首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coding region and intronic mutations in the tau gene cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We have previously reported that ABalphaC, a major form of protein phosphatase 2A (PP2A) in brain, binds tightly to tau protein in vitro and is a major tau phosphatase in vivo. Using in vitro assays, we show here that the FTDP-17 mutations G272V, DeltaK280, P301L, P301S, S305N, V337M, G389R, and R406W inhibit by approximately 20-95% the binding of recombinant three-repeat and four-repeat tau isoforms to the ABalphaC holoenzyme and the AC core enzyme of PP2A. Reduction in binding was maximal for tau proteins with the G272V, DeltaK280, and V337M mutations. We also show that tau protein can be specifically coimmunoprecipitated with endogenous PP2A from both rat brain and transfected cell extracts. It is significant that, by using similar coimmunoprecipitation assays, we show that all FTDP-17 mutations tested, including the N279K mutation, alter the ability of tau to associate with cellular PP2A. Taken together, these results indicate that FTDP-17 mutations induce a significant decrease in the binding affinity of tau for PP2A in vivo. We propose that altered protein-protein interactions between PP2A and tau may contribute to FTDP-17 pathogenesis.  相似文献   

2.
Tau pathology is implicated in mechanisms of neurodegenerative tauopathies, including Alzheimer’s disease (AD) and hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). It has been reported that transgenic mice expressing FTDP-17 mutation P301L of human tau (P301L mice) display extensive tau pathology and exhibit behavioral deficits with aging. In this study, we investigated the effects of T-817MA, a neuroprotective agent, on the motor and cognitive impairments associated with neuronal degeneration in P301L mice. T-817MA prevented the progression of motor deficit and the loss of spinal cord motor neurons in P301L mice. Furthermore, T-817MA significantly attenuated the spatial memory impairment and the reduction in synaptic terminal density in the hippocampal dentate gyrus of P301L mice. These results indicate that T-817MA improved the motor and cognitive impairments as a result of inhibiting neuronal degeneration derived from tau pathology in the P301L mice. Therefore, it is expected that T-817MA has a therapeutic potential for tau-related neurodegenerative diseases such as AD.  相似文献   

3.
Multiple tau gene mutations are pathogenic for hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), with filamentous tau aggregates as the major lesions in the CNS of these patients. Recent studies have shown that bacterially expressed recombinant tau proteins with FTDP-17 missense mutations cause functional impairments, i.e., a reduced ability of mutant tau to bind to or promote the assembly of microtubules. To investigate the biological consequences of FTDP-17 tau mutants and assess their ability to form filamentous aggregates, we engineered Chinese hamster ovary cell lines to stably express tau harboring one or several different FTDP-17 mutations and showed that different tau mutants produced distinct pathological phenotypes. For example, delta K, but not several other single tau mutants (e.g., V337 M, P301L, R406W), developed insoluble amorphous and fibrillar aggregates, whereas a triple tau mutant (VPR) containing V337M, P301L, and R406W substitutions also formed similar aggregates. Furthermore, the aggregates increased in size over time in culture. Significantly, the formation of aggregated delta K and VPR tau protein correlated with reduced affinity of these mutants to bind microtubules. Reduced phosphorylation and altered proteolysis was also observed in R406W and delta K tau mutants. Thus, distinct pathological phenotypes, including the formation of insoluble filamentous tau aggregates, result from the expression of different FTDP-17 tau mutants in transfected Chinese hamster ovary cells and implies that these missense mutations cause diverse neurodegenerative FTDP-17 syndromes by multiple mechanisms.  相似文献   

4.
Filamentous tau aggregates are hallmarks of tauopathies, e.g., frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) and amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC). Since FTDP-17 tau gene mutations alter levels/functions of tau, we overexpressed the smallest human tau isoform in the CNS of transgenic (Tg) mice to model tauopathies. These mice acquired age-dependent CNS pathology similarto FTDP-17 and ALS/PDC, including insoluble, hyperphosphorylated tau and argyrophilic intraneuronal inclusions formed by tau-immunoreactive filaments. Inclusions were present in cortical and brainstem neurons but were most abundant in spinal cord neurons, where they were associated with axon degeneration, diminished microtubules (MTs), and reduced axonal transport in ventral roots, as well as spinal cord gliosis and motor weakness. These Tg mice recapitulate key features of tauopathies and provide models for elucidating mechanisms underlying diverse tauopathies, including Alzheimer's disease (AD).  相似文献   

5.
We have studied biochemical and structural parameters of several missense and deletion mutants of tau protein (G272V, N279K, DeltaK280, P301L, V337M, R406W) found in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). The mutant proteins were expressed on the basis of both full-length tau (htau40) and constructs derived from the repeat domain. They were analyzed with respect to the capacity to enhance microtubule assembly, binding of tau to microtubules, secondary structure content, and aggregation into Alzheimer-like paired helical or straight filaments. We find that the mutations cause a moderate decrease in microtubule interactions and stabilization, and they show no gross structural changes compared with the natively unfolded conformation of the wild-type protein, but the aggregation into PHFs is strongly enhanced, particularly for the mutants DeltaK280 and P301L. This gain of pathological aggregation would be consistent with the autosomal dominant nature of the disease.  相似文献   

6.
Tau, a microtubule binding protein, is not only a major component of neurofibrillary tangles in Alzheimer's disease, but also a causative gene for hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We show here that an FTDP-17 tau mutation (V337M) in SH-SY5Y cells reduces microtubule polymerization, increases voltage-dependent calcium current (ICa) density, and decreases ICa rundown. The reduced rundown of ICa by V337M was significantly inhibited by nifedipine (L-type Ca channel blocker), whereas omega-conotoxin GVIA (N-type Ca channel blocker) showed smaller effects, indicating that tau mutations affect L-type calcium channel activity. The depolarization-induced increase in intracellular calcium was also significantly augmented by the V337M tau mutation. Treatment with a microtubule polymerizing agent (taxol), an adenylyl cyclase inhibitor, or a protein kinase A (PKA) inhibitor, counteracted the effects of mutant tau on ICa. Taxol also attenuated the Ca2+ response to depolarization in cells expressing mutant tau. Apoptosis in SH-SY5Y cells induced by serum deprivation was exacerbated by the V337M mutation, and nifedipine, taxol, and a PKA inhibitor significantly protected cells against apoptosis. Our results indicate that a tau mutation which decreases its microtubule-binding ability augments calcium influx by depolymerizing microtubules and activating adenylyl cyclase and PKA.  相似文献   

7.
Mutations in the human tau gene leading to aberrant splicing have been identified in FTDP-17, an autosomal dominant hereditary neurodegenerative disorder. Molecular mechanisms by which such mutations cause tau aberrant splicing were not understood. We characterized two mutations in exon 10 of the tau gene, N279K and Del280K. Our results revealed an exonic splicing enhancer element located in exon 10. The activity of this AG-rich splicing enhancer was altered by N279K and Del280K mutations. This exonic enhancer element interacts with human Tra2 beta protein. The interaction between Tra2 beta and the exonic splicing enhancer correlates with the activity of this enhancer element in stimulating splicing. Biochemical studies including in vitro splicing and RNA interference experiments in transfected cells support a role for Tra2 beta protein in regulating alternative splicing of human tau gene. Our results implicate the human tau gene as a target gene for the alternative splicing regulator Tra2 beta, suggesting that Tra2 beta may play a role in aberrant tau exon 10 alternative splicing and in the pathogenesis of tauopathies.  相似文献   

8.
One of the major pathological hallmarks of Alzheimer disease is neurofibrillary tangles. Neurofibrillary tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. Cyclin-dependent kinase 5 (Cdk5) is one of the tau protein kinases that increase paired helical filament epitopes in tau by phosphorylation. Recently, various mutations of tau have been identified in frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Here, we investigated the phosphorylation of FTDP-17 mutant tau proteins, K257T, P301L, P301S, and R406W, by Cdk5 complexed with p35, p25, or p39 in vitro and in cultured cells. The extent of phosphorylation by all Cdk5 species was slightly lower in mutant tau than in wild-type tau. Major phosphorylation sites, including Ser202, Ser235, and Ser404, were the same among the wild-type, K257T, P301L, and P301S tau proteins phosphorylated by any Cdk5. On the other hand, R406W tau was less phosphorylated at Ser404 than were the other variants. This was not due to the simple replacement of amino acid Arg406 with Trp close to the phosphorylation site, because Ser404 in a R406W peptide was equally phosphorylated in a wild-type peptide. The decreased phosphorylation of mutant tau by Cdk5s was canceled when tau protein bound to microtubules was phosphorylated. These results indicate that FTDP-17 mutations do not affect the phosphorylatability of tau by Cdk5 complexed with p35, p25, or p39 and may explain part of the discrepancy reported previously between in vivo and in vitro phosphorylation of FTDP-17 tau mutants.  相似文献   

9.
Abnormal tau phosphorylation occurs in several neurodegenerative disorders, including Alzheimer's disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). Here, we compare mechanisms of tau phosphorylation in mouse models of FTDP-17 and AD. Mice expressing a mutated form of human tau associated with FTDP-17 (tau(V337M)) showed age-related increases in exogenous tau phosphorylation in the absence of increased activation status of a number of kinases known to phosphorylate tau in vitro. In a "combined" model, expressing both tau(V337M) and the familial amyloid precursor protein AD mutation APP(V717I) in a CT100 fragment, age-dependent tau phosphorylation occurred at the same sites and was significantly augmented compared to "single" tau(V337M) mice. These effects were concomitant with increased activation status of mitogen-activated protein kinase (MAPK) family members (extracellular regulated kinases 1 and 2, p38, and c-Jun NH(2)-terminal kinase) but not glycogen synthase kinase-3alphabeta or cyclin-dependent kinase 5. The increase in MAPK activation was a discrete effect of APP(V717I)-CT100 transgene expression as near identical changes were observed in single APP(V717I)-CT100 mice. Age-dependent deficits in memory were also associated with tau(V337M) and APP(V717I)-CT100 expression. The data reveal distinct routes to abnormal tau phosphorylation in models of AD and FTDP-17 and suggest that in AD, tau irregularities may be linked to processing of APP C-terminal fragments via specific effects on MAPK activation status.  相似文献   

10.
Coding region and intronic mutations in the gene for microtubule-associated protein tau cause frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Most coding region mutations effect a reduced ability of tau protein to interact with microtubules and lead to the formation of a filamentous pathology made of hyperphosphorylated tau. Here we show that trimethylamine N-oxide (TMAO) restores the ability of tau with FTDP-17 mutations to promote microtubule assembly. To mimic phosphorylation, serine and threonine residues in tau were singly or multiply mutated to glutamic acid, resulting in a reduced ability of tau to promote microtubule assembly. With the exception of the most heavily substituted protein (27 glutamic acid residues), TMAO increased the ability of mutant tau to promote microtubule assembly. However, it had no significant effect on heparin-induced assembly of tau into filaments.  相似文献   

11.
Yen S  Easson C  Nacharaju P  Hutton M  Yen SH 《FEBS letters》1999,461(1-2):91-95
Frontal temporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17) is caused by splice site and missense mutations in the tau gene, and characterized by the accumulation of filamentous tau in cerebral neurons and glia. The missense mutations reduce the ability of tau to promote microtubule assembly and increase the ability of tau to form filaments. In this report we demonstrate that mutants V337M and R406W are less susceptible than mutant P301L or corresponding wild type tau to degradation by calpain I. The differences were at least in part due to changes in accessibility of a cleavage site located about 100 amino acids off the carboxy-terminus. The results suggest that the pathogenesis of some forms of FTDP-17 may involve tau accumulation due to decreased proteolytic degradation.  相似文献   

12.
tau gene mutations cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Here we have used Xenopus oocyte maturation as an indicator of microtubule function. We show that wild-type four-repeat Tau protein inhibits maturation in a concentration-dependent manner, whereas three-repeat Tau has no effect. Of the seven four-repeat Tau proteins with FTDP-17 mutations tested, five (G272V, DeltaK280, P301L, P301S, and V337M) failed to interfere significantly with oocyte maturation, demonstrating a greatly reduced ability to interact with microtubules. One mutant protein (R406W) almost behaved like wild-type Tau, and one (S305N) inhibited maturation more strongly than wild-type Tau. With the exception of R406W, wild-type Tau and all the mutants studied were similarly phosphorylated during the Xenopus oocyte maturation, and this was independent of their effects on this process. Data obtained with R406W and S305N may be related to charge changes (phosphorylation and basic amino acids). Our results demonstrate variable effects of FTDP-17 mutations on microtubules in an intact cell situation. Those findings establish Xenopus oocyte maturation as a system allowing the study of the functional effects of tau gene mutations in a quantitative manner.  相似文献   

13.
Interaction of tau protein with the dynactin complex   总被引:1,自引:0,他引:1  
Tau is an axonal microtubule-associated protein involved in microtubule assembly and stabilization. Mutations in Tau cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and tau aggregates are present in Alzheimer's disease and other tauopathies. The mechanisms leading from tau dysfunction to neurodegeneration are still debated. The dynein-activator complex dynactin has an essential role in axonal transport and mutations in its gene are associated with lower motor neuron disease. We show here for the first time that the N-terminal projection domain of tau binds to the C-terminus of the p150 subunit of the dynactin complex. Tau and dynactin show extensive colocalization, and the attachment of the dynactin complex to microtubules is enhanced by tau. Mutations of a conserved arginine residue in the N-terminus of tau, found in patients with FTDP-17, affect its binding to dynactin, which is abnormally distributed in the retinal ganglion cell axons of transgenic mice expressing human tau with a mutation in the microtubule-binding domain. These findings, which suggest a direct involvement of tau in axonal transport, have implications for understanding the pathogenesis of tauopathies.  相似文献   

14.
Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), an autosomal, dominantly inherited neurodegenerative disorder caused by tau gene mutations, is neuropathologically characterized by intraneuronal filamentous inclusions of hyperphosphorylated tau protein. Biochemical and immunocytochemical analyses have shown that only mutant tau is deposited in patients harboring P301L missense mutation, whereas both wild-type and mutant tau are deposited in patients harboring R406W mutation (Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Kamphorst, W., Nagashima, K., and Ihara, Y. (2001) J. Neuropathol. Exp. Neurol. 60, 872- 884 and Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Heutink, P., van Swieten, J. C., Nagashima, K., and Ihara, Y. (2001) Am. J. Pathol. 158, 373-379). Here we have tested the nucleation ability of monomeric tau and the seeding ability of fibrillogenic nuclei obtained from bacterially expressed human tau. P301L mutant tau showed a higher nucleation ability than wild-type tau, whereas R406W mutant tau shows similar ability to wild-type tau. Surprisingly, fibrillogenic nuclei composed of P301L mutant tau enhanced the assembly of P301L mutant tau into filaments but did not promote filament formation from wild-type tau. In contrast, nuclei composed of R406W mutant tau supported filament formation from both wild-type tau and R406W mutant tau, as did nuclei composed of wild-type tau. Proteolytic analyses indicated that the substructure of nuclei composed of P301L mutant tau was different from that of nuclei composed of wild-type or R406W mutant tau. Thus, the interaction between fibrillogenic nuclei and monomeric protein appears to play an important role in the mechanism of tau filament assembly.  相似文献   

15.
Glycogen synthase kinase-3 (GSK-3) has been proposed as the main kinase able to aberrantly phosphorylate tau in Alzheimer's disease (AD) and related tauopathies, raising the possibility of designing novel therapeutic interventions for AD based on GSK-3 inhibition. Lithium, a widely used drug for affective disorders, inhibits GSK-3 at therapeutically relevant concentrations. Therefore, it was of great interest to test the possible protective effects of lithium in an AD animal model based on GSK-3 overexpression. We had previously generated a double transgenic model, overexpressing GSK-3beta in a conditional manner, using the Tet-off system and tau protein carrying a triple FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) mutation. This transgenic line shows tau hyperphosphorylation in hippocampal neurones accompanied by neurofibrillary tangles (NFTs). We used this transgenic model to address two issues: first, whether chronic lithium treatment is able to prevent the formation of aberrant tau aggregates that result from the overexpression of FTDP-17 tau and GSK-3beta; second, whether lithium is able to change back already formed NFTs in aged animals. Our data suggest that progression of the tauopathy can be prevented by administration of lithium when the first signs of neuropathology appear. Furthermore, it is still possible to partially reverse tau pathology in advanced stages of the disease, although NFT-like structures cannot be changed. The same results were obtained after shut-down of GSK-3beta overexpression, supporting the possibility that GSK-3 inhibition is not sufficient to reverse NFT-like aggregates.  相似文献   

16.
Mutations in the tau gene cause frontotemporal dementia and parkinsonism linked to chromosome-17 (FTDP-17). Functionally, about half of the known mutations increase the alternative mRNA splicing of exon 10 of the tau gene, resulting in the overproduction of tau isoforms with four microtubule-binding repeats. The other mutations reduce the ability of tau to interact with microtubules, with some mutations also increasing the propensity of tau to assemble into filaments. Here we have examined the functional effects of the recently described tau gene mutations deltaN296 and N296H. Both mutations reduced the ability of tau to promote microtubule assembly, without having a significant effect on tau filament formation. By exon trapping, they increased the splicing of exon 10. DeltaN296 and N296H thus define a class of tau mutations with effects at both the RNA and the protein level.  相似文献   

17.
The accumulation of abnormal tau filaments is a pathological hallmark of many neurodegenerative diseases. In 1998, genetic analyses revealed a direct linkage between structural and regulatory mutations in the tau gene and the neurodegenerative disease, frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Importantly, the FTDP-17 phenotype is transmitted in a dominant rather than a recessive manner. However, the underlying molecular mechanisms causing disease remain uncertain. The most common molecular mechanism generating dominant phenotypes is the loss of function of a multimeric complex containing both mutant and wild-type subunits. Therefore, we sought to determine whether tau might normally function as a multimer. We co-incubated 35S-radiolabeled tau and biotinylated tau with taxol stabilized microtubules, at very low molar ratios of tau to tubulin. Subsequent covalent cross-linking followed by affinity-precipitation of the biotinylated tau revealed the formation of microtubule-dependent tau oligomers. We next used atomic force microscopy to independently assess this conclusion. Our results are consistent with the hypothesis that tau forms oligomers upon binding to microtubules. In addition to providing insights into normal tau action, our findings lead us to propose that one mechanism by which mutations in tau may cause cell death is through the formation of tau complexes containing mutant tau molecules in association with wild-type tau. These wild-type-mutant tau complexes may possess altered biological and/or biophysical properties that promote onset of the FTDP-17 phenotype, including neuronal cell death by either altering normal tau-mediated regulation of microtubule-dependent cellular functions and/or promoting the formation of pathological tau aggregates.  相似文献   

18.
Tau polymerization into the filaments that compose neurofibrillary tangles is seminal to the development of many neurodegenerative diseases. It is therefore important to understand the mechanisms involved in this process. However, a consensus method for monitoring tau polymerization in vitro has been lacking. Here we demonstrate that illuminating tau polymerization reactions with laser light and measuring the increased scattering at 90 degrees to the incident beam with a digital camera results in data that closely approximate the mass of tau polymer formation in vitro. The validity of the technique was demonstrated over a range of tau concentrations and through multiple angle scattering measurements. In addition, laser light scattering data closely correlated with quantitative electron microscopy measurements of the mass of tau filaments. Laser light scattering was then used to measure the efficiency with which the mutant tau proteins found in frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17) form filamentous structures. Several of these mutant proteins display enhanced polymerization in the presence of arachidonic acid, suggesting a direct role for these mutations in tau the filament formation that characterizes FTDP-17.  相似文献   

19.
FTDP-17 missense tau mutations: G272V, P301L, V337M and R406W promote tau phosphorylation in human and transgenic mice brains by interfering with the tau phosphorylation/dephosphorylation balance. The effect of FTDP-17 mutations on tau phosphorylation by different kinases has been studied previously. However, it is not known how various FTDP-17 mutations affect tau dephosphorylation by phosphoprotein phosphatases. In this study we have observed that when transfected into HEK-293 cells, tau is phosphorylated on various sites that are also phosphorylated in diseased human brains. When transfected cells are lysed and incubated, endogenously phosphorylated tau is dephosphorylated by cellular protein phosphatase 1 (PP1), phosphatase 2A (PP2A) and phosphatase 2B (PP2B), which are also present in the lysate. By using this assay and specific inhibitors of PP1, PP2A and PP2B, we have observed that the G272V mutation promotes tau dephosphorylation by PP2A at Ser(396/404), Ser(235), Thr(231), Ser(202/205) and Ser(214) and by PP2B at Ser(214) but inhibits dephosphorylation by PP2B at Ser(396/404). The P301L mutation promotes tau dephosphorylation at Thr(231) by PP1 and at Ser(396/404), Thr(231), Ser(235) and Ser(202/205) by PP2A but inhibits dephosphorylation at Ser(214) by PP2B. The V337M mutation promotes tau dephosphorylation at Ser(235), Thr(231) and Ser(202/205) by PP2A and at Ser(202/205) by PP2B whereas the R406W mutation promotes tau dephosphorylation at Ser(396/404) by PP1, PP2A and PP2B but inhibits dephosphorylation at Ser(202/205) and Ser(235) by PP1 and PP2A, respectively. Our results indicate that each FTDP-17 tau mutation not only site-specifically inhibits tau dephosphorylation on some sites but also promotes dephosphorylation by phosphatases on other sites.  相似文献   

20.
Tau protein and neurodegeneration   总被引:4,自引:0,他引:4  
Tau protein is the major component of the intracellular filamentous deposits that define a number of neurodegenerative diseases. They include the largely sporadic Alzheimer's disease, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick's disease (PiD), argyrophilic grain disease, as well as the inherited frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). The identification of mutations in Tau as the cause of FTDP-17 established that dysfunction or misregulation of tau protein is sufficient to cause neurodegeneration and dementia. At an experimental level, the new understanding is leading to the development of good transgenic animal models of the tauopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号