首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Myosin light chain kinase was partially purified from bovine adrenal medulla. A polypeptide of Mr 165,000 dalton was identified as kinase by using anti-gizzard myosin light chain kinase IgG on immunoreplica. Phosphorylation of medullary myosin was Ca2+- and calmodulin-dependent. The phosphorylated myosin was showed to enhance the actin-activated Mg2+-ATPase activity. In contrast, the myosin ATPase activity was dramatically decreased by dephosphorylation of myosin.  相似文献   

2.
The Mg2+ATPase activity of the myosin of a myeloid leukemia cell line (Ml) was not activated by purified Ml actin or by muscle actin alone. Activation required the presence of a cellular fraction as a cofactor in addition to the actin, when Mg2+ATPase was stimulated as much as 20-fold. The cofactor was partially purified and characterized. 1) Its molecular weight was estimated as 45,000 to 55,000 daltons by gel filtration and as 45,000 daltons by SDS polyacrylamide gel electrophoresis. 2) The cofactor was a light chain kinase that phosphorylated both the L1 and L2 light chains of the Ml cell myosin, but not the L3 or heavy chain.  相似文献   

3.
Y H Xu  J Liu  S P Zhang    L H Liu 《The Biochemical journal》1987,248(3):985-988
Ca2+-stimulated Mg2+-dependent ATPase (Ca2+ + Mg2+-ATPase) stimulated by calmodulin, by partial proteolysis or by oleic acid in erythrocyte membranes was inhibited by various derivatives of the naturally occurring alkaloid berbamine. The ability of these derivatives to inhibit trypsin-activated Ca2+ + Mg2+-ATPase correlated well with their ability to inhibit the calmodulin-stimulated enzyme. Inhibition of the trypsin-activated Ca2+ + Mg2+-ATPase by O-4-(ethoxybutyl)berbamine (EBB) was competitive with respect to ATP. The Ki for inhibition was about 8 microM. These results suggest that the binding site of EBB on the activated Ca2+ + Mg2+-ATPase may bear structural similarity to that on calmodulin, and may be closely related to the ATP-binding site on the enzyme.  相似文献   

4.
Ca2+ and tropomyosin are required for activation of ATPase activity of phosphorylated gizzard myosin by gizzard actin at less than 1 mM Mg2+, relatively low Ca2+ concentrations (1 microM), producing half-maximal activation. At higher concentrations, Mg2+ will replace Ca2+, 4 mM Mg2+ increasing activity to the same extent as does Ca2+ and abolishing the Ca2+ dependence. Above about 1 mM Mg2+, tropomyosin is no longer required for activation by actin, activity being dependent on Ca2+ between 1 and 4 mM Mg2+, but independent of [Ca2+] above 4 mM Mg2+. Phosphorylation of the 20,000-Da light chain of gizzard myosin is required for activation of ATPase activity by actin from chicken gizzard or rabbit skeletal muscle at all concentrations of Mg2+ employed. The effect of adding or removing Ca2+ is fully reversible and cannot be attributed either to irreversible inactivation of actin or myosin or to dephosphorylation. After preincubating in the absence of Ca2+, activity is restored either by adding micromolar concentrations of this cation or by raising the concentration of Mg2+ to 8 mM. Similarly, the inhibition found in the absence of tropomyosin is fully reversed by subsequent addition of this protein. Replacing gizzard actin with skeletal actin alters the pattern of activation by Ca2+ at concentrations of Mg2+ less than 1 mM. Full activation is obtained with or without Ca2+ in the presence of tropomyosin, while in its absence Ca2+ is required but produces only partial activation. Without tropomyosin, the range of Mg2+ concentrations over which activity is Ca2+-dependent is restricted to lower values with skeletal than with gizzard actin. The activity of skeletal muscle myosin is activated by the gizzard actin-tropomyosin complex without Ca2+, although Ca2+ slightly increases activity. The Ca2+ sensitivity of reconstituted gizzard actomyosin is partially retained by hybrid actomyosin containing gizzard myosin and skeletal actin, but less Ca2+ dependence is retained in the hybrid containing skeletal myosin and gizzard actin.  相似文献   

5.
The actin-activated Mg2+-ATPase activity of smooth muscle myosin was measured in 85 mM KCl, 6 mM MgCl2 in the absence of tropomyosin. The activity was dependent on myosin concentration. Vmax increased as myosin concentration was increased, while the Ka (the apparent dissociation constant for actin) remained the same. The extent of filament formation was also correlated with myosin concentration and most of the myosin monomers existed in 10S conformation. These results suggest that myosin concentration influences the actin-activated Mg2+-ATPase activity by changing the 10S-6S-filaments equilibrium.  相似文献   

6.
Acanthamoeba myosin IA is a globular protein composed of a 140-kDa heavy chain and a 17-kDa light chain. It expresses high actin-activated Mg2+-ATPase activity when one serine on the heavy chain is phosphorylated. We previously showed that chymotrypsin cleaves the heavy chain into a COOH-terminal 27-kDa peptide that can bind to F-actin but has no ATPase activity and a complex containing the NH2-terminal 112-kDa peptide and the light chain. The complex also binds F-actin and has full actin-activated Mg2+-ATPase activity when the regulatory site is phosphorylated. We have now localized the ATP binding site to within 27 kDa of the NH2 terminus and the regulatory phosphorylatable serine to a 20-kDa region between 38 and 58 kDa of the NH2 terminus. Under controlled conditions, trypsin cleaves the heavy chain at two sites, 38 and 112 kDa from the NH2 terminus, producing a COOH-terminal 27-kDa peptide similar to that produced by chymotrypsin and a complex consisting of an NH2-terminal kDa peptide, a central 74-kDa peptide, and the light chain. This complex is similar to the chymotryptic complex but for the cleavage which separates the 38- and 74-kDa peptides. The tryptic complex has full (K+, EDTA)-ATPase activity (the catalytic site is functional) and normal ATP-sensitive actin-binding properties. However, the actin-activated Mg2+-ATPase activity and the F-actin-binding characteristics of the tryptic complex are no longer sensitive to phosphorylation of the regulatory serine. Therefore, cleavage between the phosphorylation site and the ATP-binding site inhibits the effects of phosphorylation on actin binding and actin-activated Mg2+-ATPase activity without abolishing the interactions between the ATP- and actin-binding sites.  相似文献   

7.
Caldesmon, a major calmodulin- and actin-binding protein of smooth muscle (Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 5652-5655), has been obtained in highly purified form from chicken gizzard by a modification of a previously published procedure (Ngai, P. K., Carruthers, C. A., and Walsh, M. P. (1984) Biochem. J. 218, 863-870) and was found to cause a significant inhibition of both superprecipitation and actin-activated myosin Mg2+-ATPase activity in a system reconstituted from the purified contractile and regulatory proteins without influencing the phosphorylation state of myosin. This inhibitory effect was seen both in the presence and absence of tropomyosin. A Ca2+-and calmodulin-dependent kinase which catalyzed phosphorylation of caldesmon was identified in chicken gizzard; this kinase is distinct from myosin light-chain kinase. Caldesmon prepared by calmodulin-Sepharose affinity chromatography was contaminated with caldesmon kinase activity and was unable to inhibit actomyosin ATPase activity or superprecipitation. Phosphatase activity capable of dephosphorylating caldesmon was also identified in smooth muscle. These results indicate that caldesmon can inhibit smooth muscle actomyosin ATPase activity in vitro, and this function may itself be subject to regulation by reversible phosphorylation of caldesmon.  相似文献   

8.
Effect of calponin on actin-activated myosin ATPase activity   总被引:8,自引:0,他引:8  
Calponin inhibited the actin-activated myosin MgATPase activity in a dose-dependent manner without affecting the phosphorylation level of myosin light chain. This inhibition was Ca2(+)-independent. The decrease in enzymatic activity of myosin was correlated with binding of calponin to actin-tropomyosin filaments. Caldesmon showed a further inhibition of the calponin-induced inhibition of MgATPase activity of the thiophosphorylated myosin. Calponin-induced inhibition of the myosin MgATPase activity was reversed by the addition of calmodulin only in the presence of Ca2+. These results suggest that calponin acts as an inhibitory component of smooth muscle thin filaments.  相似文献   

9.
Ca2+-stimulated, Mg2+-dependent ATPase in bovine thyroid plasma membranes   总被引:1,自引:0,他引:1  
An isolated plasma membrane fraction from bovine thyroid glands contained a Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ((Ca2+ + Mg2+)-ATPase) activity which was purified in parallel to (Na+ + K+)-ATPase and adenylate cyclase. The (Ca2+ + Mg2+)-ATPase activity was maximally stimulated by approx. 200 microM added calcium in the presence of approx. 200 microM EGTA (69.7 +/- 5.2 nmol/mg protein per min). In EGTA-washed membranes, the enzyme was stimulated by calmodulin and inhibited by trifluoperazine.  相似文献   

10.
The addition of large amounts of myosin light chain kinase to the reconstituted gizzard actomyosin shows diphosphorylation of 20 kDa myosin light chain. Accompanying diphosphorylation, the actin-activated myosin ATPase activity was also enhanced. The extent of diphosphorylation and the myosin ATPase activity were clearly demonstrated to be in a linear relationship. From the time course experiment, the conversion of monophosphorylated light chain into one which was diphosphorylated seemed to be a sequential process. Moreover, analyzing phospho-amino acid by using a two-dimensional electrophoresis technique revealed that monophosphorylated light chain contained phosphoserine and diphosphorylated one contained phosphothreonine in addition to phosphoserine.  相似文献   

11.
Myosin was purified from rabbit alveolar macrophages in a form that could not be activated by actin. This myosin could be phosphorylated by an endogenous myosin light chain kinase, up to 2 mol of phosphate being incorporated/mol of myosin. The site phosphorylated was located on the 20,000-dalton myosin light chain. Phosphorylation of macrophage myosin was found to be necessary for actin activation of myosin ATPase activity. Moreover, the actin-activated ATPase activity was found to vary directly with the extent of myosin phosphorylation, maximal phosphorylation (2 mol of Pi/mol of myosin) resulting in an actin-activated MgATPase activity of approximately 200 nmol of Pi/mg of myosin/min at 37 degrees C. These results establish that phosphyoyration of the 20,000-dalton light chain of myosin is sufficient to regulate the actin-activated ATPase activity of macrophage myosin.  相似文献   

12.
The Mg2+-dependent ouabain insensitive-ATPase activity present in gill microsomal preparations from Dicentrarchus labrax is stimulated not only by Na+ but also by K=, NH4+ or Li+. These cations at 50-100 mM concentrations are similarly efficient to Na+ in stimulating the enzyme activity with similar Km values. Whatever cation stimulates the activity, the enzyme is poorly sensitive to ouabain and 100% inhibited by 1.5-2.5 mM ethacrynic acid. All activity vs cation concentration curves show a biphasic profile with activation following the Michaelis-Menten kinetics (Hill coefficient approximately 2). The absence of additivity when the enzyme is activated by binary mixtures of cations, each of which may act as competitive inhibitor of the other confirms the involvement of the same binding site for the monovalent cations.  相似文献   

13.
Acanthamoeba myosin IB contains a 125-kDa heavy chain that has high actin-activated Mg2+-ATPase activity when 1 serine residue is phosphorylated. The heavy chain contains two F-actin-binding sites, one associated with the catalytic site and a second which allows myosin IB to cross-link actin filaments but has no direct effect on catalytic activity. Tryptic digestion of the heavy chain initially produces an NH2-terminal 62-kDa peptide that contains the ATP-binding site and the regulatory phosphorylation site, and a COOH-terminal 68-kDa peptide. F-actin, in the absence of ATP, protects this site and tryptic cleavage then produces an NH2-terminal 80-kDa peptide. Both the 62- and the 80-kDa peptides retain the (NH+4,EDTA)-ATPase activity of native myosin IB and both bind to F-actin in an ATP-sensitive manner. However, only the 80-kDa peptide retains a major portion of the actin-activated Mg2+-ATPase activity. This activity requires phosphorylation of the 80-kDa peptide by myosin I heavy chain kinase but, in contrast to the activity of intact myosin IB, it has a simple, hyperbolic dependence on the concentration of F-actin. Also unlike myosin IB, the 80-kDa peptide cannot cross-link F-actin filaments indicating the presence of only a single actin-binding site. These results allow the assignment of the actin-binding site involved in catalytic activity to the region near, and possibly on both sides of, the tryptic cleavage site 62 kDa from the NH2 terminus, and the second actin-binding site to the COOH-terminal 45-kDa domain. Thus, the NH2-terminal 80 kDa of the myosin IB heavy chain is functionally similar to the 93-kDa subfragment 1 of muscle myosin and most likely has a similar organization of functional domains.  相似文献   

14.
Regulation of the actin-activated ATPase of aorta smooth muscle myosin   总被引:1,自引:0,他引:1  
Phosphorylation of the 20,000-Da light chains, LC20, of vertebrate smooth muscle myosins is thought to be the primary mechanism for regulating the actin-activated ATPase activities of these myosins and consequently smooth muscle contraction. While actin stimulates the MgATPase activities of phosphorylated smooth muscle myosins, it is generally believed that the MgATPase activities of the unphosphorylated myosins are not stimulated by actin. However, under conditions where both unphosphorylated (5% phosphorylated LC20) and phosphorylated calf aorta myosins are mostly filamentous, the maximum rate, Vmax, of the actin-activated ATPase of the unphosphorylated myosin is one-half that of the phosphorylated myosin. While LC20 phosphorylation causes only a modest increase in Vmax, in the presence of tropomyosin, this phosphorylation does cause up to a 10-fold decrease in Kapp, the actin concentration required to achieve 1/2 Vmax. In the presence of low concentrations of tropomyosin/actin, a linear relationship is obtained between the fraction of LC20 phosphorylated and stimulation of the actin-activated ATPase. The relatively high actin-activated ATPase activity of unphosphorylated aorta myosin suggests that other proteins may be involved in the regulation of smooth muscle contraction. In contrast to the results presented here for aorta myosin, it has been reported that actin does not activate the MgATPase activity of unphosphorylated gizzard myosin and that the actin-activated ATPase of gizzard myosin increases more slowly than LC20 phosphorylation.  相似文献   

15.
Transplantable rat osteosarcoma plasma membrane preparations contain high-affinity and low-affinity calcium-stimulated ATPases. The high-affinity enzyme displayed a K0.5 for calcium of 0.03 microM, a Vmax of 99.2 nmol/min/mg, and a requirement for magnesium ions. It was not inhibited by 20 microM trifluoperazine nor stimulated by the addition of 2 ng of calmodulin. Lack of stimulation with exogenous calmodulin may be related to the high endogenous calmodulin content of the membrane preparations. The low-affinity Ca2+- or Mg2+-ATPase displayed a K0.5 for calcium of approximately 2.40 mM (Vmax of 185 nmol/min/mg) and a K0.5 for magnesium of approximately 2.75 mM (Vmax of 250 nmol/min/mg).  相似文献   

16.
(Ca2+ + Mg2+)-stimulated ATPase of human red cell membranes as a function of ATP concentration was measured at fixed Ca2+ concentration and at two different but constant Mg2+ concentrations. Under the assumption that free ATP rather than Mg-ATP is the substrate, a value for Km (for ATP) of 1-2 micron is found which is in good agreement with the value obtained in the phosphorylation reaction by A.F. Rega and P.J. Garrahan (1975. J. Membrane Biol. 22:313). Mg2+ increases both the maximal rate and the affinity for ATP, whereas Ca2+ increases the maximal rate without affecting Km for ATP. As a by-product of these experiments, it was shown that after thorough removal of intracellular proteins the adenylate kinase reaction at approximately 1 mM substrate concentration is several times faster than maximal rate of (Ca2+ + Mg2+)ATPase in red cell membranes.  相似文献   

17.
1. The actin-activated Mg2+-ATPase activity of gizzard HMM increased in proportion to the square of the extent of LC phosphorylation. This result indicates that the LCs of HMM are randomly phosphorylated, and the phosphorylation of both heads of HMM is required for the activation of HMM Mg2+-ATPase by F-actin. 2. In 75 mM KCl, the Mg2+-ATPase activity of gizzard myosin was activated by F-actin only slightly when a half of the total LC was phosphorylated. From 1 to 2 mol LC phosphorylation, the activity was enhanced by F-actin almost linearly. In 30 mM KCl, the activity of acto-gizzard myosin increased sigmoidally with increase in the extent of LC phosphorylation. On electron microscopy, side-by-side aggregates of myosin filaments were observed in 30 mM KCl, but not in 75 mM KCl. It was suggested that the activation of the Mg2+-ATPase activity of acto-gizzard myosin LC phosphorylation is modified by formation of myosin filaments and their aggregates. 3. The relationship between the actin-activated Mg2+-ATPase activity of HMM or myosin and the extent of LC phosphorylation was unaffected by tropomyosin.  相似文献   

18.
The role of the N-terminal region of myosin light chain 1 (LC1) in actomyosin interaction was investigated using an IgG monoclonal antibody (2H2) directed against the N-terminal region of LC1. We defined the binding site of 2H2 by examining its cross-reactivity with myosin light chains from a variety of species and with synthetic oligopeptides. Our findings suggest that 2H2 is directed against the N-terminal region of LC1 which includes the trimethylated alanine residue at the N-terminus. In the presence of 2H2, the rate of actomyosin superprecipitation was reduced, although the extent was not. 2H2 caused a reduction in the Vmax of both myosin and chymotryptic S1(A1) actin-activated ATPase activity, while the Km appeared to be unaltered. The Mg(2+)-ATPase activity of myosin alone was also unaffected. Binding studies revealed that 2H2 did not prevent the formation of acto-S1 complex, either in the presence or in the absence of ATP, nor did it affect the ability of ATP to dissociate S1 from F-actin. Our findings suggest that the N-terminal region of LC1 is not essential for actin binding but is involved in modulating actin-activated ATPase activity of myosin.  相似文献   

19.
20.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号