首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To develop an encapsulation procedure for Rhodococcus erythropolis NI86/21 and demonstrate its use as a slow-release inoculant for reducing atrazine levels in aquatic and terrestrial environments. METHODS AND RESULTS: Alginate encapsulation procedures were developed for the atrazine-degrading bacteria R. erythropolis NI86/21. Several bead amendments, including bentonite, powdered activated carbon (PAC) and skimmed milk (SM), were evaluated for slow release of R. erythropolis NI86/21 and efficacy of atrazine degradation. All bead types demonstrated a capacity to degrade atrazine in basal minimal nutrient buffer whilst continually releasing viable bacterial cells. We found that the addition of bentonite hastened cell release whilst SM sustained cell viability in bead formulations. Reducing the percentage of SM to 1% (w/v) resulted in faster rates of atrazine degradation in both liquid and soil, and was found to prolong cell survival upon bead storage. Limited oxygen transfer affects the capacity of the encapsulated R. erythropolis cells to degrade atrazine. CONCLUSIONS: Degradation studies have demonstrated the efficacy of R. erythropolis encapsulated cells to degrade atrazine in amended liquid and soil. However, in their current formulation, the wet alginate-based beads are impractical for field application because of their poor cell viability during storage. SIGNIFICANCE AND IMPACT OF THE STUDY: R. erythropolis NI86/21-encapsulated cells have the potential to reduce atrazine residues in a number of soil and water environments, possibly ensuring the continued registration and use of atrazine in agriculture by minimizing or eliminating nontarget effects.  相似文献   

2.
The key to achieving successful, reproducible results following the introduction of beneficial microbes into soil relies on the survival rate of the inoculated bacteria in a heterogeneous soil environment and hence an improved encapsulation method was developed. Owing to the constraints associated with the inoculum formulation, in this study, encapsulation of a plant growth promoting bacteria (PGPB) isolate Bacillus subtilis CC-pg104 was attempted with alginate by enriching the bead microenvironment with humic acid. High viability of the encapsulated bacteria was observed with minimum cell loss upon storage for 5 months. Steady and constant cell release from the bead was observed for 1 week at different pH. Encapsulated cells remained active as evidenced by their ability to solubilize calcium phosphate in vitro. Successful plant growth promotion of lettuce by the encapsulated bacteria under gnotobiotic and sterile environment was also achieved. Feasibility of this improved encapsulation technique is mainly due to the dual benefits of humic acid to microbe and plant and its chemical properties allowing an easy mixing with alginate without interfering in the formation of the alginate gel beads by cross-linking with Ca2+ ions. Thus, the encapsulation method described in this study can be effectively used to protect the PGPB inoculum from adverse conditions of the soil for their successful establishment in the rhizosphere.  相似文献   

3.
Hemocytes from the moth Pseudoplusia includens encapsulate a variety of biotic and abiotic targets. Prior studies indicated that granular cells are usually the first hemocyte type to attach to foreign targets. Thereafter, large numbers of plasmatocytes attach to the target and form a capsule. To identify surface features that induce an encapsulation response, chromatography beads that differed in matrix composition, charge, and functional groups were tested using in vitro and in vivo bioassays. We first conducted in vitro assays using hemocytes with no plasma components present. These experiments indicated that bead types having sulfonic, diethylaminoethyl, and quaternary amine functional groups were encapsulated significantly more often than beads with other functional groups. Charge also significantly affected encapsulation with positively charged beads being encapsulated more often than negatively charged or neutral beads. In vitro assays using purified populations of hemocytes confirmed that these targets were recognized as foreign by granular cells, and that plasmatocytes only formed capsules after granular cells attached to the target. Bead types that were encapsulated under these in vitro conditions were always rapidly encapsulated when injected into P. includens larvae. However, some bead types, like CM-Sephadex, not encapsulated in vitro were encapsulated in vivo if left in the insect hemocoel for a longer period of time (ca. 24 h). Purified plasmatocytes encapsulated these beads in vitro if they were preincubated in plasma. Basic characterization studies suggest these humoral recognition molecules are proteins or small peptides. Comparative studies with other species of noctuid moths also indicated that encapsulation of some bead types differed significantly among species. Collectively, these results reveal that P. includens recognizes some targets as foreign by pattern recognition receptors on granular cells, whereas others are recognized by pattern recognition molecules in plasma. The binding affinities of these recognition molecules also appear to differ among closely related species of Lepidoptera.  相似文献   

4.
Transport and survival of alginate-encapsulated and unencapsulated Pseudomonas aeruginosa UG2Lr through soil microcosms was examined. Bacterial cells encapsulated in alginate beads or mixed with soil were introduced into soil microcosms. Microbial cell survival and cell transport were monitored by destructive sampling and selective plating of the microcosms over a 9-week period. Survival rates were greatest when using encapsulated P. aeruginosa UG2Lr cells. Water flow increased microbial cell dispersal from the site of inoculation. After 3 weeks, encapsulated and free cells showed similar distribution patterns. However, after 9 weeks microbial cell distribution was more extensive throughout the soil in the encapsulated treatments under all conditions. Therefore, alginate encapsulation is a suitable method to enhance survival and distribution of microbial inocula in the soil environment.  相似文献   

5.
Microorganisms have become key components in many biotechnological processes to produce various chemicals and biofuels. The encapsulation of microbial cells in calcium cross-linked alginate gel beads has been extensively studied due to several advantages over using free cells. However, industrial use of alginate gel beads has been hampered by the low structural stability of the beads. In this study, we demonstrate that the incorporation of interpenetrating covalent cross-links in an ionically cross-linked alginate gel bead significantly enhances the bead's structural durability. The interpenetrating network (IPN) was prepared by first cross-linking alginate chemically modified with methacrylic groups, termed methacrylic alginate (MA), with calcium ions and subsequently conducting a photo cross-linking reaction. The resulting methacrylic alginate gel beads (IPN-MA) exhibited higher stiffness, ultimate strength and ultimate strain and also remained more stable in media either subjected to high shear or supplemented with chelating agents than calcium cross-linked alginate gel beads. Furthermore, yeast cells encapsulated in IPN-MA gel beads remained more metabolically active in ethanol production than those in calcium cross-linked alginate gel beads. Overall, the results of this study will be highly useful in designing encapsulation devices with improved structural durability for a broad array of prokaryotic and eukaryotic cells used in biochemical and industrial processes.  相似文献   

6.
Anthropogenic sources contribute to the bulk presence of cyanide, which causes substantial health and environmental concerns. A petroleum-contaminated soil isolate, Rhodococcus UKMP-5M has been verified to efficiently degrade high concentration of cyanide in the form of KCN in our previous study. In order to enhance the cyanide-degrading ability of this bacterium, different encapsulation matrices were screened to immobilize cells of Rhodococcus UKMP-5M for degradation of cyanide. It was revealed that the biocatalyst activity and bead mechanical strength improved significantly when calcium alginate encapsulation technique was employed as compared to free cells. The results also indicated that the immobilized cell system could tolerate a higher level of KCN concentration and were able to support a higher biomass density. In addition, the embedded cells retained almost 96% of their initial cyanide removal efficiency during the first five batches and the entrapped cell system maintained 64% of its initial activity after eight successive batches. The encapsulated beads could be easily recovered from the production medium and reused for up to five batches without significant losses of cyanide-degrading ability, which proved to be advantageous from an economic point of view. From this study, it could be inferred that the novel Rhodococcus UKMP-5M strain demonstrated high cyanide-degrading ability and the optimized calcium alginate immobilization technique provided a promising alternative for practical application of large scale remediation of cyanide-bearing wastewaters.  相似文献   

7.
The survival ofHerbaspirillum spp. cells added directly or encapsulated in alginate beads and colonization of wheat roots was evaluated in soil microcosms. Cells entrapped in alginate in the presence of JNFb-broth and introduced into unplanted non-sterile clay loamy and sandy soils survived better than cells added directly to the same soils after 50 d incubation. On amendment by JNFb broth and/or skim milk the entrapped cells survived better than those prepared in water. Encapsulated cells survived better in a heavier textured soil (clay-loamy) than in a lighter (sandy) soil. Wheat plants growing in microcosms inoculated with various bead types from day 0 to day 30 exhibited high levels of histosphere colonization, nitrogenase activity (in situ) measured by acetylene reduction assay, plant dry mass and total N content but no symptoms of mottled stripe disease were observed. Comparable results of growth criteria and nitrogenase activity, but relatively lower bacterial populations, were obtained with wheat grown for 45 d after the inoculant had been introduced into the soil with different bead types.  相似文献   

8.
Cryopreservation of a Catharanthus cell suspension was performed after encapsulation in alginate beads. Encapsulated cells were precultured in sucrose-enriched medium for several days, dried over silica gel, and directly cooled in liquid nitrogen. After rewarming in air at room temperature, alginate beads were placed on semi-solid culture medium. Following regrowth, beads transferred to liquid medium generated a new cell suspension. Cell survival and regrowth from cryopreserved encapsulated cells depended on preculture duration and residual water content after air-drying.Jean Dereuddre unexpectedly passed away on 16 February 1995.  相似文献   

9.
Aims: Pseudomonas fluorescens F113Rifpcb is a genetically engineered rhizosphere bacterium with the potential to degrade polychlorinated biphenyls (PCBs). F113Rifpcbgfp and F113L::1180gfp are biosensor strains capable of detecting PCB bioavailability and biodegradation. The aim of this paper is to evaluate the use of alginate beads as a storage, delivery and containment system for use of these strains in PCB contaminated soils. Methods and Results: The survival and release of Ps. fluorescens F113Rifpcb from alginate beads were evaluated. Two Ps. fluorescens F113‐based biosensor strains were encapsulated, and their ability to detect 3‐chlorobenzoate (3‐CBA) and 3‐chlorobiphenyl (3‐CBP) degradation in soil was assessed. After 250 days of storage, 100% recovery of viable F113Rifpcb cells was possible. Amendments to the alginate formulation allowed for the timed release of the inoculant. Encapsulation of the F113Rifpcb cells provided a more targeted approach for the inoculation of plants and resulted in lower inoculum populations in the bulk soil, which may reduce the risk of unintentional spread of these genetically modified micro‐organisms in the environment. Encapsulation of the biosensor strains in alginate beads did not interfere with their ability to detect either 3‐CBA or 3‐CBP degradation. In fact, detection of 3‐CBP degradation was enhanced in encapsulated biosensors. Conclusions: Alginate beads are an effective storage and delivery system for PCB degrading inocula and biosensors. Significance and Impact of the Study: Pseudomonas fluorescens F113Rifpcb and the F113 derivative PCB biosensor strains have excellent potential for detecting and bioremediation of PCB contaminated soils. The alginate bead delivery system could facilitate the application of these strains as biosensors.  相似文献   

10.
Recently, interest has focused on hepatocytes’ implantation to provide end stage liver failure patients with a temporary support until spontaneous recovery or a suitable donor becomes available. To avoid cell damage and use of an immunosuppressive treatment, hepatic cells could be implanted after encapsulation in a porous biomaterial of bead or capsule shape. The aim of this study was to compare the production and the physical properties of the beads, together with some hepatic cell functions, resulting from the use of different material combinations for cell microencapsulation: alginate alone or combined with type I collagen with or without poly-L-lysine and alginate coatings. Collagen and poly-L-lysine increased the bead mechanical resistance but lowered the mass transfer kinetics of vitamin B12. Proliferation of encapsulated HepG2/C3A cells was shown to be improved in alginate-collagen beads. Finally, when the beads were subcutaneously implanted in mice, the inflammatory response was reduced in the case of alginate mixed with collagen. This in vitro and in vivo study clearly outlines, based on a systematic comparison, the necessity of compromising between material physical properties (mechanical stability and porosity) and cell behavior (viability, proliferation, functionalities) to define optima hepatic cell microencapsulation conditions before implantation.  相似文献   

11.
Encapsulated cell bioaugmentation is a novel alternative solution to in situ bioremediation of contaminated aquifers. This study was conducted to evaluate the feasibility of such a remediation strategy based on the performance of encapsulated cells in the biodegradation of gasoline, a major groundwater contaminant. An enriched bacterial consortium, isolated from a gasoline-polluted site, was encapsulated in gellan gum microbeads (16-53 microm diameter). The capacity of the encapsulated cells to degrade gasoline under aerobic conditions was evaluated in comparison with free (non-encapsulated) cells. Encapsulated cells (2.6 mg(cells) x g(-1) bead) degraded over 90% gasoline hydrocarbons (initial concentration 50-600 mg x L(-1)) within 5-10 days at 10 degrees C. Equivalent levels of free cells removed comparable amounts of gasoline (initial concentration 50-400 mg x L(-1)) within the same period but required up to 30 days to degrade the highest level of gasoline tested (600 mg x L(-1)). Free cells exhibited a lag phase in biodegradation, which increased from 1 to 5 days with an increase in gasoline concentration (200-600 x mg L(-1)). Encapsulation provided cells with a protective barrier against toxic hydrocarbons, eliminating the adaptation period required by free cells. The reduction of encapsulated cell mass loading from 2.6 to 1.0 mg(cells) x g(-1) bead caused a substantial decrease in the extent of biodegradation within a 30-day incubation period. Encapsulated cells dispersed within the porous soil matrix of saturated soil microcosms demonstrated a reduced performance in the removal of gasoline (initial concentrations of 400 and 600 mg x L(-1)), removing 30-50% gasoline hydrocarbons compared to 40-60% by free cells within 21 days of incubation. The results of this study suggest that gellan gum-encapsulated bacterial cells have the potential to be used for biodegradation of gasoline hydrocarbons in aqueous systems.  相似文献   

12.
This study investigates the effect of alginate/poly-l-lysine/alginate (APA) encapsulation on the insulin secretion dynamics exhibited by an encapsulated cell system. Experiments were performed with the aid of a home-built perfusion apparatus providing a 1 min temporal resolution. Insulin profiles were measured from: (i) murine insulinoma βTC3 cells encapsulated in calcium alginate/poly-l-lysine/alginate (APA) beads generated with high guluronic (G) or high mannuoric (M) content alginate, and (ii) murine insulinoma βTC-tet cells encapsulated in high M APA beads and propagated in the presence and absence of tetracycline. Results show that encapsulation in APA beads did not affect the insulin secretion profile shortly post-encapsulation. However, remodeling of the beads due to cell proliferation affected the insulin secretion profiles; and inhibiting remodeling by suppressing cell growth preserved the secretion profile. The implications of these findings regarding the in vivo function of encapsulated insulin secreting cells are discussed.  相似文献   

13.
The effects of nutrient amendment and alginate encapsulation on survival of and phenanthrene mineralization by the bioluminescentPseudomonas sp. UG14Lr in creosote-contaminated soil slurries were examined. UG14Lr was inoculated into creosote-contaminated soil slurries either as a free cell suspension or encapsulated in alginate beads prepared with montmorillonite clay and skim milk. Additional treatments were free-cell-inoculated slurries amended with sterile alginate beads, free-cell-inoculated and uninoculated slurries amended with skim milk only, and uninoculated, unamended slurries. Mineralization was determined by measuring14CO2 released from radiolabelled phenanthrene. Survival was measured by selective plating and bioluminescence. Inclusion of skim milk was found to enhance both survival of and phenanthrene mineralization by free and encapsulated UG14Lr cells.  相似文献   

14.
Abstract Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations ranging from 0.5 to 5.0% (w/v). Survival of bacterial cells was improved with the use of alginate or bentonite. Transport, as determined by destructive sampling of the columns, was reduced with the use of alginate encapsulation. Drying of the beads had no influence on transport. The presence of bentonite in the topsoil, either pre-mixed through the soil, or applied as a slurry together with the bacteria, also reduced transport, except when 0.5% was pre-mixed through the soil. P. fluorescens cells encapsulated in alginate beads prepared with water and supplemented with skim milk powder and bentonite showed the best survival during the time of the experiment and the most reduced transport compared to the control. Therefore, cells encapsulated in this way are suitable, due to their optimal survival and reduced spread, for use in a field experiment with genetically manipulated bacteria.  相似文献   

15.
In an effort to improve reactor performance and process operability, the microbial biotransformation of (-)-trans-carveol to (R)-(-)-carvone by hydrophobic Rhodococcus erythropolis DCL14 was carried out in a two phase partitioning bioreactor (TPPB) with solid polymer beads acting as the partitioning phase. Previous work had demonstrated that the substrate and product become inhibitory to the organism at elevated aqueous concentrations and the use of an immiscible second phase in the bioreactor was intended to provide a reservoir for substrates to be delivered to the aqueous phase based on the metabolic rate of the cells, while also acting as a sink to uptake the product as it is produced. The biotransformation was previously undertaken in a two liquid phase TPPB with 1-dodecene and with silicone oil as the immiscible second phase and, although improvement in the reactor performance was obtained relative to a single phase system, the hydrophobic nature of the organism caused the formation of severe emulsions leading to significant operational challenges. In the present work, eight types of polymer beads were screened for their suitability for use in a solid-liquid TPPB for this biotransformation. The use of selected solid polymer beads as the second phase completely prevented emulsion formation and therefore improved overall operability of the reactor. Three modes of solid-liquid TPPB operation were considered: the use of a single polymer bead type (styrene/butadiene copolymer) in the reactor, the use of a mixture of polymer beads in the reactor (styrene/butadiene copolymer plus Hytrel(R) 8206), and the use of one type of polymer beads in the reactor (styrene/butadiene copolymer), and another bead type (Hytrel(R) 8206) in an external column through which fermentation medium was recirculated. This last configuration achieved the best reactor performance with 7 times more substrate being added throughout the biotransformation relative to a single aqueous phase benchmark reactor and 2.7 times more substrate being added relative to the best two liquid TPPB case. Carvone was quantitatively recovered from the polymer beads via single stage extraction into methanol, allowing for bead re-use.  相似文献   

16.
Mercury is a highly toxic heavy metal and the ability of the neurotoxin methylmercury to biomagnify in the food chain is a serious concern for both public and environmental health globally. Because thousands of tons of mercury are released into the environment each year, remediation strategies are urgently needed and prompted this study. To facilitate remediation of both organic and inorganic forms of mercury, Escherichia coli was engineered to harbor a subset of genes (merRTPAB) from the mercury resistance operon. Protein products of the mer operon enable transport of mercury into the cell, cleavage of organic C-Hg bonds, and subsequent reduction of ionic mercury to the less toxic elemental form, Hg(0). E. coli containing merRTPAB was then encapsulated in silica beads resulting in a biological-based filtration material. Performing encapsulation in aerated mineral oil yielded silica beads that were smooth, spherical, and similar in diameter. Following encapsulation, E. coli containing merRTPAB retained the ability to degrade methylmercury and performed similarly to non-encapsulated cells. Due to the versatility of both the engineered mercury resistant strain and silica bead technology, this study provides a strong foundation for use of the resulting biological-based filtration material for methylmercury remediation.  相似文献   

17.
The production of a mixed lactic culture containing Lactococcus lactis subsp. lactis biovar. diacetylactis MD and Bifidobacterium longum ATCC 15707 was studied during a 17-day continuous immobilized-cell culture at different temperatures between 32 and 37 degrees C. The two-stage fermentation system was composed of a first reactor (R1) containing cells of the two strains separately immobilized in kappa-carrageenan/locust bean gum gel beads and a second reactor (R2) operated with free cells released from the first reactor. The system allowed continuous production of a concentrated mixed culture with a strain ratio whose composition depended on temperature and fermentation time. A stable mixed culture (with a 22:1 ratio of L. diacetylactis and B. longum) was produced at 35 degrees C in the effluent of R2, whereas the mixed culture was rapidly unbalanced in favor of B. longum at a higher temperature (37 degrees C) or L. diacetylactis at a lower temperature (32 degrees C). Strain redistribution in beads originally immobilizing pure cultures of L. diacetylactis or B. longum was observed. At the end of culture, the strain ratio (7:1 L. diacetylactis/B. longum) in bulk bead samples was similar to that of individual beads. The determination of the spatial distribution of the two strains in gel beads by immunofluorescence and confocal laser-scanning microscopy showed that bead cross-contamination was limited to a 100 microm peripheral layer. Data from this study validate a previous model for population dynamics and cell release in gel beads during mixed immobilized-cell cultures.  相似文献   

18.
Sun ZJ  Lv GJ  Li SY  Xie YB  Yu WT  Wang W  Ma XJ 《Journal of biotechnology》2007,128(1):150-161
Cell encapsulation opens a new avenue to the oral delivery of genetically engineered microorganism for therapeutic purpose. Osmotic stress is one of the universal chemical stress factors in the application of microencapsulation technology. In order to understand the effect and mechanism of the encapsulated microenvironment on protecting cells from hyper-osmotic stress, yeast cells of Saccharomyces cerevisiae Y800 were encapsulated in calcium alginate micro-gel beads (MB), alginate-chitosan-alginate (ACA) solid core microcapsules (SCM), and ACA liquid core microcapsules (LCM), respectively. The stress-induced intracellular components and enzyme activity including trehalose, glycerol and super oxide dismutase (SOD) were measured. Free cell culture was used as control. The survival of encapsulated cells and the cells released from MB, SCM and LCM after osmotic shock induced by NaCl solution (1, 2 and 3M) was evaluated. An analysis method was established to probe the effect of encapsulated microenvironment on the cell tolerance to osmotic stress. The results showed that LCM gave rise to the highest level of intracellular trehalose and glycerol, and SOD activity, as well as the highest survival rate of encapsulated cells or cells released from microcapsule. It was demonstrated that LCM was able to induce the highest stress response and stress tolerance of cells, which was adapted during culture, while SCM failed. The theoretical analysis revealed that it was the liquid alginate matrix in microcapsule that played a central role in domesticating the cells to adapt to hyper-osmotic stress. This finding provides a very useful guideline to cell encapsulation.  相似文献   

19.
《The Journal of cell biology》1983,97(5):1515-1523
The binding and phagocytosis of fibronectin (pFN)-coated latex beads by baby hamster kidney (BHK) cells was studied as a function of fibronectin concentration and bead diameter. Cells were incubated with radioactive pFN-coated beads, and total bead binding (cell surface or ingested) was measured as total radioactivity associated with the cells. Of the bound beads, those that also were phagocytosed were distinguished by their insensitivity to release from the cells by trypsin treatment. In continuous incubations, binding of pFN-coated beads to cells occurred at 4 degrees C or 37 degrees C, but phagocytosis was observed only at 37 degrees C. In addition, degradation of 3H-pFN from ingested beads occurred at 37 degrees C, as shown by the release of trichloroacetic acid-soluble radioactivity into the incubation medium. When the fibronectin density on the beads was varied, binding at 4 degrees C and ingestion at 37 degrees C were found to have the same dose-response dependencies, which indicated that pFN densities that permitted bead binding were sufficient for phagocytosis to occur. The fibronectin density for maximal binding of ingestion was approximately 250 ng pFN/cm2. When various sized beads (0.085-1.091 micron), coated with similar densities of pFN, were incubated with cells at 4 degrees C, no variation in binding as a function of bead size was observed. Under these conditions, the absolute amount of pFN ranged from less than 100 molecules on the 0.085-micron beads to greater than 15,000 molecules on the 1.091-micron beads. Based upon these results it can be concluded that the critical parameter controlling fibronectin-mediated binding of latex beads by BHK cells is the spacing of the pFN molecules on the beads. Correspondingly, it can be suggested that the spacing between pFN receptors on the cell surface that is optimal for multivalent interactions to occur is approximately 18 nM. When phagocytosis of various sized beads was compared, it was found that the largest beads were phagocytosed slightly better (two fold) than the smallest beads. This occurred both in continuous incubations of cells with beads and when the beads were prebound to the cells. Finally, the kinetic constants for the binding of 0.085 microM pFN-coated beads to the cells were analyzed. There appeared to be approximately 62,000 binding sites and the KD was 4.03 X 10(-9) M. Assuming a bivalent interaction, it was calculated that BHK cells have approximately 120,000 pFN receptors/cell and the binding affinity between pFN and its receptor is approximately 6 X 10(-5) M.  相似文献   

20.
BACKGROUND: Using a single-platform protocol to count absolute CD34+ hematopoietic precursor cell (HPC) levels with different reference microbeads, we recorded occasionally artifactually high CD34+ HPC counts in some leukapheresis bags, whereas dual-platform calculations were always consistent. Abnormal countings were observed only when phosphate-buffered saline (PBS)-diluted leukapheresis samples were vortexed before analysis. A large series of blood samples analyzed similarly for CD34+ and CD4+ absolute counts did not show any sample or vortexing effect. With the volumetric absolute counting cytometer Partec-PAS, lower counts were also observed when different reference beads were vortexed before the instrument checking procedures. The counting abnormality was caused by a drop in microbead concentration (the "vanishing bead phenomenon"). This phenomenon reduced the total and relative bead event number in experimental and routine samples and in calibration procedures. This altered the bead denominator used to calculate absolute CD34+ HPC levels and it also reduced the concentration of standard calibration beads. METHODS: Using the Partec-PAS to measure volumetrically the actual bead concentration, we studied the vanishing bead phenomenon. Different types of counting and reference microbeads were resuspended in media with or without proteins or cells. Replicates were submitted either to gentle manual mixing or to vortexing before counting. RESULTS: Vortex agitation almost invariably induced the vanishing bead phenomenon when beads were resuspended in saline media or when an insufficient protein concentration was present, such as in diluted leukapheresis samples. Different bead types showed various degrees of sensitivity to vortexing. The bead disappearance was not caused by bubble formation or disruption. The addition of small amounts of protein completely prevented the vanishing bead phenomenon. The causative effect of the electrostatic charging of tube induced by vortexing is hypothesized. CONCLUSIONS: Sample suspensions containing counting beads for single-platform analysis must be resuspended in media with protein supplements to prevent the vanishing bead phenomenon and to ensure accurate counting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号