相似文献   

4.
Riverine landscapes are shaped by the spatio-temporal dynamics of the water regime. Water level transitions induce a shift in plant species composition from aquatic to ephemeral vegetation communities in riparian habitats. Hence, the occurrence of these ephemerals is strongly related to the hydrological connectivity and therefore used as indicator for the assessment of riparian habitat types. The delineation and assessment of such habitat types is time-consuming due to the indifferent occurrence of the plants. Therefore, in this study a knowledge-based framework is presented to provide readily usable polygons to support subsequent field surveys on species level. Different hierarchical scales range from hydrological connectivity classes to watercourses and to the micro-morphological classification of riparian habitats. The object-based image analysis approach was used to extract information from terrain and groundwater models, aerial images, and thematic data. The study site is located in the Danube floodplains east of Vienna Natura 2000 site. The micro-morphological classification of the watercourses resulted in the delineation of the classes Waterbodies, Riparian Habitats and the remaining Transition Zones. Watercourses with high flow velocity or with low hydrological connectivity show a small portion of potentially suitable riparian habitats for ephemeral vegetation communities. The framework with focus on terrain models delineating the shape of the riparian habitats performed well with an overall accuracy of 90% (kappa = 0.74). The thresholds in the framework were set fixed or calculated automatically to facilitate an application by spatial ecologist due to the combination of remote sensing techniques and GIS functionalities. The knowledge-based framework can be adapted to provide a harmonised and standardised dataset for any riverine study area.  相似文献   

5.
《Ecological Indicators》2007,7(2):339-361
Indicators of riparian ecosystem condition for headwater coastal plain streams were identified from data obtained from a reference population of reaches ranging widely in ecological condition. Each indicator was associated with some facet of hydrologic, biogeochemical, and/or habitat functioning and to channel condition, riparian zone condition, or both. Variation in the condition of the indicators among reference reaches provided a framework for developing narratives that could be used to partition and score the condition of the indicators from 0 (severely altered) to 100 (relatively unaltered). The developed narratives were the basis for creating a scoring approach for assessing stream condition at the reach scale (100-m long × 60-m wide segment). This approach was designed to be a rapid, field-based assessment method (<1 h/site) that could be applied by resource professionals with several days of training in the method. Although most alterations to riparian reaches usually affect both channels and riparian zones together, the ability to score channel and riparian zone condition separately is useful for diagnosing problems and suggesting viable restoration options at the reach scale. The assessment method is also useful for comparing the condition of reaches relative to one another, thus offering guidance for prioritizing restoration efforts at a watershed scale.  相似文献   

6.
Planting density influence on fibrous root reinforcement of soils   总被引:2,自引:0,他引:2  
Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation, yet the underlying mechanisms are poorly understood. We investigated soil reinforcement by roots of barley (Hordeum vulgare) planted at different densities in a controlled glasshouse and a separate field study. Soil shear strength increased with planting density (0–950 m?2) at 5 weeks with an average 6.7 ± 1.40 kPa increase in strength over the fallow (7.5 ± 0.47 kPa). At 20 weeks, planting density had less of an effect, with on average a 29% increase in strength contributed by roots. In the glasshouse study, roots increased shear strength by an average of 53%, with a positive effect found for the eight planting densities tested ranging from 0 to 1130 plants/m2. Detailed measures of root tensile strength, and diameter distributions at the shear plane, allowed us to apply and test two existing root reinforcement models of Wu et al. [Wu, T.H., Mckinnell, W.P., Swanston, D.N., 1979. Strength of tree roots and landslides on Prince-Of-Wales-Island, Alaska. Canadian Geotechnical Journal 16, 19–33] and Pollen and Simon [Pollen, N., Simon, A., 2005. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resources Research, 41]. A progressive failure Fibre Bundle Model, developed by Pollen and Simon [Pollen, N., Simon, A., 2005. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resources Research, 41], predicted reinforcement better than the catastrophic failure model by Wu et al. [Wu, T.H., Mckinnell, W.P., Swanston, D.N., 1979. Strength of tree roots and landslides on Prince-Of-Wales-Island, Alaska. Canadian Geotechnical Journal 16, 19–33], but neither described reinforcement well for field-grown plants near maturity at 20 weeks.  相似文献   

7.
Habitat manipulations through the use of fire or mechanical treatments are often used to combat woody plant encroachment and increase foraging opportunities for wildlife and livestock. This creates spatial heterogeneity in habitat quality that large herbivores should respond to in ways predicted by ideal free distribution theory. We monitored free-ranging bison to test whether, (1) manipulated habitats offer higher quality forage than habitats in undisturbed rangeland, (2) bison respond through changes in herd composition or activity to differences in habitat quality, and (3) burned and mechanically treated habitats offer similar forage qualities. We found that habitat types burned ∼10 years ago continue to produce higher quality forage as evidenced by bison fecal N concentration (14.4 g kg−1 dry mass) than open (10.5 g kg−1), closed (10.6 g kg−1), or mechanically manipulated habitats (11.7 g kg−1). Bison herd composition and activity did not vary across habitat types within seasons, despite some between-season variation in overall group composition with sexual segregation being most evident before mid-summer. For semi-arid rangelands encroached with woody vegetation (e.g. piñon–juniper in the western USA) our evidence from free-ranging bison indicates that burning results in higher quality forage than occurs in both mechanically manipulated and undisturbed habitats. Bison roam widely from water, sample available vegetation continuously, and are long-lived gregarious animals that learn to exploit the spatiotemporal heterogeneity in their large home ranges. Bison also have very similar diets to cattle and so, where bison and cattle are allowed to comingle, we suggest the foraging parameters of free-ranging bison are effective ecological indicators of rangeland quality for both bison and cattle.  相似文献   

8.
Reliable estimates of past land cover are critical for assessing potential effects of anthropogenic land-cover changes on past earth surface-climate feedbacks and landscape complexity. Fossil pollen records from lakes and bogs have provided important information on past natural and human-induced vegetation cover. However, those records provide only point estimates of past land cover, and not the spatially continuous maps at regional and sub-continental scales needed for climate modelling.We propose a set of statistical models that create spatially continuous maps of past land cover by combining two data sets: 1) pollen-based point estimates of past land cover (from the REVEALS model) and 2) spatially continuous estimates of past land cover, obtained by combining simulated potential vegetation (from LPJ-GUESS) with an anthropogenic land-cover change scenario (KK10). The proposed models rely on statistical methodology for compositional data and use Gaussian Markov Random Fields to model spatial dependencies in the data.Land-cover reconstructions are presented for three time windows in Europe: 0.05, 0.2, and 6 ka years before present (BP). The models are evaluated through cross-validation, deviance information criteria and by comparing the reconstruction of the 0.05 ka time window to the present-day land-cover data compiled by the European Forest Institute (EFI). For 0.05 ka, the proposed models provide reconstructions that are closer to the EFI data than either the REVEALS- or LPJ-GUESS/KK10-based estimates; thus the statistical combination of the two estimates improves the reconstruction. The reconstruction by the proposed models for 0.2 ka is also good. For 6 ka, however, the large differences between the REVEALS- and LPJ-GUESS/KK10-based estimates reduce the reliability of the proposed models. Possible reasons for the increased differences between REVEALS and LPJ-GUESS/KK10 for older time periods and further improvement of the proposed models are discussed.  相似文献   

9.
Riparian areas represent dynamic spatial gradients characterized by a varying degree of terrestrial–aquatic interaction. Many studies have considered riparian zones to be discrete watershed sub-portions (e.g., 100-m riparian buffers), whereas I introduce ‘zones of influence’ that are subsets of the riparian zone. The purpose of this study is to introduce the concept of hydrologically defined influence zones using a simple hydrologic model to delimit land-cover. I describe a method for identifying zones of influence using watershed hydrologic patterns to delimit zones along a near-stream continuum between a downstream point (e.g., sample reach) and the watershed boundary. Using hydrologic modeling equations and GIS, travel time was calculated for every 30 × 30-m cell in 10 watersheds providing spatially explicit estimates of watershed hydrology and enabling us to calculate the travel time required for rainfall in any watershed cell to reach the watershed terminus. Shorter-duration travel times (i.e., 30–60 min) described smaller areas than longer-duration travel times (i.e., 210–300 min). This method is an alternative method to delimit near stream areas when quantifying watershed influence. Handling editor: K. Martens  相似文献   

10.
《Mammalian Biology》2014,79(4):268-276
The Balkans are one of the last large refugia for brown bear (Ursus arctos) populations in Europe, and Bulgaria, in particular, contains relatively large areas of suitable brown bear habitat and a potential population of more than 600 individuals. Despite this, the majority of brown bear research remains focused on bear populations in Central and Western Europe. We provide the first assessment of genetic population structure of brown bears in Bulgaria by analysing tissue samples (n = 16) as well as samples collected with noninvasive genetic methods, including hair and faecal samples (n = 189 and n = 163, respectively). Sequence analysis of a 248 base pair fragment of the mitochondrial control region showed that two highly divergent mitochondrial European brown bear lineages form a contact zone in central Bulgaria. Furthermore, the analysis of 13 polymorphic microsatellite markers identified 136 individuals and found substantial genetic variability (He = 0.74; NA = 8.9). The combination of both genetic markers revealed the presence of weak genetic substructure in the study area with considerable degrees of genetic admixture and the likely presence of migration corridors between the two subpopulation in the Rhodope Mountains and Stara Planina as evidenced from the genetic detection of two male long-distance dispersers. A detailed assessment from densely collected samples in the Rhodope Mountains resulted in a population size estimate of 315 (95% CI = 206–334) individuals, indicating that not all available habitat is presently occupied by bears in this region. Efficient management plans should focus on preserving connectivity of suitable habitats in order to maintain gene flow between the two Bulgarian brown bear subpopulations.  相似文献   

11.
《Acta Oecologica》2007,31(3):333-341
Relatively few studies have compared invasibility and species invasiveness among microhabitats within communities, synchronously. We surveyed the abundance and performance of non-native Alternanthera philoxeroides (Mart.) Griseb. (alligator weed), its co-occurring native congener, Alternanthera sessilis (L.) DC. (sessile joyweed), and other species in a wetland community along a riparian zone in southeast China to test the hypotheses that: i) degree of invasion differs between different types of microhabitats within the community; and ii) microhabitat types that differ in invasibility also differ in soil resource availability or in sediment characteristics likely to affect resource availability; iii) phenotypic plasticity of A. philoxeroides may play a key role in its adaptation to diverse habitats as can be concluded from its extremely low genetic diversity in China. The study riparian zone comprises different types of microhabitats including wet abandoned field, swamp, marsh dunes and gravel dunes. Consistent with these hypotheses, cover of A. philoxeroides was high in abandoned fields (73 ± 2.9%) and swamps (94 ± 1.3%), which had high soil nutrients and water availability. On the contrary, cover of native A. sessilis was relatively high in marsh dunes and grave dunes, which had coarse gravel surfaces, low soil nutrients and low water availability. A. philoxeroides showed greater morphological plasticity in response to habitat variation. In abiotically harsh habitats, stems had limited growth, and were prostrate with weak adventitious roots at nodes, forming thin, scattered patches. In the two richer habitats, the highly branched plants spread over the water or soil surface, supporting dense stronger leaf-bearing stems which grew vertically. The growth pattern of A. sessilis among microhabitats did not exhibit significant variations. These results suggest that morphological plasticity and microhabitat types with high soil resources may facilitate invasions of A. philoxeroides.  相似文献   

12.
The current analyses of vegetation were aimed to study the different effects of environmental variables and plant species and communities interaction to these variables, identified threats to local vegetation and suggestion for remedial measures in the Mount Eelum, Swat, Pakistan. For assessment of environmental variability quantitative ecological techniques were used through quadrats having sizes of 2 × 2, 5 × 5 and 10 × 10 m2 for herbs, shrubs and trees respectively. Result of the present study revealed 124 plant species in the study area. Canonical Correspondence Analysis (CCA) was used to analyze the ecological gradient of vegetation. The environmental data and species abundance were used in CANOCO software version 4.5. The presence absence data of plant species were elaborated with Cluster and Two Way Cluster Analysis techniques using PC-ORD version 5 to show different species composition that resulted in five plant communities. Findings indicate that elevation, aspect and soil texture are the strongest variables that have significant effect on species composition and distribution of various communities shown with P value 0.0500. It is recommended to protect and use sensibly whole of the Flora normally and rare species particularly in the region.  相似文献   

13.
We examine lacustrine wetland plant assemblages in the Central Corn Belt Plain portion of the Lake Michigan basin and developed a multimetric plant index of biotic integrity (PIBI). Our objectives were to determine the structural and functional attributes of littoral zone plant assemblages of least-impacted lacustrine wetlands, establish and test candidate metrics, statistically test and calibrate metrics, and finally validate a PIBI along a disturbance gradient. Of 35 candidate metrics, we chose 11 metrics that were grouped into four categories: species richness and composition, species tolerance, guild structure, and vegetation abundance. Based on Spearman correlations, we identified a suite of metrics, particularly those related to species richness and tolerance that had a strong response to human-induced habitat change. The overall PIBI correlated strongly with independent measures of habitat quality (p < 0.001) using a qualitative habitat index developed for lacustrine habitats. We validated the lacustrine PIBI by comparing index response to various landuse, landcover, and management types. Least impacted lakes and lakes classified as recreational or undergoing ecological restoration were not statistically separable and received the highest index scores, while the lowest scores were associated with industrial and residential land use. Least-impacted sites differ significantly (p < 0.001) from both industrial and residential lakes.  相似文献   

14.
Peat molecular chemistry reflects a combination of plant input and decomposition. Both vegetation community and the degree of decomposition of plant remains are highly dependent on depth and fluctuation of the water table and thus peat organic matter (OM) chemistry reflects past hydrological conditions. Changes in hydrology according to the OM composition (by pyrolysis-gas chromatography/mass spectrometry, pyrolysis-GC/MS) in a high-resolution sampled monolith of an 8000 years old peat deposit are presented. Analysis of 18 modern vegetation species resulted in molecular markers for Erica spp., Deschampsia flexuosa, Juncus bulbosus and Carex binervis, in addition to more general markers which enabled differentiation between woody, grass and moss vegetation. Factor analysis of 106 pyrolysis products quantified for all peat samples enabled identification of mineral (Factor 1) and hydrological (Factor 2) conditions of the bog. Depth profiles of vegetation markers showed good agreement with those of the scores of both factors and enabled the identification of 14 relatively wet periods, dating to 1430–1865 AD, 930–1045 AD, 640 AD, 270–385 AD, 190–215 AD, 135 AD, 45 BC–15 AD, 260–140 BC, 640–440 BC, 1055–960 BC, 1505–1260 BC, 2300 BC, 4190–2945 BC and 5700–5205 BC, which show excellent agreement with other palaeoclimatic studies in Europe. The results emphasize the importance of high-resolution sampling, in combination with the use of multiple vegetation markers and other peat OM characteristics for a proper interpretation of a peat record.  相似文献   

15.
Normalized Difference Vegetation Index (NDVI) has been commonly used to estimate terrestrial vegetation distribution and productivity. In this study, we adopted recurrence quantification analysis (RQA) to investigate the spatial patterns of determinism of the vegetation dynamics ecological-geographical transition zones in North China, especially the differences between transition zone and the surrounding areas. The results indicated that there were obvious regional variances in spatial patterns of RQA indices—determinism, laminarity, entropy, and averaged diagonal line length. Remarkable differences of the determinism of NDVI time series also existed between transition zones and the surrounding areas. Moreover, the correlation analysis between the RQA indices and climatic factors suggested that the determinism of the NDVI time series was nonlinearly affected by hydrothermal conditions. Influenced by vegetation patterns, determinism reached the maximum when the annual precipitation is about 400 mm, which is the lower bound of cultivation and forest distribution, and along the 400 mm isohyet is the area where transition zones locate.  相似文献   

16.
River valleys have been subjected to human-induced changes for centuries, but they are still considered regional hotspots of biodiversity. In central Europe, some vascular plant species demonstrate confinement to the corridors of large rivers. They are termed river corridor plants (RCPs). RCPs are an important component of regional biodiversity and include a high proportion of threatened species, thus they deserve attention. Here we examine: (1) the detailed distribution pattern of RCPs within a river valley, (2) the habitat preferences of RCP species, and (3) the correlation between the richness of RCP species and selected variables. The studied variables include: river bed proximity, distance from the river mouth, floodplain coverage, richness of native, red listed and invasive species, and number of habitats considered to be of Europaean Community importance. Surveys were conducted in 10 transects running perpendicularly to the San River bed (Poland, central Europe). Each transect was divided into 14 plots (1 km × 1 km). In each plot, the site locations of RCPs as well as their habitats were recorded. The occurrence of all vascular plant species in a particular plot was also noted. The richness and abundance of RCP species depended on the distance from the river and the floodplain coverage in a plot. The plots located in the vicinity of the river were the richest in RCP species and usually harbored the largest number of native, red-listed and invasive species. They were also characterized by the largest number of habitats considered to be of importance to the European Community. RCP species differed in the degree of confinement to habitats regarded as typical for them. Some of the RCP species were recorded only within typical habitats while others were found in several different types of habitats, including anthropogenic ones. Knowledge concerning the RCP distribution pattern and its correlates can make restoration initiatives in river valleys more effective. While implementing conservation measures in river valleys, one should keep in mind that: (1) hotspots of RCP and invasive species spatially overlap and (2) anthropogenic linear elements occurring within river valleys constitute important habitats for some RCP species.  相似文献   

17.
Tarek M. Galal  Hanaa S. Shehata 《Flora》2013,208(10-12):556-561
The present study aimed to evaluate the morphological characteristics and biomass of Desmostachya bipinnata and their relation to the environmental variables in three main habitats (canal banks, railway and roadside shoulders) where it is found in Egypt. In addition, the ability of this plant is evaluated to accumulate nutrients and heavy metals in its aboveground shoots. Twenty five quadrats (1 m × 1 m per quadrat) were selected along five sites representing the different habitats of D. bipinnata for this study. The aboveground shoots displayed considerable morphological variations, differing in the different habitats. The above ground biomass, number of spikes and leaves, rachis length and diameter, leaf length, width and area, leaf sheath length, and spike length and diameter were in the order: road sides > canal banks > railway shoulders. A regression equation: biomass = (67.37 × density) + 108.2, was used to estimate the shoot biomass from the plant growth density. Metal uptake capability from soil to grass is in the order Fe > Zn > Cu > Mn, and all of them are in safe concentration ranges. These heavy metals had a transfer factor more than unity, which indicates that D. bipinnata is a powerful accumulator for heavy metals. In addition, the plant shoots exhibit high accumulation of inorganic and organic nutrients.  相似文献   

18.
We examined red maple (Acer rubrum L.) leaf litter breakdown in streams and riparian zones at two sites in the southern Appalachian Mountains to understand how differences in abiotic and biotic factors influence leaf breakdown rates. Litterbags were placed in three riparian habitats differing in litter layer moisture: stream > bank > upland. Invertebrates colonizing litterbags at one site were also examined to determine how variations in community and functional structure affect breakdown rates. Leaves broke down fastest in streams and slowest in upland habitats, whereas bank habitats were intermediate and characterized by high variability. Faster leaf breakdown rates in streams appeared to be a function of greater moisture availability, a more stable thermal regime, and a higher biomass of leaf-shredding invertebrates, especially the stonefly Tallaperla. In addition, patterns of leaf breakdown and invertebrate community structure provided evidence for a stronger than expected ecological connection between the stream and the bank. Overall, detritus processing within this narrow riparian ecosystem varied considerably depending on the availability of moisture. Results from this study show that stream channel–floodplain interactions in riparian ecosystems of steep forested mountains are analogous to ones in larger downstream or low-gradient systems. Riparian zones throughout a river network display a remarkable heterogeneity in their ability to process organic matter, which is ultimately driven by changes in hydrological conditions. Received 6 March 2001; accepted 3 July 2001.  相似文献   

19.
The Pendjari Biosphere Reserve located in the Sudanian zone of Bénin, is a protected area well managed, but mainly aimed at wild animal conservation. This study assessed its effectiveness to conserve habitat species composition and population structure of three endangered African tree species: Afzelia africana Sm., Pterocarpus erinaceus Poir. and Khaya senegalensis (Desv.) A. Juss. We randomly sampled 120 plots in the protected and surrounding unprotected habitats by inventorying plant species. For the three target species, we estimated adult and juvenile densities and recorded size classes. According to floristic composition four habitats groups were recognized in relation to human disturbance, vegetation type, and moisture. These were protected savannas, unprotected savannas, old fallows and gallery forests. The estimated adult densities of A. africana were similar between protected (14 ± 1.2 tree/ha) and unprotected savannas (17 ± 0.9 tree/ha) while for P. erinaceus the adult density was significantly higher in protected (12 ± 3.7 tree/ha) than in unprotected savannas (5 ± 1.9 tree/ha). Estimated adult density of K. senegalensis was also significantly higher in protected gallery forest (40 ± 5.8 tree/ha) than in unprotected one (29 ± 4.8 tree/ha). Juvenile densities of A. africana, K. senegalensis and P. erinaceus were higher in protected habitats than in unprotected ones but the difference was not significant. Skewness coefficient indicated that populations of investigated trees were declining in their protected habitats. However, in the case of A. africana and K. senegalensis populations seemed to be mostly threatened in the protected area. We concluded that although the studied protected area is effective to conserve some habitats species compositions, protection is not sufficient to guarantee future conservation of some threatened tree species.  相似文献   

20.
Hydrellia lagarosiphon is a leaf mining fly of the submerged aquatic plant Lagarosiphon major and native to South Africa. With many favorable attributes this fly has the potential to be a valuable biological control agent of L. major, which has become a problematic weed in many parts of the world. Reproductive and developmental biology of H. lagarosiphon was determined at four constant temperatures (10, 13.5, 16.5, 20 °C) to evaluate the rate of increase and predicted colonisation success in areas where L. major occurs and areas where its continued spread is probable. Development rates increased with decreasing temperatures and were greatest at 10 °C taking 157.9 days. Linear regression of developmental rate data for temperatures 10–20 °C indicated that 517 degree days were required above a minimum of 7.5 °C to complete development. Between two and eight generations per year were estimated across the climatic regions of Europe using the degree day model. The fitted quadratic model for the net reproductive rate (Ro) indicated that Ro falls below 1.0 at 9.9 °C, suggesting a decline in population growth when fly populations are subjected to prolonged periods of temperatures below 10 °C. The values of Ro for selected sites range from 0 to 13, with all but a few sites in northern Europe being suitable for the establishment of H. lagarosiphon. A minimum of two generations were required each year to sustain population growth and most biogeographical regions in Europe appeared suitable for the establishment of permanent populations of H. lagarosiphon. The implications for the release strategy of the fly are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号