首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of adenosine triphosphate (ATP)-sensitive potassium (KATP) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders KATP channels insensitive to nucleotide inhibition and has no apparent effect on their gating. KATP channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP with an EC50 of 112 and 8 µM, respectively. This activation was largely suppressed by mutation of the Walker A lysines in the nucleotide-binding domains of SUR1: the remaining small (∼10%), slowly developing component of MgATP activation was fully inhibited by the lipid kinase inhibitor LY294002. The EC50 for activation of Kir6.2-G334D/SUR1 currents by MgADP was lower than that for MgATP, and the time course of activation was faster. The poorly hydrolyzable analogue MgATPγS also activated Kir6.2-G334D/SUR1. AMPPCP both failed to activate Kir6.2-G334D/SUR1 and to prevent its activation by MgATP. Maximal stimulatory concentrations of MgATP (10 mM) and MgADP (1 mM) exerted identical effects on the single-channel kinetics: they dramatically elevated the open probability (PO > 0.8), increased the mean open time and the mean burst duration, reduced the frequency and number of interburst closed states, and eliminated the short burst states. By comparing our results with those obtained for wild-type KATP channels, we conclude that the MgADP sensitivity of the wild-type KATP channel can be described quantitatively by a combination of inhibition at Kir6.2 (measured for wild-type channels in the absence of Mg2+) and activation via SUR1 (determined for Kir6.2-G334D/SUR1 channels). However, this is not the case for the effects of MgATP.  相似文献   

2.
Sulfonylurea receptors (SURs) associate with Kir6.x subunits to form tetradimeric KATP channel complexes. SUR1 and SUR2 confer differential channel sensitivities to nucleotides and pharmacological agents, and are expressed in specific, but overlapping, tissues. This raises the question of whether these different SUR subtypes can assemble in the same channel complex and generate channels with hybrid properties. To test this, we engineered dimeric constructs of wild type or N160D mutant Kir6.2 fused to SUR1 or SUR2A. Dimeric fusions formed functional, ATP-sensitive, channels. Coexpression of weakly rectifying SUR1-Kir6.2 (WTF-1) with strongly rectifying SUR1-Kir6.2[N160D] (NDF-1) in COSm6 cells results in mixed subunit complexes that exhibit unique rectification properties. Coexpression of NDF-1 and SUR2A-Kir6.2 (WTF-2) results in similar complex rectification, reflecting the presence of SUR1- and SUR2A-containing dimers in the same channel. The data demonstrate clearly that SUR1 and SUR2A subunits associate randomly, and suggest that heteromeric channels will occur in native tissues.  相似文献   

3.
ATP-sensitive K(+) (K(ATP)) channels are oligomeric complexes of pore-forming Kir6 subunits and regulatory Sulfonylurea Receptor (SUR) subunits. SUR, an ATP-Binding Cassette (ABC) transporter, confers Mg-nucleotide stimulation to the channel via nucleotide interactions with its two cytoplasmic domains (Nucleotide Binding Folds 1 and 2; NBF1 and NBF2). Regulation of K(ATP) channel expression is a complex process involving subunit assembly in the ER, SUR glycosylation in the Golgi, and trafficking to the plasma membrane. Dysregulation can occur at different steps of the pathway, as revealed by disease-causing mutations. Here, we have addressed the role of SUR1 NBF1 in gating and expression of reconstituted channels. Deletion of NBF1 severely impairs channel expression and abolishes MgADP stimulation. Total SUR1 protein levels are decreased, suggestive of increased protein degradation, but they are not rescued by treatment with sulfonylureas or the proteasomal inhibitor MG-132. Similar effects of NBF1 deletion are observed in recombinant K(ATP) channels obtained by "splitting" SUR1 into two separate polypeptides (a N-terminal "half" and a C-terminal "half"). Interestingly, the location of the "splitting point" in the vicinity of NBF1 has marked effects on the MgADP stimulation of resulting channels. Finally, ablation of the ER retention motif upstream of NBF1 (in either "split" or full-length SUR1) does not rescue expression of channels lacking NBF1. These results indicate that, in addition to NBF1 being required for MgADP stimulation of the channel, it plays an important role in the regulation of channel expression that is independent of the ER retention checkpoint and the proteasomal degradation pathway.  相似文献   

4.
ATP-sensitive K(+) (K(ATP)) channels are activated by several vasodilating hormones and neurotransmitters through the PKA pathway. Here, we show that phosphorylation at Ser1387 of the SUR2B subunit is critical for the channel activation. Experiments were performed in human embryonic kidney (HEK) 293 cells expressing the cloned Kir6.1/SUR2B channel. In whole cell patch, the Kir6.1/SUR2B channel activity was stimulated by isoproterenol via activation of beta(2) receptors. This effect was blocked in the presence of inhibitors for adenylyl cyclase or PKA. Similar channel activation was seen by exposing inside-out patches to the catalytic subunit of PKA. Because none of the previously suggested PKA phosphorylation sites accounted for the channel activation, we performed systematic mutational analysis on Kir6.1 and SUR2B. Two serine residues (Ser1351, Ser1387) located in the NBD2 of SUR2B were critical for the channel activation. In vitro phosphorylation experiments showed that Ser1387 but not Ser1351 was phosphorylated by PKA. The PKA-dependent activation of cell-endogenous K(ATP) channels was observed in acutely dissociated mesenteric smooth myocytes and isolated mesenteric artery rings, where activation of these channels contributed significantly to the isoproterenol-induced vasodilation. Taken together, these results indicate that the Kir6.1/SUR2B channel is a target of beta(2) receptors and that the channel activation relies on PKA phosphorylation of SUR2B at Ser1387.  相似文献   

5.
6.
Vascular ATP-sensitive K(+) channels are activated by multiple vasodilating hormones and neurotransmitters via PKA. A critical PKA phosphorylation site (Ser-1387) is found in the second nucleotide-binding domain (NBD(2)) of the SUR2B subunit. To understand how phosphorylation at Ser-1387 leads to changes in channel activity, we modeled the SUR2B using a newly crystallized ABC protein SAV1866. The model showed that Ser-1387 was located on the interface of NBD2 with TMD1 and physically interacted with Tyr-506 in TMD1. A positively charged residue (Arg-1462) in NBD2 was revealed in the close vicinity of Ser-1387. Mutation of either of these three residues abolished PKA-dependent channel activation. Molecular dynamics simulations suggested that Ser-1387, Tyr-506, and Arg-1462 formed a compact triad upon Ser-1387 phosphorylation, leading to reshaping of the NBD2 interface and movements of NBD2 and TMD1. Restriction of the interdomain movements by engineering a disulfide bond between TMD1 and NBD2 prevented the channel activation in a redox-dependent manner. Thus, a channel-gating mechanism is suggested through enhancing the NBD-TMD coupling efficiency following Ser-1387 phosphorylation, which is shared by multiple vasodilators.  相似文献   

7.
Recently, we reported that 11,12-epoxyeicosatrienoic acid (11,12-EET) potently activates rat mesenteric arterial ATP-sensitive K(+) (K(ATP)) channels and produces significant vasodilation through protein kinase A-dependent mechanisms. In this study, we tried to further delineate the signaling steps involved in the activation of vascular K(ATP) channels by EETs. Whole cell patch-clamp recordings [0.1 mM ATP in the pipette, holding potential (HP) = 0 mV and testing potential (TP) = -100 mV] in freshly isolated rat mesenteric smooth muscle cells showed small glibenclamide-sensitive K(ATP) currents (19.0 +/- 7.9 pA, n = 5) that increased 6.9-fold on exposure to 5 microM 14,15-EET (132.0 +/- 29.0 pA, n = 7, P < 0.05 vs. control). With 1 mM ATP in the pipette solution, K(ATP) currents (HP = 0 mV and TP = -100 mV) were increased 3.5-fold on exposure to 1 microM 14,15-EET (57.5 +/- 14.3 pA, n = 9, P < 0.05 vs. baseline). In the presence of 100 nM iberiotoxin, 1 microM 14,15-EET hyperpolarized the membrane potential from -20.5 +/- 0.9 mV at baseline to -27.1 +/- 3.0 mV (n = 6 for both, P < 0.05 vs. baseline), and the EET effects were significantly reversed by 10 microM glibenclamide (-21.8 +/- 1.4 mV, n = 6, P < 0.05 vs. EET). Incubation with 5 microM 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), a 14,15-EET antagonist, abolished the 14,15-EET effects (31.0 +/- 11.8 pA, n = 5, P < 0.05 vs. 14,15-EET, P = not significant vs. control). The 14,15-EET effects were inhibited by inclusion of anti-G(s)alpha antibody (1:500 dilution) but not by control IgG in the pipette solution. The effects of 14,15-EET were mimicked by cholera toxin (100 ng/ml), an exogenous ADP-ribosyltransferase. Treatment with the ADP-ribosyltransferase inhibitors 3-aminobenzamide (1 mM) or m-iodobenzylguanidine (100 microM) abrogated the effects of 14,15-EET on K(ATP) currents. These results were corroborated by vasodilation studies. 14,15-EET dose-dependently dilated isolated small mesenteric arteries, and this was significantly attenuated by treatment with 14,15-EEZE or 3-aminobenzamide. These results suggest that 14,15-EET activates vascular K(ATP) channels through ADP-ribosylation of G(s)alpha.  相似文献   

8.
ROMK channels are inhibited by intracellular acidification. This pH sensitivity is related to several amino acid residues in the channel proteins such as Lys-61, Thr-51, and His-206 (in ROMK2). Unlike all other amino acids, histidine is titratable at pH 6-7 carrying a positive charge below pH 6. To test the hypothesis that certain histidine residues are engaged in CO(2) and pH sensing of ROMK1, we performed experiments by systematic mutations of all histidine residues in the channel using the site-directed mutagenesis. There are two histidine residues in the N terminus. Mutations of His-23, His-31, or both together did not affect channel sensitivity to CO(2). Six histidine residues are located in the C terminus. His-225, His-274, His-342, and His-354 were critical in CO(2) and pH sensing. Mutation of either of them reduced CO(2) and pH sensitivities by 20-50% and approximately 0.2 pH units, respectively. Simultaneous mutations of all of them eliminated the CO(2) sensitivity and caused this mutant channel to respond to only extremely acidic pH. Similar mutations of His-280 had no effect. The role of His-270 in CO(2) and pH sensing is unclear, because substitutions of this residue with either a neutral, negative, or positive amino acid did not produce any functional channel. These results therefore indicate that histidine residues contribute to the sensitivity of the ROMK1 channel to hypercapnia and intracellular acidosis.  相似文献   

9.
The modulation of K(ATP) channels during acidosis has an impact on vascular tone, myocardial rhythmicity, insulin secretion, and neuronal excitability. Our previous studies have shown that the cloned Kir6.2 is activated with mild acidification but inhibited with high acidity. The activation relies on His-175, whereas the molecular basis for the inhibition remains unclear. To elucidate whether the His-175 is indeed the protonation site and what other structures are responsible for the pH-induced inhibition, we performed these studies. Our data showed that the His-175 is the only proton sensor whose protonation is required for the channel activation by acidic pH. In contrast, the channel inhibition at extremely low pH depended on several other histidine residues including His-186, His-193, and His-216. Thus, proton has both stimulatory and inhibitory effects on the Kir6.2 channels, which attribute to two sets of histidine residues in the C terminus.  相似文献   

10.
In beta cells from the pancreas, ATP-sensitive potassium channels, or KATP channels, are composed of two subunits, SUR1 and KIR6.2, assembled in a (SUR1/KIR6.2)4 stoichiometry. The correct stoichiometry of channels at the cell surface is tightly regulated by the presence of novel endoplasmic reticulum (ER) retention signals in SUR1 and KIR6.2; incompletely assembled KATP channels fail to exit the ER/cis-Golgi compartments. In addition to these retrograde signals, we show that the C terminus of SUR1 has an anterograde signal, composed in part of a dileucine motif and downstream phenylalanine, which is required for KATP channels to exit the ER/cis-Golgi compartments and transit to the cell surface. Deletion of as few as seven amino acids, including the phenylalanine, from SUR1 markedly reduces surface expression of KATP channels. Mutations leading to truncation of the C terminus of SUR1 are one cause of a severe, recessive form of persistent hyperinsulinemic hypoglycemia of infancy. We propose that the complete loss of beta cell KATP channel activity seen in this form of hyperinsulinism is a failure of KATP channels to traffic to the plasma membrane.  相似文献   

11.
ATP-sensitive K+ (KATP) channels are oligomeric complexes of pore-forming Kir6 subunits and regulatory Sulfonylurea Receptor (SUR) subunits. SUR, an ATP-Binding Cassette (ABC) transporter, confers Mg-nucleotide stimulation to the channel via nucleotide interactions with its two cytoplasmic domains (Nucleotide Binding Folds 1 and 2; NBF1 and NBF2). Regulation of KATP channel expression is a complex process involving subunit assembly in the ER, SUR glycosylation in the Golgi, and trafficking to the plasma membrane. Dysregulation can occur at different steps of the pathway, as revealed by disease-causing mutations. Here, we have addressed the role of SUR1 NBF1 in gating and expression of reconstituted channels. Deletion of NBF1 severely impairs channel expression and abolishes MgADP stimulation. Total SUR1 protein levels are decreased, suggestive of increased protein degradation, but they are not rescued by treatment with sulfonylureas or the proteasomal inhibitor MG-132. Similar effects of NBF1 deletion are observed in recombinant KATP channels obtained by "splitting" SUR1 into two separate polypeptides (a N-terminal "half" and a C-terminal "half"). Interestingly, the location of the "splitting point" in the vicinity of NBF1 has marked effects on the MgADP stimulation of resulting channels. Finally, ablation of the ER retention motif upstream of NBF1 (in either "split" or full-length SUR1) does not rescue expression of channels lacking NBF1. These results indicate that, in addition to NBF1 being required for MgADP stimulation of the channel, it plays an important role in the regulation of channel expression that is independent of the ER retention checkpoint and the proteasomal degradation pathway.  相似文献   

12.
Ribonuclease T1 (RNase T1, EC 3.1.27.3) is a guanosine-specific ribonuclease that cleaves the 3',5'-phosphodiester linkage of single-stranded RNA. It is assumed that the reaction is generated by concerted acid-base catalysis between residues Glu-58 and His-92 or His-40. From the results of chemical modification and NMR studies, it appeared that the residue Glu-58 was indispensable for nucleolytic activity. However, we have recently demonstrated that Glu-58 is an important but not an essential residue for catalytic activity, using the methods of genetic engineering to change Glu-58 to Gln-58 etc [Nishikawa, S., Morioka, H., Fuchimura, K., Tanaka, T., Uesugi, S., Ohtsuka, E., & Ikehara, M. (1986) Biochem. Biophys. Res. Commun. 138, 789-794]. In the present paper, we report that mutants of RNase T1 with residue Ala-40 or Ala-92 have almost no activity, while mutants that contain Ala-58 retain considerable activity. These results show that the two histidine residues, His-40 and His-92, but not Glu-58, are indispensable for the catalytic activity of the enzyme. We propose a revised reaction mechanism in which two histidine residues play a major role, as they do in the case of RNase A.  相似文献   

13.
Arrestins bind active phosphorylated G protein-coupled receptors, blocking G protein activation and channeling the signaling to G protein-independent pathways. Free arrestin-3 and receptor-bound arrestin-3 scaffold the ASK1-MKK4-JNK3 module, promoting JNK3 phosphorylation, whereas highly homologous arrestin-2 does not. Here, we used arrestin-2/3 chimeras and mutants to identify key residues of arrestin-3 responsible for its ability to facilitate JNK3 activation. Our data demonstrate that both arrestin domains are involved in JNK3 activation, with the C-terminal domain being more important than the N-terminal domain. We found that Val-343 is the key contributor to this function, whereas Leu-278, Ser-280, His-350, Asp-351, His-352, and Ile-353 play supporting roles. We also show that the arrestin-3-specific difference in the arrangement of the β-strands in the C-terminal domain that underlies its lower selectivity for active phosphoreceptors does not play an appreciable role in its ability to enhance JNK3 activation. Importantly, the strength of the binding of ASK1 or JNK3, as revealed by the efficiency of co-immunoprecipitation, does not correlate with the ability of arrestin proteins to promote ASK1-dependent JNK3 phosphorylation. Thus, multiple residues on the non-receptor-binding side of arrestin-3 are crucial for JNK3 activation, and this function and the receptor-binding characteristics of arrestin can be manipulated independently by targeted mutagenesis.  相似文献   

14.
Heterodimeric nucleotide binding domains NBD1/NBD2 distinguish the ATP-binding cassette protein SUR2A, a recognized regulatory subunit of cardiac ATP-sensitive K+ (KATP) channels. The tandem function of these core domains ensures metabolism-dependent gating of the Kir6.2 channel pore, yet their structural arrangement has not been resolved. Here, purified monodisperse and interference-free recombinant particles were subjected to synchrotron radiation small-angle X-ray scattering (SAXS) in solution. Intensity function analysis of SAXS profiles resolved NBD1 and NBD2 as octamers. Implemented by ab initio simulated annealing, shape determination prioritized an oblong envelope wrapping NBD1 and NBD2 with respective dimensions of 168 × 80 × 37 Å3 and 175 × 81 × 37 Å3 based on symmetry constraints, validated by atomic force microscopy. Docking crystal structure homology models against SAXS data reconstructed the NBD ensemble surrounding an inner cleft suitable for Kir6.2 insertion. Human heart disease-associated mutations introduced in silico verified the criticality of the mapped protein–protein interface. The resolved quaternary structure delineates thereby a macromolecular arrangement of KATP channel SUR2A regulatory domains.  相似文献   

15.
Nucleotide binding domains (NBDs) secure ATP-binding cassette (ABC) transporter function. Distinct from traditional ABC transporters, ABCC9-encoded sulfonylurea receptors (SUR2A) form, with Kir6.2 potassium channels, ATP-sensitive K+ (K ATP) channel complexes. SUR2A contains ATPase activity harbored within NBD2 and, to a lesser degree, NBD1, with catalytically driven conformations exerting determinate linkage on the Kir6.2 channel pore. While homodomain interactions typify NBDs of conventional ABC transporters, heterodomain NBD interactions and their functional consequence have not been resolved for the atypical SUR2A protein. Here, nanoscale protein topography mapped assembly of monodisperse purified recombinant SUR2A NBD1/NBD2 domains, precharacterized by dynamic light scattering. Heterodomain interaction produced conformational rearrangements inferred by secondary structural change in circular dichroism, and validated by atomic force and transmission electron microscopy. Physical engagement of NBD1 with NBD2 translated into enhanced intrinsic ATPase activity. Molecular modeling delineated a complemental asymmetry of NBD1/NBD2 ATP-binding sites. Mutation in the predicted catalytic base residue, D834E of NBD1, altered NBD1 ATPase activity disrupting potentiation of catalytic behavior in the NBD1/NBD2 interactome. Thus, NBD1/NBD2 assembly, resolved by a panel of proteomic approaches, provides a molecular substrate that determines the optimal catalytic activity in SUR2A, establishing a paradigm for the structure-function relationship within the K ATP channel complex.  相似文献   

16.
Mångs H  Sui GC  Wiman B 《FEBS letters》2000,475(3):192-196
The role of the 13 histidine residues in plasminogen activator inhibitor 1 (PAI-1) for the stability of the molecule was studied by replacing these residues by threonine, using site-directed mutagenesis. The generated mutants were expressed in Escherichia coli, purified and characterized. All variants had a normal activity and formed stable complexes with tissue-type plasminogen activator. Most of these PAI-1 variants displayed a similar pH-dependency in stability as wild-type PAI-1, with increased half-lives at lower pH. However, the variant His364Thr had a half-life of about 50 min at 37 degrees C and had almost completely lost its pH-dependency. Therefore, our data suggest that His(364), in the COOH-terminal end of the molecule might be responsible for the pH-dependent stability of PAI-1.  相似文献   

17.
Mondal MS  Ruiz A  Hu J  Bok D  Rando RR 《FEBS letters》2001,489(1):14-18
Lecithin retinol acyl transferase (LRAT) is a novel membrane bound enzyme that catalyzes the formation of retinyl esters from vitamin A and lecithin. The enzyme is both essential for vision and for the general mobilization of vitamin A. The sequence of LRAT defines it as a novel enzyme unrelated to any other protein of known function. LRAT possesses a catalytically essential active site cysteine residue. The enzyme also contains six histidine residues. It is shown here that two of these residues (H57 and H163) are essential for catalysis. A mechanistic hypothesis is presented to account for these observations.  相似文献   

18.
Heparin-binding histidine and lysine residues of rat selenoprotein P   总被引:3,自引:0,他引:3  
Selenoprotein P is a plasma protein that has oxidant defense properties. It binds to heparin at pH 7.0, but most of it becomes unbound as the pH is raised to 8.5. This unusual heparin binding behavior was investigated by chemical modification of the basic amino acids of the protein. Diethylpyrocarbonate (DEPC) treatment of the protein abolished its binding to heparin. DEPC and [(14)C]DEPC modification, coupled with amino acid sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry of peptides, identified several peptides in which histidine and lysine residues had been modified by DEPC. Two peptides from one region (residues 80-95) were identified by both methods. Moreover, the two peptides that constituted this sequence bound to heparin. Finally, when DEPC modification of the protein was carried out in the presence of heparin, these two peptides did not become modified by DEPC. Based on these results, the heparin-binding region of the protein sequence was identified as KHAHLKKQVSDHIAVY. Two other peptides (residues 178-189 and 194-234) that contain histidine-rich sequences met some but not all of the criteria of heparin-binding sites, and it is possible that they and the histidine-rich sequence between them bind to heparin under some conditions. The present results indicate that histidine is a constituent of the heparin-binding site of selenoprotein P. The presence of histidine, the pK(a) of which is 7.0, explains the release of selenoprotein P from heparin binding as pH rises above 7.0. It can be speculated that this property would lead to increased binding of selenoprotein P in tissue regions that have low pH.  相似文献   

19.
The immunoglobulin-binding activity of subcomponent Clq of human complement is lost following treatment with diethylpyrocarbonate; the inactivation showed first-order kinetics with respect to time and modifier concentration. Soluble IgG oligomers protected Clq against diethylpyrocarbonate modification. Treatment of modified Clq with hydroxylamine resulted in an 85% recovery of its ability to bind to aggregated immunoglobulin. The inactivation process was associated with modification of 12.1 +/- 0.7 histidine residues per Clq molecule. These data are consistent with the presence of histidine residues in the immunoglobulin-binding sites of Clq; these residues may participate in ionic interactions with the carboxyl groups known to be in the Clq binding site of IgG.  相似文献   

20.
The ATP-sensitive K-channel (K-ATP channel) plays a key role in insulin secretion from pancreatic beta-cells. It is closed by glucose metabolism, which stimulates insulin secretion, and opened by the drug diazoxide, which inhibits insulin release. Metabolic regulation is mediated by changes in ATP and Mg-ADP, which inhibit and potentiate channel activity, respectively. The beta-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. We have mutated (independently or together) two lysine residues in the Walker A (W(A)) motifs of the first (K719A) and second (K1384M) nucleotide-binding domains (NBDs) of SUR1. These mutations are expected to inhibit nucleotide hydrolysis. Our results indicate that the W(A) lysine of NBD1 (but not NBD2) is essential for activation of K-ATP currents by diazoxide. The potentiatory effects of Mg-ADP required the presence of the W(A) lysines in both NBDs. Mutant currents were slightly more sensitive to ATP than wild-type currents. Metabolic inhibition led to activation of wild-type and K1384M currents, but not K719A or K719A/K1384M currents, suggesting that there may be a factor in addition to ATP and ADP which regulates K-ATP channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号