首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since phosphonoformic acid (PFA) acts as a specific competitive inhibitor of Na+-Pi co-transport across renal brush-border membrane (BBM), we employed the [14C]PFA as a probe to determine the mechanism of its interaction with rat renal BBM. The binding of [14C]PFA to BBM vesicles (BBMV), with Na+ present in extravesicular medium (Na+o), was time- and temperature-dependent. The replacement of Na+o with other monovalent cations reduced the PFA binding by -80%. Cl- was the most effective accompanying monovalent anion as NaCl for maximum PFA binding. The Na+o increased the apparent affinity of BBMV for [14C]PFA binding, but it did not change the maximum binding capacity. The maximum [14C]PFA binding was achieved at Na+o approximately equal to 50 mM. The extent of Na+-dependent [14C]PFA binding correlated (r = 0.98; p less than 0.01) with percent inhibition by an equimolar dose of PFA of the (Na+o greater than Na+i)-dependent BBMV uptake of 32Pi. Intravesicular Na+ (Na+i) decreased [14C]PFA binding, on BBMV, and this inhibition by Na+i was dependent on the presence of Na+o. The increase in Na+i, at constant [Na+]o, decreased the Vmax, but not the Km, for [14C]PFA binding on BBMV. Bound [14C]PFA was displaced from BBMV by phosphonocarboxylic acids proportionally (r = 0.99; p less than 0.05) to their ability to inhibit (Na+o greater than Na+i)-gradient-dependent Pi transport, whereas other monophosphonates, diphosphonates, L-proline, or D-glucose did not influence the [14C]PFA binding. The Na+-dependent binding of [14C]PFA and of [3H]phlorizin by BBMV was 10 times higher than binding of these ligands to renal basolateral membranes and to mitochondria. [14C]PFA probably binds onto the same locus on the luminal surface of BBM, where Pi and Na+ form a ternary complex with the Na+-Pi co-transporter.  相似文献   

2.
X-linked Hyp mice have a specific defect in Na(+)-dependent phosphate (Pi) transport at the renal brush border membrane (BBM). In the present study we examined the effect of the Hyp mutation on the molecular size of the Pi transporting unit and on Na(+)-dependent 14C-phosphonoformic (PFA) binding in renal BBM vesicles. By radiation inactivation analysis, we demonstrated that the molecular size of the Na(+)-Pi cotransporter is similar in normal (242 +/- 16 kDa) and Hyp mice (227 +/- 39 kDa). Moreover, while BBM Na(+)-dependent Pi transport is significantly reduced in Hyp mice (249 +/- 54 vs 465 +/- 82 pmol/mg protein/6s), genotype differences in (1) Na(+)-dependent PFA binding (1020 +/- 115 vs 1009 +/- 97 pmol/mg protein/30 min), (2) Pi-displaceable Na(+)-dependent PFA binding (605 +/- 82 vs 624 +/- 65 pmol/mg protein/6s), and (3) phosphate uptake at Na(+)-equilibrium (67 +/- 10 vs 54 +/- 7 pmol/mg protein/6s) are not apparent. The present data demonstrate that the molecular size of the renal BBM Na(+)-Pi cotransporter is normal in Hyp mice and suggest that the number of Na(+)-Pi cotransporters may not be reduced in the mutant strain.  相似文献   

3.
To determine the density of Na(+)-Pi symporters in brush border membranes (BBM) from rat renal cortex, [14C] phosphonoformic acid [( 14C] PFA), a competitive inhibitor of Na(+)-Pi cotransport, was employed as a probe. The [14C]PFA binding was measured in BBM vesicles (BBMV) under equilibrated conditions (extra-vesicular Na+, K+, and H+ = intravesicular Na+, K+, and H+) to avoid modulatory effects of these solutes. BBMV were preincubated in media without or with addition of molar excess of Pi (greater than 20 times) to determine the Pi-protectable PFA-binding sites, and then [14C] PFA binding was determined. Only the [14C]PFA binding in the presence of Na+ displaceable by an excess of Pi was saturated and was independent of intravesicular volume of BBMV. This value denoted as "Pi-protectable Na(+)-[14C]PFA binding," was analyzed by Scatchard plot showing BmaxPFA = 375 +/- 129 pmol of PFA/mg protein, KDPFA = 158 +/- 18 microM; the Hill coefficient was congruent to 1. For Na(+)-dependent binding of [3H]phlorizin, in the same BBMV, Bmax = 310 +/- 37 pmol/mg protein and KD V 2.2 +/- 0.5 microM. BBMV prepared from cortex of thyroparathyroidectomized rats infused with phosphaturic doses of parathyroid hormone (PTH) were compared with vehicle-infused controls. Administration of PTH resulted in decrease of BmaxPFA (-38%) and of Na(+)-gradient-dependent uptake of 32Pi (-35%), but KDPFA was not changed. Neither BmaxPhl and KDPhl for Na(+)-phlorizin binding, nor the Na(+)-gradient-dependent uptake of [3H]D-glucose differed between PTH-treated and control rats. We conclude: (a) measurement of Pi-protectable Na(+)-[14C]PFA binding determines numbers and affinity of Na(+)-Pi symporters in renal BBMV; (b) the affinity of PFA for Na(+)-Pi symporter is similar to apparent affinity for Pi (KmPi), as determined from measurements of Na(+)-gradient-dependent 32Pi uptake by BBMV; (c) both Na(+)-Pi symporter and [Na+]D-glucose symporters are present within renal BBM in a similar range of density; (d) PTH decreases the number of Na(+)-Pi cotransporters in BBMV commensurate with the parallel decrease of Na(+)-gradient-dependent Pi transport, whereas the affinity of Na(+)-Pi symporters for Pi is not changed. These observations support the hypothesis that PTH decreases capacity for Na(+)-dependent Pi reabsorption by internalization of Na(+)-Pi symporters in BBM of renal proximal tubules.  相似文献   

4.
To understand the mechanisms underlying ischemia-reperfusion-induced renal proximal tubule damage, we analyzed the expression of the Na+-dependent phosphate (Na+/Pi) cotransporter NaPi-2 in brush border membranes (BBM) isolated from rats which had been subjected to 30 min renal ischemia and 60 min reperfusion. Na+/Pi cotransport activities of the BBM vesicles were also determined. Ischemia caused a significant decrease (about 40%, P < 0.05) in all forms of NaPi-2 in the BBM, despite a significant increase (31+/-3%, P < 0.05) in the Na+/Pi cotransport activity. After reperfusion, both NaPi-2 expression and Na+/Pi cotransport activity returned to control levels. In contrast with Na+/Pi cotransport, ischemia significantly decreased Na+-dependent glucose cotransport but did not affect Na+-dependent proline cotransport. Reperfusion caused further decreases in both Na+/glucose (by 60%) and Na+/proline (by 33%) cotransport. Levels of NaPi-2 were more reduced in the BBM than in cortex homogenates, suggesting a relocalization of NaPi-2 as a result of ischemia. After reperfusion, NaPi-2 levels returned to control values in both BBM and homogenates. These data indicate that the NaPi-2 protein and BBM Na+/Pi cotransport activity respond uniquely to reversible renal ischemia and reperfusion, and thus may play an important role in maintaining and restoring the structure and function of the proximal tubule.  相似文献   

5.
We studied the role of sulfhydryl groups in Na(+)-Pi cotransport across the renal brush border membrane (BBM), using HgCl2, an agent which penetrates membranes freely. HgCl2 inhibited the initial Na(+)-dependent 32Pi transport in a dose-dependent manner (IC50 = 54 microM). Na(+)-independent transport was not affected. The inhibitory effect persisted under Na+ equilibrium-exchange conditions. Additionally, HgCl2 had no effect on the diffusional uptake of 22Na up to 1 min incubation. Exposure to HgCl2 had no effect on vesicle integrity as determined by osmotic shrinking experiments. BBM vesicle (BBMV) volume, determined by D-glucose equilibrium uptake, was not affected at low HgCl2 concentrations, but decreased at higher concentrations (greater than 100 microM). Vesicle volumes, determined by flow cytometry, were not changed after exposure to HgCl2. Kinetic studies showed a reduction in the apparent Vmax for Pi transport from 1.40 +/- 0.13 to 0.75 +/- 0.19 nmoles/mg protein/5 sec, without a significant change in the apparent Km. In protection studies, dithiothreitol (DTT) completely protected against inhibition, but Pi, phosphonoformic acid (PFA), and Na+ gave no protection. The data suggest that sulfhydryl groups are essential for the function of Na(+)-Pi cotransporter of renal BBM.  相似文献   

6.
The role of N-linked oligosaccharide side chains in the biogenesis and function of Na+-coupled transporters in renal luminal brush-border membrane (BBM) is not known. We examined the question of how in vivo inhibition by alkaloid swainsonine of alpha-mannosidase, a key enzyme in processing of glycoproteins in the Golgi apparatus, affects Na+/H+ antiport and Na+/Pi symport as well as activities of other transporters and enzymes in rat renal BBM. Administration of swainsonine to thyroparathyroidectomized rats, control or treated with 3,5,3'-triiodothyronine, markedly decreased the rate of Na+/H+ antiport, but had no effect on the rate of Na+/Pi symport across renal BBM vesicles (BBMV). Moreover, administration of swainsonine did not change activities of Na+ gradient, ([extravesicular Na+] greater than [intravesicular Na+])-dependent transport of D-glucose, L-proline, or the amiloride-insensitive 22Na+ uptake by BBMV; the activities of the BBM enzymes alkaline phosphatase, gamma-glutamyltransferase, or leucine aminopeptidase in BBMV were also not changed. The in vitro enzymatic deglycosylation of BBM by incubating freshly isolated BBMV with bacterial endoglycosidase F also resulted in a decreased rate of Na+/H+ antiport, but not Na+-coupled symports of Pi, L-proline, and D-glucose, or the activities of the BBM enzymes were not significantly affected. Similar incubation with endoglycosidase H was without effect on any of these parameters. Both the modification of BBMV glycoproteins by administration fo swainsonine in vivo as well as the in vitro incubation of BBMV with endoglycosidase F resulted in a decrease of the apparent Vmax of Na+/H+ antiport, but did not change the apparent Km of this antiporter for extravesicular Na+ and did not increase H+ conductance of BBM. Taken together, our findings suggest that intact N-linked oligosaccharide chains of the biantennary complex type in renal BBM glycoproteins are required, directly or indirectly, for the transport function of the Na+/H+ antiporter inserted into BBM of renal proximal tubules.  相似文献   

7.
An Na+, Pi-binding protein has been extracted from kidney and intestinal brush-border membranes with an organic solvent and has been purified by Kieselghur and Sephadex LH-60 chromatography. The molecular mass of this protein has been estimated to be about 155 kDa as determined by gel-filtration chromatography on Sepharose 2B. Under denaturing conditions, polyacrylamide-gel electrophoresis revealed a monomer of molecular mass about 70 kDa. The protein has high specificity and high affinity for Pi [K0.5 (concentration at which half-maximal binding is observed) near 10 microM]. Na2+ binding also exhibits saturation behaviour, with a K0.5 near 7.5 mM. Pi binding is inhibited by known inhibitors of Pi transport in brush-border membrane vesicles. It appears that this protein could be involved in Na+/Pi co-transport across the renal and intestinal brush-border membranes.  相似文献   

8.
Recent studies suggest that the major pathway for exit of HCO3- across the basolateral membrane of the proximal tubule cell is electrogenic Na+/HCO3- co-transport. We therefore evaluated the possible presence of Na+/HCO3- co-transport in basolateral membrane vesicles isolated from the rabbit renal cortex. Imposing an inward HCO3- gradient induced the transient uphill accumulation of Na+, and imposing an outward Na+ gradient caused HCO3- -dependent generation of an inside-acid pH gradient as monitored by quenching of acridine orange fluorescence, findings consistent with the presence of Na+/HCO3- co-transport. In the absence of other driving forces, generating an inside-positive membrane potential by imposing an inward K+ gradient in the presence of valinomycin caused net Na+ uptake via a HCO3- -dependent pathway, indicating that Na+/HCO3- co-transport is electrogenic and associated with a flow of negative charge. Imposing transmembrane Cl- gradients did not appreciably affect HCO3- gradient-stimulated Na+ influx, suggesting that Na+/HCO3- co-transport is not Cl- -dependent. The rate of HCO3- gradient-stimulated Na+ influx was a simple, saturable function of the Na+ concentration (Km = 9.7 mM, Vmax = 160 nmol/min/mg of protein), was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (I50 = 100 microM), but was inhibited less than 10% by up to 1 mM amiloride. We could not demonstrate a HCO3- -dependent or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive component of Na+ influx in microvillus membrane vesicles. This study thus indicates the presence of a transport system mediating electrogenic Na+/HCO3- co-transport in basolateral, but not luminal, membrane vesicles isolated from the rabbit renal cortex. Analogous to the use of renal microvillus membrane vesicles to study Na+/H+ exchange, renal basolateral membrane vesicles may be a useful model system for examining the kinetics and possible regulation of Na+/HCO3- co-transport.  相似文献   

9.
In an attempt to identify the renal Na+/Pi cotransporter, Xenopus laevis oocytes were used to express mRNA isolated from the renal cortex of rat kidney. Na(+)-dependent uptake of Pi in oocytes, injected with mRNA, resulted in an increase of 2-4-fold as compared to oocytes injected with water. Both the new expressed and endogenous Na(+)-dependent Pi uptake activity were inhibited with 2 mM phosphonoformic acid (PFA). Expression of Pi uptake into oocytes was dose-dependent with the amount of mRNA injected. When mRNA was fractionated on a sucrose gradient, a mRNA fraction of 2.5 kilobases expressed the Na+/Pi cotransport activity in oocytes. This fraction resulted in a 6-fold stimulation of Na(+)-dependent Pi transport when compared to oocytes injected with water. The Km and Vmax for Na(+)-dependent Pi uptake were 0.18 mM and 118 pmol/oocyte per 30 min, respectively.  相似文献   

10.
Purified rat renal brush-border membrane vesicles possess a heat-labile enzyme activity which hydrolyses NAD+. A reciprocal relationship exists between the disappearance of NAD+ and the appearance of adenosine; 2 mol of Pi are liberated from each mol of NAD+ incubated with brush-border membrane vesicles. Freezing and thawing brush-border membrane vesicles does not enhance the initial rate of NAD+ hydrolysis. Preincubation of brush-border membrane vesicles with NAD+ results in inhibition of Na+-dependent Pi-transport activity, whereas Na+-dependent glucose transport is not affected. EDTA, which prevents the release of Pi from NAD+ and which itself has no direct effect on brush-border membrane Pi transport, reverses the NAD+ inhibition of Na+-dependent Pi transport. These results suggest that it is the Pi liberated from NAD+ and not NAD+ itself that inhibits Na+-dependent Pi transport.  相似文献   

11.
12.
13.
Serum sulfate concentrations are increased in infants, young children, and pregnant women, compared with adult values. The objective of this investigation was to examine the influences of age, gender, and pregnancy on renal sulfate transport using guinea pigs as an animal model. Membrane vesicles were isolated from the kidney cortex of male animals at four different ages, from male and female adult animals, and from pregnant and nonpregnant female animals. There were no significant differences in marker enzymes for the brush-border membrane (BBM) or basolateral membrane (BLM) among all groups examined. Uptake was determined by a rapid filtration method and membrane fluidity by measuring the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. The Vmax values for Na+ /sulfate co-transport in BBM were significantly increased with decreasing age, whereas the Km for this process was unchanged. The Vmax and Km for Na + /sulfate co-transport in BBM of pregnant animals were significantly higher than the values in the nonpregnant group. Bicarbonate-driven anion exchange of sulfate in BLM was not different among the different age groups. The Vmax for the bicarbonate/sulfate exchange process in BLM was not different between pregnant and nonpregnant groups; however, the Km for this process in BLM of pregnant animals was significantly greater than the value in nonpregnant animals. There were no gender-related differences in sulfate transport in BBM or BLM isolated from adult male and female animals. Renal BBM fluidity was increased with decreasing age and in pregnant animals, suggesting that altered membrane fluidity may represent one possible mechanism to explain the increased sodium/sulfate uptake in young and pregnant animals. The higher Vmax for Na+/sulfate co-transport in young and pregnant animals suggests that there is an increased density of co-transporter protein or an increase in the rate of movement of the carrier protein (i.e., turnover) once loaded with sodium and sulfate. This increased conservation of inorganic sulfate in young and pregnant guinea pigs may be related to the increased demand for sulfated substrates, such as sulfated glycosaminoglycans, during growth and development.  相似文献   

14.
The mechanisms by which calcium (Ca2+) and inorganic phosphate (Pi) accumulate into matrix vesicles (MV) have not been elucidated. In the present study the characteristics of Pi uptake into MV isolated from mildly rachitic chicken growth plate cartilage have been investigated. The results indicate that Pi accumulates into MV mainly via a Na(+)-dependent Pi transport system. In the absence of NaCl in the extravesicular medium, Pi uptake was a nonsaturable process. In the presence of 150 mM NaCl, the initial rate of Pi uptake was 4.38 +/- 1.02-fold higher than with 150 mM choline chloride (mean +/- S.E., n = 8, p less than 0.005). Other cations showed partial activity to drive Pi into MV as compared to Na+:Li+ (64.4%) greater than K+ (39.8%) greater than choline (39.0%) greater than tetramethylammonium (30.0%) greater than N-methylglucamine (26.3%). Na(+)-dependent Pi transport activity displayed saturability towards increasing extra-vesicular concentrations of Na+ and Pi. The apparent Km for Pi was 0.68 +/- 0.16 mM. The Na+ concentration producing half-maximum Pi transport activity was 106.2 +/- 11.0 mM. Kinetic analysis suggests that Na+ interacts with the Pi carrier with a stoichiometry of more than one Na+ ion with one Pi molecule. In MV isolated from normal chicken growth plate cartilage, this Na(+)-dependent Pi transport system was barely expressed. In contrast to the effect on Pi uptake by MV, the activity of alkaline phosphatase was not changed when NaCl was substituted for choline chloride in the assay medium. In addition to this observation which suggests that this enzyme is not related to the Pi transport activity described in this study, levamisole, which inhibited alkaline phosphatase activity did not affect the Na(+)-dependent uptake of Pi. Both arsenate and phosphonoformic acid, two inhibitors of the epithelial Na(+)-dependent Pi transport systems, were active inhibitors of the Na(+)-dependent Pi uptake by MV with a higher potency for phosphonoformic acid. Associated with the expression of a facilitated Na(+)-coupled Pi transport in MV, in vitro calcification assessed by 45Ca2+ uptake also showed a marked dependence on extravesicular sodium. This relationship was markedly attenuated in MV isolated from normal chicken growth plate cartilage expressing a weak Na(+)-facilitated Pi transport activity. In conclusion, a saturable Na(+)-dependent Pi carrier has been characterized which facilitates Pi transport in MV. Its potential role for Ca-Pi accumulation into MV and subsequent development of vesicular calcification followed by mineralization of the osteogenic matrix is proposed and remains to be further investigated.  相似文献   

15.
Concentrative uptake of 32Pi induced by the dissipation of a Na+ gradient (overshoot) was demonstrated in brush border membrane vesicles obtained from isolated perfused canine kidneys. Na+-dependent 32Pi transport was decreased in brush border vesicles from isolated kidneys perfused with parathyroid hormone (PTH) for 2 h compared to uptake measured in vesicles from kidneys perfused without PTH. Cyclic AMP-dependent 32P phosphorylation of a 62,000 Mr protein band was demonstrable on autoradiograms of sodium dodecyl sulfate-polyacrylamide gels of membrane suspensions from kidneys perfused +/- PTH. Evidence that perfusion with PTH resulted in cAMP-dependent phosphorylation in isolated kidneys from parathyroidectomized dogs (decreased cAMP-dependent 32P phosphorylation of the 62,000-Mr band in brush border vesicles) was obtained after 2-h perfusion with PTH. Decreased 32P phosphorylation was not observed if membranes were allowed to dephosphorylate prior to 32P phosphorylation in vitro. We conclude that brush border vesicles from isolated perfused canine kidneys can be used to study the action of PTH on Na+-Pi cotransport in brush border membranes and on cAMP-dependent phosphorylation of the membrane. It is strongly suggested that PTH effects changes in Na+-dependent 32Pi transport in isolated brush border vesicles and changes in 32P phosphorylation of vesicles via a direct action on the renal cortical cell rather than as a consequence of extrarenal actions of the hormone.  相似文献   

16.
We found that alpha-Cl-alpha-Br-phosphonoacetate (ClBrPAA) is a competitive, solute-specific inhibitor of Na+/Pi cotransport across renal cortical brush border membrane. Inhibition by ClBrPAA (Ki = 62 microM) is more than three times more effective than inhibition by phosphonoformate (PFA), the most potent Na+/Pi cotransport inhibitor known to date, and 26 times more effective than the parent compound, phosphonoacetate (PAA). These observations indicate that substitution of bromine and chlorine atoms at the alpha-carbon of PAA greatly enhances its efficacy as a competitive inhibitor of Na+/Pi cotransport. As ClBrPAA is much less inhibitory than PAA and PFA towards viral DNA polymerases and did not inhibit human alpha-DNA polymerase (ref. 10), the results also demonstrate that Na+/Pi cotransport inhibition can be dissociated from inhibition of DNA polymerases by phosphonocarboxylate compounds.  相似文献   

17.
Sulphate and phosphate transport in the renal proximal tubule   总被引:2,自引:0,他引:2  
Experiments performed on microperfused proximal tubules and brush-border membrane vesicles revealed that inorganic phosphate is actively reabsorbed in the proximal tubule involving a 2 Na+-HPO2-4 or H2PO-4 co-transport step in the brush-border membrane and a sodium-independent exit step in the basolateral cell membrane. Na+-phosphate co-transport is competitively inhibited by arsenate. The transtubular transport regulation is mirrored by the brush-border transport step: it is inhibited by parathyroid hormone intracellularly mediated by cyclic AMP. Transepithelial inorganic phosphate (Pi) transport and Na+-dependent Pi transport across the brush-border membrane correlates inversely with the Pi content of the diet. Intraluminal acidification as well as intracellular alkalinization led to a reduction of transepithelial Pi transport. Data from brush-border membrane vesicles indicate that high luminal H+ concentrations reduce the affinity for Na+ of the Na+-phosphate co-transport system, and that this mechanism might be responsible for the pH dependence of phosphate reabsorption. Contraluminal influx of Pi from the interstitium into the cell could be partly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). It is not, however, changed when dicarboxylic acids are present or when the pH of the perfusate is reduced to pH 6. Sulphate is actively reabsorbed, involving electroneutral 2 Na+-SO2-4 co-transport through the brush-border membrane. This transport step is inhibited by thiosulphate and molybdate, but not by phosphate or tungstate. The transtubular active sulphate reabsorption is not pH dependent, but is diminished by the absence of bicarbonate. The transport of sulphate through the contraluminal cell side is inhibited by DIDS and diminished when the capillary perfusate contains no bicarbonate or chloride. The latter data indicate the presence of an anion exchange system in the contraluminal cell membrane like that in the erythrocyte membrane.  相似文献   

18.
ATP has been known to act as an extracellular signal and to be involved in various functions of kidney. Renal proximal tubular reabsorption of phosphate (Pi) contributes to the maintenance of phosphate homeostasis, which is regulated by Na+/Pi cotransporter. However, the effects of ATP on Na+/Pi cotransporters were not elucidated in proximal tubule cells (PTCs). Thus, the effects of ATP on Na+/Pi cotransporter and its related signal pathways are examined in the primary cultured renal PTCs. In the present study, ATP inhibited Pi uptake in a time (> 1 h) and dose (>10(-6)M) dependent manner. ATP-induced inhibition of Pi uptake was correlated with the decrease of type II Na+/Pi cotransporter mRNA. ATP-induced inhibition of Pi uptake may be mediated by P2Y receptor activation, since suramin (non-specific P2 receptor antagonist) and RB-2 (P2Y receptor antagonist) blocked it. ATP-induced inhibition of Pi uptake was blocked by neomycin, U73122 (phospholipase C (PLC) inhibitors), bisindolylmaleimide I, H-7, and staurosporine (protein kinase C (PKC) inhibitors), suggesting the role of PLC/PKC pathway. ATP also increased inositol phosphates (IPs) formation and induced PKC translocation from cytosolic fraction to membrane fraction. In addition, ATP-induced inhibition of Pi uptake was blocked by SB 203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by PD 98059 (a p44/42 MAPK inhibitor). Indeed, ATP induced phosphorylation of p38 MAPK, which was not blocked by PKC inhibitor. In conclusion, ATP inhibited Pi uptake via PLC/PKC as well as p38 MAPK in renal PTCs.  相似文献   

19.
It is known that the administration of parathyroid hormone to dogs results in phosphaturia and decreased phosphate transport in brush-border vesicles isolated from the kidneys of those dogs. Parathyroid hormone has been shown to activate adenylate cyclase at the basal-lateral membrane of the renal proximal tubular cell. It has been postulated that parathyroid hormone-induced phosphaturia is effected through phosphorylation of brush-border protein by membrane-bound cAMP-dependent protein kinase. An experimental system was designed such that phosphorylation of brush-border vesicles and Na+-stimulated solute transport could be studied in the same preparations. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane vesicles revealed cAMP-dependent phosphorylation of 2 protein bands (Mr = 96,000 and 62,000), which was enhanced by exposure of the inside of the membrane vesicles to ATP and cAMP. Cyclic AMP-dependent phosphorylation of brush-border vesicles was accompanied by inhibition of Na+-stimulated Pi but not D-glucose transport or 22Na+ uptake. When renal brush-border vesicles from parathyroidectomized and normal dogs were phosphorylated in vitro in the presence and absence of cAMP, both the cAMP-dependent phosphorylation and inhibition of Na+-stimulated Pi transport were greater in vesicles isolated from kidneys of parathyroidectomized dogs relative to control animals. We conclude that the cAMP-dependent phosphorylation of brush-border membrane-vesicle proteins is associated with specific inhibition of Na+-stimulated Pi transport. The phosphaturic action of parathyroid hormone (PTH) could be mediated through the cAMP-dependent phosphorylation of specific brush-border membrane proteins.  相似文献   

20.
Taurine, a sulfated beta-amino acid, is conditionally essential during development. A maternal supply of taurine is necessary for normal fetal growth and neurologic development, suggesting the importance of efficient placental transfer. Uptake by the brush-border membrane (BBM) in several other tissues has been shown to be via a selective Na(+)-dependent carrier mechanism which also has a specific anion requirement. Using BBM vesicles purified from the human placenta, we have confirmed the presence of Na(+)-dependent, carrier-mediated taurine transport with an apparent Km of 4.00 +/- 0.22 microM and a Vmax of 11.72-0.36 pmol mg-1 protein 20 s-1. Anion dependence was examined under voltage-clamped conditions, in order to minimize the contribution of membrane potential to transport. Uptake was significantly reduced when anions such as thiocyanate, gluconate, or nitrate were substituted for Cl-. In addition, a Cl(-)-gradient alone (under Na(+)-equilibrated conditions) could energize uphill transport as evidenced by accelerated uptake (3.13 +/- 0.8 pmol mg-1 protein 20 s-1) and an overshoot compared to Na+, Cl- equilibrated conditions (0.60 +/- 0.06 pmol mg-1 protein 20 s-1). A Cl(-)-gradient (Na(+)-equilibrated) also stimulated uptake of [3H]taurine against its concentration gradient. Analysis of uptake in the presence of varying concentrations of external Cl- suggested that 1 Cl- ion is involved in Na+/taurine cotransport. We conclude that Na(+)-dependent taurine uptake in the placental BBM has a selective anion requirement for optimum transport. This process is electrogenic and involves a stoichiometry of 2:1:1 for Na+/Cl-/taurine symport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号