首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Techniques of intracellular dialysis and neuronal perfusion in the visceral ganglion ofLymnaea stagnalis used during voltage-clamping at the neuronal membrane helped to ascertain that a concentration of 1×10–16–1×10–6 M neuroactive peptides (vasopressin, oxytocin, and vasotocin) alter the amplitude of electrically-operated transmembrane ionic currents considerably without affecting the kinetics of current activation and inactivation and surface potential at the membrane. The experimental conditions applying made it possible to record incoming sodium and calcium currents separated from each other as well as outward delayed and transient potassium currents. It was found that electrically-operated cerebral currents could either increase or decline in amplitude under the effects of peptides applied at different concentrations to the membrane of the same unit. Receptors of the peptides investigated in this study are thought to be located within the structure of electrically-operated channels at the neuronal membrane.A. I. Gertsen Teaching Institute, Leningrad. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 526–533, July–August, 1990.  相似文献   

2.
Taurine-activated currents were investigated in rat cerebellar neurons using techniques of voltage clamping at the membrane and intracellular perfusion. Activation of both chloride and calcium conductance at the membrane were produced by applying taurine to the membrane surface. The dose-response curve for taurine-activated current is in the 1×10–4–1×10–1 M concentration region. The dissociation constant of the taurine-receptor complex equals 2×10–3 M. Activation of taurine-induced currents is a cooperative process: Hill's coefficient –2. It was found that bicuculline and strychnine exert a blocking action on taurine-activated currents, while pentobarbital and oxazepam potentiate taurine action.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 6, November–December, 1990, pp. 780–786.  相似文献   

3.
By intracellular dialysis of isolated neurons of the mollusksHelix pomatia andLimnaea stagnalis and by a voltage clamp technique the characteristics of transmembrane ionic currents were studied during controlled changes in the ionic composition of the extracellular and intracellular medium. By replacing the intracellular potassium ions by Tris ions, functional blocking of the outward potassium currents was achieved and the inward current distinguished in a pure form. Replacement of Ringer's solution in the extracellular medium with sodium-free or calcium-free solution enabled the inward current to be separated into two additive components, one carried by sodium ions, the other by calcium ions. Sodium and calcium inward currents were found to have different kinetics and different potential-dependence: mNa=1±0.5 msec, mCa=3±1 msec, hNa=8±2 msec, hCa=115±10 msec (Vm=0), GNa=0.5 (Vm=–21±2 mV), GCa=0.5 (Vm=–8±2 mV). Both currents remained unchanged by tetrodotoxin, but the calcium current was specifically blocked by cadmium ions (2·10–3 M), verapamil, and D=600, and also by fluorine ions if injected intracellularly. All these results are regarded as evidence that the soma membrane of the neurons tested possesses separate systems of sodium and calcium ion-conducting channels. Quantitative differences are observed in the relative importance of the systems of sodium and calcium channels in different species of mollusks.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 183–191, March–April, 1976.  相似文献   

4.
Summary The ionic requirements for the action potentials recorded from the axon of the dorsal longitudinal stretch receptor inCarausius morosus have been studied using extracellular electrodes.In the intact preparation prolonged exposure to sodium-free, calcium-free, or magnesium-free salines produces no observable change in the amplitude of action potentials. Similarly, tetrodotoxin (1×10–6 M) and cobaltous chloride (1×10–2 M) are both ineffective in blocking the action potentials.In preparations in which the ionic barrier has been disrupted by removal of the nerve sheath the action potentials show sodium dependence. They are sustained in high sodium salines (150 mM) but are reversibly abolished in sodium-free salines. They are also reversibly abolished in 1×10–6 M TTX, but unaffected by calcium-free or magnesium-free salines, or by cobaltous chloride (1×10–2 M).It is concluded that the action currents in the axon of the stretch receptor are carried by sodium ions.  相似文献   

5.
Using techniques of voltage clamping at the membrane, intracellular perfusion, and concentration clamping, GABA- and barbiturate-activated currents were investigated in single neurons isolated from the rat cerebellum. The dissociation constant for interaction between GABA and GABA receptors was measured at 3±0.8 × 10–5 M. The presence of pentobarbital in the bathing solution exerts a potentiating effect on GABA-induced conductance in isolated neurons, shifting the dose-response curve for GABA towards lower concentration values without increasing peak chloride conductance. The concentrations at which GABA effects are potentiated range between 10–6–10–4 M. High concentrations of pentobarbital inhibit GABA-activated conductance; at concentrations in excess of 5 × 10–4 M, it also brings about activation of chloride conductance, depressed by bicuculline and picrotoxin, in the absence of GABA. A short-term increase in membrane conductance is produced by rapid pentobarbital washout.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 93–98, January–February, 1990.  相似文献   

6.
The ionic mechanisms underlying modulatory effects of serotonin on acetylcholine-response in identified and nonidentifiedHelix pomatia neurons were investigated using voltage-clamping techniques at the neuronal membrane. External application of 10–5–10–4 M serotonin to the membrane of neurons responding to application of acetylcholine depending on Na+ depolarization (DNa response) reduced membrane conductivity during response to acetylcholine without changing reversal potential of acetylcholine-induced current. Acetylcholine (10–6–10–4 M) administration took place 1–3 min later. Neurons with response to acetylcholine application dependent on Cl+ depolarization (DCl response) or hyperpolarization (HCl response) behaved similarly. Analogous effects could be produced by external application of theophylline which, together with the latency and residual effect characteristic of serotonin action points to the participation of intracellular processes associated with the cellular cyclase system in the changes produced by serotonin in acetylcholineinduced response. Serotonin brought about a shift in reversal potential and an increase in the acetylcholine-induced current in those neurons where this response was associated with changed permeability at the membrane to certain types of ions. During two-stage acetylcholine-induced response of the DNa-HK type, serotonin inhibited the inward current stage. Mechanisms underlying modulatory serotonin action on acetylcholine-induced response in test neurons are discussed in the light of our findings.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 57–64, January–February, 1988.  相似文献   

7.
The action of the toxin BgTX8 separated from the sea actiniaBunodosoma granolifera on transient tetrodotoxin-sensitive sodium and outward potassium currents of units isolated from rat sensory ganglia was investigated using techniques of voltage clamping at the membrane and intracellular perfusion. It was found that BgTX8 decelerates the inactivation kinetics but has little effect on activation kinetics of sodium current. At the same time, a 5–10% increase in the amplitude of inward current was often observed at holding potentials of about –100 to –120 mV at the membrane. The dissociation constant of the receptor-toxin equals 4×10–6 M and is adequately described by Langmuir's isotherm. It was also established that intracellular perfusion of neurons with anemone toxin-containing solution leads to a reduction in the amplitude of sodium current and decelerates its inactivation process. Suppression of outward potassium current was also noted.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Brain Research, Academy of Sciences, Havana, Cuba. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 32–37, January–February, 1988.  相似文献   

8.
Currents activated by gamma-aminobutyric acid (GABA) were recorded in single Purkinje cells isolated from the rat cerebellum and trigeminal ganglia. All neurons tested were GABA-sensitive. Reversal potential of GABA-activated current matched equilibrium potential for chloride ions as determined by Nernst's equation. The dose-response curve was described by Langmuir's isotherm with a dissociation constant (Kd) of 1.4·10–4 M. Nembutal did not just increase the amplitude of GABA-activated current but also activated matching ionic conductance in the absence of GABA. Ionic currents activated by GABA were reversibly blocked by bicuculline methiodide and isocoryne.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 645–652, September–October, 1988.  相似文献   

9.
Postsynaptic mechanisms of the connection between the interneuron in the visceral ganglion initiating bursting activity in RPal and B7 neurons and these neurons themselves were investigated in the snail (Helix pomatia). Using voltage clamping at the membrane of these cells, stimulation of the interneuron gave rise to a slow inward current with a 2 sec latency; it rose in amplitude as stimulation increased in duration. Reducing the temperature from 25 to 5°C diminished the rise and decay rate of this current with a temperature coefficient of about 10. The current-voltage relationship of the slow inward current was nonlinear, with a maximum of –65 mV. Reducing the concentration of sodium ions in the extracellular fluid increased the amplitude of the current. While hyperpolarization of the burster neuron membrane produced a burst of inward current prior to stimulation, this same hyperpolarization induced a pulse of outward current at the peak of the slow inward current. Stimulating the interneuron is thus thought to activate at least two types of ionic channel in the cell body of the burster neurons: a steady sodium and a voltage- and time-dependent channel for outward current. This process could well be mediated by a biochemical cytoplasmic chain reaction.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 28–36, January–February, 1987.  相似文献   

10.
It was found during experiments on rat sensory neurons that the relationship between high-threshold calcium channels and the system of intracellular cyclic nucleotide metabolism declined in the course of postnatal ontogenesis. Intracellullar administration of the cAMP-ATP-Mg2+ complex led to restoration after dialysis-induced decline in peak amplitude of high-threshold calcium currents in 70% of cells belonging to the first age group of 5–9-day-old animals, as against 26% of those examined in the 2nd (45-day-old) and only 10% of all those investigated in the third (90-day-old) group. Kinetics and voltage-dependence of high-threshold calcium current in the neuronal soma were identical in rats of all three age groups. The effect of recovery in calcium conductivity produced by intracellular application of the cAMP-ATP-Mg2+ complex was different in neurons with different inward current combinations. This recovery did not occur in cells with "fast" sodium and high-threshold calcium currents only. Conventional effects of intracellular cAMP application were seen in neurons mainfesting a "slow" TTX-resistant sodium inward current together with the two main inward currents.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vo.. 18, No. 6, pp. 827–832, November–December, 1986.  相似文献   

11.
A homologous set of low-molecular weight compounds selectively blocking ionic currents were purified from venom from the spiderArgiope lobata with a selective blocking action on ionic currents activated by applying glutamate and its agonist kainic acid (KA) to the membrane of neurons isolated from the rat hippocampus. Three groups of these compounds — argiopine, argiopinines, and pseudoargiopinines, produced voltage-dependent glutamate- and KA-activated ionic currents at concentrations of 10–6-10–4 M, interacting primarily with agonist-activated ionic channels without affecting Kd values of the agonist. The blocking action could be partially reversed by argiopine application but only slightly when argiopinines and pseudoargiopinines were used. Kinetics of toxin effects on Ka-activated ionic currents showed at least two exponential components with different time constants. Simple and reversed rate constants of interaction between toxins and ionic channels were estimated from the plot of the kinetics of ionic current blockade and recovery against toxin concentration. Argiopine, argiopinines, and pseudoargiopinines lend themselves to further research into glutamate receptors of the mammalian CNS employing electrophysiological and biochemical techniques.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev, M. M. Shemyakin Institute of Bioorganic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 748–756, November–December, 1989.  相似文献   

12.
The blocking action ofNephila clavata spider neurotoxin, or JSTX, on ionic currents activated by L-glutamate and its agonists when applied to the membrane of neurons isolated from the rat hippocampus was investigated using a concentration clamp technique. Crude JSTX venom was found to block L-glutamate-, quisqualate, and kainate-activated ionic currents induced by activating non-N-methyl-D-aspartate (non-NMDA) membrane receptors. Following the effects of JSTX, ionic currents activated by L-glutamate and its agonists declined to 34–36% of their initial value with no recovery during JSTX washout. An active fraction of JSTX at concentrations of 10–4–10–5 produced almost total but partially reversible blockade of ionic currents. The action of JSTX became less effective during depolarization. The concentration dependence of JSTX-induced blockade of kainate-activated ionic currents was investigated and the velocity constants of interaction between the toxin and glutamate receptors obtained. It is postulated that JSTX interacts with chemically-operated non-NMDA ionic channels, blocking their transition into a number of their possible open states.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 152–160, March–April, 1989.  相似文献   

13.
Ionic currents through aconitine-modified sodium channels of the Ranvier node membrane were measured by a voltage clamp method in an external medium free from sodium ions. A shift of pH of the solution below 4.6 led to the appearance of inward ionic currents, whose kinetics and activation region were characteristic of aconitine-modified sodium channels at low pH. These currents were blocked by the local anesthetic benzocaine in a concentration of 2 mM. Experiments with variation of the concentration of Ca++, Tris+, TEA+, and choline+ in acid sodium-free solutions showed that these cations make no appreciable contribution to the inward current. It is concluded that the inward currents observed under these conditions are carried by H+ (or H3O+) through aconitine-modified sodium channels. From the shifts of reversal potentials of the ionic currents the relative permeability (PH/PNa) for H+ was determined: 1059 ± 88. The results agree with the view that the aconitine-modified sodium channel is a relatively wide water pore, and that movement of H+ through it is limited by its binding with an acid group.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 508–516, September–October, 1982.  相似文献   

14.
We have previously reported that angiotensin II (ANG II) induces oscillations in the cytoplasmic calcium concentration ([Ca2+]i) of pulmonary vascular myocytes. The present work was undertaken to investigate the effect of ANG II in comparison with ATP and caffeine on membrane currents and to explore the relation between these membrane currents and [Ca2+]i. In cells clamped at −60 mV, ANG II (10 μM) or ATP (100 μM) induced an oscillatory inward current. Caffeine (5 μM) induced only one transient inward current. In control conditions, the reversal potential (Erev) of these currents was close to the equilibrium potential for Cl ions (ECl = −2.1 mV) and was shifted towards more positive values in low-Cl solutions. Niflumic acid (10–50 μM) and DIDS (0.25-1 mM) inhibited this inward current. Combined recordings of membrane current and [Ca2+]i by Indo-1 microspectrofluorimetry revealed that ANG II- and ATP-induced currents occurred simultaneously with oscillations in [Ca2+]i, whereas the caffeine-induced current was accompanied by only one transient increase in [Ca2+]i Niflumic acid (25 μM) had no effect on agonist-induced [Ca2+]i responses, whereas thapsigargin (1 μM) abolished both membrane current and the [Ca2+]i response. Heparin (5 mg/ml in the pipette solution) inhibited both [Ca2+]i responses and membrane currents induced by ANG II and ATP, but not by caffeine. In pulmonary arterial strips, ANG II-induced contraction was inhibited by niflumic acid (25 μM) or nifedipine (1 μM) to the same extent and the two substances did not have an additive effect. This study demonstrates that, in pulmonary vascular smooth muscle, ANG II, as well as ATP, activate an oscillatory calcium dependent chloride current which is triggered by cyclic increases in [Ca2+]i and that both oscillatory phenomena are primarily IP3 mediated. It is suggested that ANG II-induced oscillatory chloride current could depolarise the cell membrane leading to activation of voltage-operated Ca2+ channels. The resulting Ca2+ influx contributes to the component of ANG II-induced contraction that is equally sensitive to chloride or calcium channel blockade.  相似文献   

15.
The effects of the calmodulin antagonists, calmidazolium (R 24571) and chlorpromazine on delayed outward potassium current at the somatic membrane were investigated in non-identified intracellularly perfused neurons isolated fromHelix pomatia. Voltage was clamped at the membrane. Extracellular application of these substances produced effective depression of the outward current. This effect even occurred at test substance concentrations of 10–9–10–8 M. Block-ade of delayed outward current was produced mainly as a result of suppressing the potassium current component dependent on intracellular potassium ions (Ik(Ca/in)). The possibility that the receptor for intracellular calcium responsible for modulating this current may be of a calmodulin-like nature is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 356–361, May–June, 1987.  相似文献   

16.
The ionic currents of the snail giant neurons were investigated by the voltage clamp method. The effect of sodium-free solutions on the inward and outward currents was studied. It is shown that the current entering the cells is created mainly by sodium ions. When a preparation is immersed into a solution not containing sodium ions, most neurons (tentatively neurons of type "a") "lose" the inward currents. In other neurons (tentatively of type "b") this process lasts 40 min and more. A number of peculiarities of type "b" neurons were noted. The response of the excitable membrane to conditioning polarization was also investigated. The data obtained permit the conclusion that 85–90% of the sodium-transfer system is activated in the case of a voltage clamp from the level of the resting potential.A. A. Bogomolets Institute of Physiology, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 314–320, May–June, 1970.  相似文献   

17.
Outward currents remaining after addition of 20–50 mM of tetraethylammonium (TEA) ions to the extracellular or intracellular solution, were investigated in perfused isolatedHelix neurons. After this addition, the inactivated inward current carried by potassium ions, the potential-dependent and kinetic characteristics of which differ from those of potassium outward currents suppressed by TEA, is preserved in the membrane. A component dependent on the inward calcium current was found in this TEA-resistant outward current; it was abolished by replacement of the extra-cellular calcium ions by magnesium ions, by blocking of the calcium channels by extracellular cadmium ions, and by their destruction by intracellular fluoride ions. Increasing the intracellular concentration of free calcium ions by perfusing the cell with solutions containing calcium-EGTA buffer potentiated the TEA-resistant component of the outward current, whereas removal of these ions with EGTA weakened it. It is concluded that a system of outward current channels whose activation depends on the presence of calcium ions near the inner surface of the membrane is present in the somatic membrane. It is suggested that to keep these channels capable of being activated, calcium ions must bind with the structures forming their internal opening.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 460–468, September–October, 1979.  相似文献   

18.
Electrically operated sodium channels in the somatic membrane of isolated neurons from the rat superior cervical ganglion were investigated using an intracellular dialysis technique and voltage clamping. It was found that sodium currents can be conveyed along two independent systems of sodium channels in these neurons. A mathematical analysis was made of voltage-dependent tetrodotoxin-sensitive fast sodium currents within the framework of the Hodgkin-Huxley model and their kinetic properties were compared with those described in other subjects. It was also shown that the tetrodotoxin-sensitive sodium channels in the somatic membrane of sympathetic neurons have a high affinity for sodium ions. The kinetic and voltage-dependent characteristics of slow tetrodotoxin-sensitive inward sodium current are described. It is also noted that this component of the sodium current was observed in only a limited number of neurons (not more than 2%).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 108–117, January–February, 1986.  相似文献   

19.
The effects of pH of the external medium on amplitude of currents through single sodium channels at the membrane of cultured neuroblastoma cells were investigated in mice belonging to strain C 1300, clone N18A-1. Currents through single sodium channels in isolated membrane segments (outside-out configuration) were registered with normal (7.2) and reduced (5.4) pH levels in the external medium. Reducing the pH to 5.4 was found to decrease current amplitude reversibly by about twofold (–10 to –30 mV for test potentials). Findings would confirm that the depression of macroscopic sodium currents produced by reducing the pH of the extracellular solution is due to a decline in ionic flow through single open sodium channels.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 101–105, January–February, 1989.  相似文献   

20.
The effect of the antianginal drug nonachlazine displaying antiarrhythmic properties on transmembrane ionic currents in the frog atrial fibers was studied in experiments on isolated trabeculae of the frog atria. The transmembrane ionic currents were measured by a voltage clamp technique based on a double sucrose gap arrangement. Nonachlazine (1.03 X 10(-5) mol/l) decreased the amplitude of the fast inward current whatever the magnitude of membrane potential. The drug inhibited the slow inward current and prevented the adrenaline-increased permeability of the slow sodium-calcium channel if external sodium ions were replaced by choline chloride. Nonachlazine (1.03 X 10(-5) mol/l) diminished the amplitude of the inward ionic current in a calcium-free medium as well. The stimulatory effect of prostacycline (2 X 10(-7) mol/l) on the fast inward ionic current was inhibited by nonachlazine. The data obtained suggest that the antiarrhythmic effect of nonachlazine might be linked with the inhibition of the fast sodium inward current and the slow calcium inward current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号