首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased intraglomerular pressure is an important hemodynamic determinant of glomerulosclerosis, and can be modelled in vitro by exposing mesangial cells (MC) to cyclic mechanical stretch. We have previously shown that the GTPase RhoA mediates stretch-induced fibronectin production. Here we investigate the role of the RhoGEF Vav2 in the activation of RhoA by stretch. Primary rat MC were exposed to 1 Hz cyclic stretch, previously shown to induce maximal RhoA activation at 1 min. Total Vav2 tyrosine phosphorylation and specific phosphorylation on Y172, required for activation, were increased by 1 min of stretch. Overexpression of dominant-negative Vav2 Y172/159F in COS-1 cells or downregulation of Vav2 by siRNA in MC prevented stretch-induced RhoA activation. Vav2 is known to be activated in response to growth factors, and we have previously shown the epidermal growth factor receptor (EGFR) to be transactivated by stretch in MC. Both Vav2 Y172 phosphorylation and RhoA activation were blocked by the EGFR inhibitor AG1478 and prevented in MC overexpressing kinase inactive EGFR. Stretch led to physical association between the EGFR and Vav2, and this was dependent on EGFR activation. EGFR Y992 phosphorylation, required for growth factor-induced Vav2 phosphorylation, was also induced by stretch. Activation of both Src and PI3K were necessary upstream mediators of stretch-induced Vav2 Y172 phosphorylation and RhoA activation. In summary, stretch-induced RhoA activation is dependent on transactivation of the EGFR and activation of the RhoGEF Vav2. Src and PI3K are both required upstream of Vav2 and RhoA activation.  相似文献   

2.
Mechanical stress is known to modulate fundamental events such as cell life and death. Mechanical stretch in particular has been identified as a positive regulator of proliferation in skin keratinocytes and other cell systems. In the present study it was investigated whether antiapoptotic signaling is also stimulated by mechanical stretch. It was demonstrated that mechanical stretch rapidly induced the phosphorylation of the proto-oncogene protein kinase B (PKB)/Akt at both phosphorylation sites (serine 473/threonine 308) in different epithelial cells (HaCaT, A-431, and human embryonic kidney-293). Blocking of phosphoinositide 3-OH kinase by selective inhibitors (LY-294002 and wortmannin) abrogated the stretch-induced PKB/Akt phosphorylation. Furthermore mechanical stretch stimulated phosphorylation of epidermal growth factor receptor (EGFR) and the formation of EGFR membrane clusters. Functional blocking of EGFR phosphorylation by either selective inhibitors (AG1478 and PD168393) or dominant-negative expression suppressed stretch-induced PKB/Akt phosphorylation. Finally, the angiotensin II type 1 receptor (AT1-R) was shown to induce positive transactivation of EGFR in response to cell stretch. These findings define a novel signaling pathway of mechanical stretch, namely the activation of PKB/Akt by transactivation of EGFR via angiotensin II type 1 receptor. Evidence is provided that stretch-induced activation of PKB/Akt protects cells against induced apoptosis.  相似文献   

3.
4.
Over the past decade cyclooxygenase-2-derived prostaglandins have been implicated in the development and progression of many types of cancer. Recently our laboratory has shown that treatment with prostaglandin E2 (PGE2) induces increased proliferation, migration, and invasiveness of colorectal carcinoma cells (Sheng, H., Shao, J., Washington, M. K., and DuBois, R. N. (2001) J. Biol. Chem. 276, 18075-18081). The stimulatory effects of PGE2 were dependent upon the activation of the phosphatidylinositol 3-kinase/Akt pathway. However, the exact signaling cascade responsible for phosphatidylinositol 3-kinase/Akt activation by PGE2 remains poorly defined. In the present study, we demonstrate that the PGE2-induced migration and invasion occurs via rapid transactivation and phosphorylation of the epidermal growth factor receptor (EGFR). Within minutes following treatment, PGE2 induces the activation of Akt. This effect was completely abolished by EGFR-specific tyrosine kinase inhibitors providing evidence for the role of the EGFR in this response. The rapid transactivation of the EGFR occurs via an intracellular Src-mediated event but not through the release of an extracellular epidermal growth factor-like ligand. EGFR transactivation was also observed in vivo by the direct comparison of normal and malignant human colorectal samples. These results suggest that in developing colonic carcinomas, the early effects of cyclooxygenase-2-derived PGE2 are in part mediated by the EGFR, and this transactivation is responsible for subsequent down-stream effects including the stimulation of cell migration and invasion.  相似文献   

5.
Myocardial stretch is a major determinant of ventricular hypertrophy, a physiological adaptational process that can be detrimental, leading to heart failure. Therapies aimed to limit the development of cardiac hypertrophy are thus currently evaluated. Among possible targets, the small G protein Ras and the epidermal growth factor receptor (EGFR) have been shown to be involved during stretch but their precise role in the activation of the major actors of hypertrophy, the mitogen activated protein kinases (MAPK) ERK and JNK is not well known. Our goal was thus was to evaluate precisely the activation pathways of ERK and JNK during stretch, with an emphasis on the role of the EGFR. For this purpose, neonatal rat cardiomyocytes in culture were stretched for different time durations. As measured by Western blot of their phosphorylated forms, ERK and JNK were activated by stretch. Ras inhibition decreased basal ERK phosphorylation but had no effect on stretch-induced ERK activation. Under basal conditions, EGFR activated ERK in a classical Ras-dependent manner. Upon stretch, EGFR transactivation activated ERK through both Ras-dependent and Ras-independent pathways. Interestingly, we also show that the Akt pathway participates in stretch-induced ERK activation with an involvement of EGFR. Unlike ERK, JNK activation is independent of either EGFR or PI3 kinase but dependent on other tyrosine kinases. In conclusion these data show different Ras-dependent and Ras-independent pathways in basal conditions and during stretch with a previously unrecognized role of Akt in the activation of ERK.  相似文献   

6.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

7.
Mechanotransduction is critical to the maintenance and growth of skeletal muscle, but the mechanism by which cellular deformations are converted to biochemical signals remains unclear. Among the earliest and most ubiquitous responses to mechanical stimulation is the phosphorylation and activation of mitogen-activated protein kinases, in particular ERK2. Caveolin-3 (CAV-3) binds ERK2 and its upstream activators in inactive states on the caveolae of resting muscle. Caveolae are deformed by stretch, and it was hypothesized that this deformation might disrupt the CAV-3-dependent inhibition of ERK2 to affect stretch-induced activation. Stretch-induced phosphorylation of ERK2 in myotubes was both amplitude and velocity dependent, consistent with a viscoelastic mechanism, such as deformation of caveolae. Chemical disruption of caveolae by cholesterol depletion increased ERK2 activation by up to 176%. Small interfering RNA oligomers were then used to knock down expression of CAV-3 in cultured myotubes before mechanical stimulation, with the expectation that reducing CAV-3 expression would eliminate the stretch-induced activation of ERK2. Knockdown reduced CAV-3 protein content by 55% but did not significantly alter the stretch-induced increase in ERK2 phosphorylation, suggesting that CAV-3 is not an essential element of the mechanotransduction pathway, although the limited extent of knockdown limits the strength of this conclusion.  相似文献   

8.
Intracellular polyamine synthesis is regulated by the enzyme ornithine decarboxylase (ODC), and its inhibition by -difluromethylornithine (DFMO), confers resistance to apoptosis. We have previously shown that DFMO leads to the inhibition of de novo polyamine synthesis, which in turn rapidly activates Src, STAT3 and NF-κB via integrin β3 in intestinal epithelial cells. One mechanism to explain these effects involves the activation of upstream growth factor receptors, such as the epidermal growth factor receptor (EGFR). We therefore hypothesized that EGFR phosphorylation regulates the early response to polyamine depletion. DFMO increased EGFR phosphorylation on tyrosine residues 1173 (pY1173) and 845 (pY845) within 5 min. Phosphorylation declined after 10 min and was prevented by the addition of exogenous putrescine to DFMO containing medium. Phosphorylation of EGFR was concomitant with the activation of ERK1/2. Pretreatment with either DFMO or EGF for 1 h protected cells from TNF-/CHX-induced apoptosis. Exogenous addition of polyamines prevented the protective effect of DFMO. In addition, inhibition of integrin β3 activity (with RGDS), Src activity (with PP2), or EGFR kinase activity (with AG1478), increased basal apoptosis and prevented protection conferred by either DFMO or EGF. Polyamine depletion failed to protect B82L fibroblasts lacking the EGFR (PRN) and PRN cells expressing either a kinase dead EGFR (K721A) or an EGFR (Y845F) mutant lacking the Src phosphorylation site. Conversely, expression of WT-EGFR (WT) restored the protective effect of polyamine depletion. Fibronectin activated the EGFR, Src, ERKs and protected cells from apoptosis. Taken together, our data indicate an essential role of EGFR kinase activity in MEK/ERK-mediated protection, which synergizes with integrin β3 leading to Src-mediated protective responses in polyamine depleted cells.  相似文献   

9.
Albumin transcytosis, a determinant of transendothelial permeability, is mediated by the release of caveolae from the plasma membrane. We addressed the role of Src phosphorylation of the GTPase dynamin-2 in the mechanism of caveolae release and albumin transport. Studies were made in microvascular endothelial cells in which the uptake of cholera toxin subunit B, a marker of caveolae, and (125)I-albumin was used to assess caveolae-mediated endocytosis. Albumin binding to the 60-kDa cell surface albumin-binding protein, gp60, induced Src activation (phosphorylation on Tyr(416)) within 1 min and resulted in Src-dependent tyrosine phosphorylation of dynamin-2, which increased its association with caveolin-1, the caveolae scaffold protein. Expression of kinase-defective Src mutant interfered with the association between dynamin-2, which caveolin-1 and prevented the uptake of albumin. Expression of non-Src-phosphorylatable dynamin (Y231F/Y597F) resulted in reduced association with caveolin-1, and in contrast to WT-dynamin-2, the mutant failed to translocate to the caveolin-rich membrane fraction. The Y231F/Y597F dynamin-2 mutant expression also resulted in impaired albumin and cholera toxin subunit B uptake and reduced transendothelial albumin transport. Thus, Src-mediated phosphorylation of dynamin-2 is an essential requirement for scission of caveolae and the resultant transendothelial transport of albumin.  相似文献   

10.
We have studied whether activation of epidermal growth factor receptor (EGFR) is involved in stretch-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation and protein synthesis in cultured rat vascular smooth muscle cells (VSMC). Cyclic stretch (1 Hz) induced a rapid (within 5 min) phosphorylation of ERK1/2, an effect that was time and strength dependent and inhibited by an EGFR kinase inhibitor (AG-1478) but not by a platelet-derived growth factor receptor kinase inhibitor (AG-1296). The stretch rapidly (within 2 min) induced tyrosine phosphorylation of several proteins, among which 180-kDa protein was shown to be EGFR as revealed by blockade with AG-1478 as well as immunoprecipitation with anti-EGFR antibody coupled with immunoblotting with anti-phosphotyrosine antibody. The stretch rapidly (within 2 min) induced association of tyrosine-phosphorylated EGFR with adaptor proteins (Shc/Grb2) as revealed by coprecipitation with glutathione-S-transferase-Grb2 fusion protein coupled with immunoblotting with anti-phosphotyrosine, anti-EGFR, and anti-Shc antibodies. Transfection of a dominant-negative mutant of H-Ras also inhibited stretch-induced ERK1/2 activation. Treatment with a stretch-activated ion channel blocker (Gd(3+)) and an intracellular Ca(2+) antagonist (TMB-8) inhibited stretch-induced phosphorylation of EGFR and ERK1/2. Treatment with AG-1478 and a mitogen-activated protein kinase kinase inhibitor (PD-98059), but not AG-1296, blocked [(3)H]leucine uptake stimulated by a high level of stretch. These data suggest that ERK1/2 activation by mechanical stretch requires Ca(2+)-sensitive EGFR activation mainly via stretch-activated ion channels, thereby leading to VSMC growth.  相似文献   

11.
Angiotensin II (Ang II) induces transactivation of the epidermal growth factor (EGF) receptor (EGF-R), which serves as a scaffold for various signaling molecules in vascular smooth muscle cells (VSMCs). Cholesterol and sphingomyelin-enriched lipid rafts are plasma membrane microdomains that concentrate various signaling molecules. Caveolae are specialized lipid rafts that are organized by the cholesterol-binding protein, caveolin, and have been shown to be associated with EGF-Rs. Angiotensin II stimulation promotes a rapid movement of AT(1) receptors to caveolae; however, their functional role in angiotensin II signaling has not been elucidated. Here we show that cholesterol depletion by beta-cyclodextrin disrupts caveolae structure and concomitantly inhibits tyrosine phosphorylation of the EGF-R and subsequent activation of protein kinase B (PKB)/Akt induced by angiotensin II. Similar inhibitory effects were obtained with other cholesterol-binding agents, filipin and nystatin. In contrast, EGF-R autophosphorylation and activation of Akt/PKB in response to EGF are not affected by cholesterol depletion. The early Ang II-induced upstream signaling events responsible for transactivation of the EGF-R, such as the intracellular Ca(2+) increase and c-Src activation, also remain intact. The EGF-R initially binds caveolin, but these two proteins rapidly dissociate following angiotensin II stimulation during the time when EGF-R transactivation is observed. The activated EGF-R is localized in focal adhesions together with tyrosine-phosphorylated caveolin. These findings suggest that 1) a scaffolding role of caveolin is essential for EGF-R transactivation by angiotensin II and 2) cholesterol-rich microdomains as well as focal adhesions are important signal-organizing compartments required for the spatial and temporal organization of angiotensin II signaling in VSMCs.  相似文献   

12.
Previous studies have shown that the transforming growth factor (TGF)β/Alk1/Smad1 signaling pathway is constitutively activated in a subset of systemic sclerosis (SSc) fibroblasts and this pathway is a critical regulator of CCN2 gene expression. Caveolin-1 (cav-1), an integral membrane protein and the main component of caveolae, has also been implicated in SSc pathogenesis. This study was undertaken to evaluate the role of caveolin-1 in Smad1 signaling and CCN2 expression in healthy and SSc dermal fibroblasts. We show that a significant subset of SSc dermal fibroblasts has up-regulated cav-1 expression in vitro, and that cav-1 up-regulation correlates with constitutive Smad1 phosphorylation. In addition, basal levels of phospho-Smad1 were down-regulated after inhibition of cav-1 in SSc dermal fibroblasts. Caveolin-1 formed a protein complex with Alk1 in dermal fibroblasts, and this association was enhanced by TGFβ. By using siRNA against cav-1 and adenoviral cav-1 overexpression we demonstrate that activation of Smad1 in response to TGFβ requires cav-1 and that cav-1 is sufficient for Smad-1 phosphorylation. We also show that cav-1 is a positive regulator of CCN2 gene expression, and that it is required for the basal and TGFβ-induced CCN2 levels. In conclusion, this study has revealed an important role of cav-1 in mediating TGFβ/Smad1 signaling and CCN2 gene expression in healthy and SSc dermal fibroblasts.  相似文献   

13.
14.
Thrombin is involved in abnormal proliferation of vascular smooth muscle cells (VSMCs) associated with pathogenic vascular remodeling. Thrombin stimulation results in extracellular signal-regulated kinase (ERK)1/2 activation through transactivation of the epidermal growth factor receptor (EGFR). Here, using specific antibodies and inhibitors, we investigated the thrombin-induced phosphorylation of Src family kinases, nonreceptor proline-rich tyrosine kinase (Pyk2), EGFR, and ERK1/2. Our results show that Src and Pyk2 are involved upstream of the EGFR transactivation that is required for ERK1/2 phosphorylation. The investigation of the role of intracellular calcium concentration ([Ca2+]i) and calcium mobilization with the Ca2+ chelator BAPTA and thapsigargin, respectively, indicated that thrombin- and thapsigargin-induced phosphorylation of the EGFR but not ERK1/2 is dependent on an increase in [Ca2+]i. Moreover, only after BAPTA-AM pretreatment was thrombin-induced activation of ERK1/2 partially preserved from the effects of EGFR and PKC inhibition but not Src family kinase inhibition. These results suggest that BAPTA, by preventing [Ca2+]i elevation, unmasks a new pathway of Src family kinase-dependent thrombin-stimulated ERK1/2 phosphorylation that is independent of EGFR and PKC activation.  相似文献   

15.
In previous studies, bradykinin (BK) has been shown to induce cell proliferation through BK B2 receptor (B2R) via p42/p44 MAPK in Statens Seruminstitut Rabbit Corneal Cells (SIRCs). In addition to this pathway, EGFR transactivation pathway has been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we further investigate whether these transactivation mechanisms participating in BK-induced cell proliferation in SIRCs. Using an immunofluorescence staining and RT-PCR, we initially characterize that SIRCs were corneal fibroblasts and predominantly expressed B2R by BK. Inhibition of p42/p44 MAPK by the inhibitors of Src, EGFR, and Akt or transfection with respective siRNAs prevents BK-induced DNA synthesis in SIRCs. The mechanisms underlying these responses were mediated through phosphorylation of Src and EGFR via the formation of Src/EGFR complex which was attenuated by PP1 and AG1478. Moreover, BK-induced p42/p44 MAPK and Akt activation was mediated through EGFR transactivation, which was diminished by the inhibitors of MMP-2/9 and heparin-binding EGF-like factor (HB-EGF). Finally, increased nuclear translocation of Akt and p42/p44 MAPK turns on early gene expression leading to cell proliferation. These results suggest that BK-induced cell proliferation is mediated through c-Src-dependent transactivation of EGFR via MMP2/9-dependent pro-HB-EGF shedding linking to activation of Akt and p42/p44 MAPK in corneal fibroblasts.  相似文献   

16.
Insulin is an essential hormone for cell growth and potentiates the mitogenic actions of multiple growth factors, including EGF. While potentiation has been shown to be mediated by the upregulation of the cyclin/CDK system, the upstream mechanisms of such synergy have not been elucidated. Our study has examined whether insulin could mediate synergy by enhancing early signaling events of the EGF receptor (EGFR). Tyrosine phosphorylation at the cell periphery of confluent Swiss 3T3 fibroblasts induced by EGF was potentiated by insulin within 2 min of stimulation. Insulin potentiation of EGF-mediated phosphorylation of the EGFR occurred 2 min after stimulation. EGFR transactivation by insulin was not observed. In addition, downstream mitogenic signaling events including ERK1/2 activation and Elk-1 phosphorylation were enhanced in response to insulin and EGF coadministration. This study shows mitogenic synergy between insulin and EGF can occur at the earliest signaling event, receptor phosphorylation, and independent of transactivation.  相似文献   

17.
Caveolae are abundant plasma membrane invaginations in airway smooth muscle that may function as preorganized signalosomes by sequestering and regulating proteins that control cell proliferation, including receptor tyrosine kinases (RTKs) and their signaling effectors. We previously demonstrated, however, that p42/p44 MAP kinase, a critical effector for cell proliferation, does not colocalize with RTKs in caveolae of quiescent airway myocytes. Therefore, we investigated the subcellular sites of growth factor-induced MAP kinase activation. In quiescent myocytes, though epidermal growth factor receptor (EGFR) was almost exclusively found in caveolae, p42/p44 MAP kinase, Grb2, and Raf-1 were absent from these membrane domains. EGF induced concomitant phosphorylation of caveolin-1 and p42/p44 MAP kinase; however, EGF did not promote the localization of p42/p44 MAP kinase, Grb2, or Raf-1 to caveolae. Interestingly, stimulation of muscarinic M(2) and M(3) receptors that were enriched in caveolae-deficient membranes also induced p42/p44 MAP kinase phosphorylation, but this occurred in the absence of caveolin-1 phosphorylation. This suggests that the localization of receptors to caveolae and interaction with caveolin-1 is not directly required for p42/p44 MAP kinase phosphorylation. Furthermore, we found that EGF exposure induced rapid translocation of EGFR from caveolae to caveolae-free membranes. EGFR trafficking coincided temporally with EGFR and p42/p44 MAP kinase phosphorylation. Collectively, this indicates that although caveolae sequester some receptors associated with p42/p44 MAP kinase activation, the site of its activation is associated with caveolae-free membrane domains. This reveals that directed trafficking of plasma membrane EGFR is an essential element of signal transduction leading to p42/p44 MAP kinase activation.  相似文献   

18.
Previous studies have shown that exposure of cells to Zn2+ ions induces Ras and MAPK activation through the EGF receptor (EGFR). To further determine the role of EGFR in Zn2+-induced signaling, mouse B82L fibroblasts expressing no detectable EGFR protein (B82L-par), wild type EGFR (B82L-wt), kinase-deficient EGFR (B82L-K721M), or COOH-truncated EGFR (B82L-c'958) were tested. Exposure to Zn2+ induced Ras activity in B82L-wt, B82L-K721M, and B82L-c'958 but not in B82L-par cells, indicating that the tyrosine kinase domain and the auto-phosphorylation sites of the EGFR were not required for Zn2+-induced Ras activation. Zn2+ induced Src activation in all B82L cell lines, including B82L-par, indicating that Src activation is independent of the presence of the EGFR. A Src kinase inhibitor blocked Zn2+-induced Ras activation in all the B82L cell lines capable of this response, suggesting the involvement of Src kinase in Zn2+-induced Ras activation via the EGFR. Zn2+ induced the association of the EGFR with Src and specifically increased the phosphorylation of EGFR at tyrosine 845 (Tyr-845), a known Src phosphorylation site. Stably transfected B82L cells with a point mutation of the EGFR at Tyr-845 (B82L-Y845F) exhibited only basal Ras activity following exposure to Zn2+. These data demonstrate that Src-dependent phosphorylation of the EGFR at Tyr-845 is required for EGFR transactivation and Zn2+-induced Ras activation.  相似文献   

19.
Gastrin-releasing peptide (GRP) is a mitogen for lung epithelial cells and initiates signaling through a G-protein-coupled receptor, gastrin-releasing peptide receptor (GRPR). Because GRPR transactivates the epidermal growth factor receptor (EGFR), we investigated induction by GRP of Akt, an EGFR-activated signaling pathway, and examined effects of GRP on viability of non-small cell lung carcinoma (NSCLC) cells exposed to the EGFR tyrosine kinase inhibitor gefitinib. GRP induced Akt activation primarily through c-Src-mediated transactivation of EGFR. Transfection of dominant-negative c-Src abolished GRP-induced EGFR and Akt activation. GRP induced release of amphiregulin, and pre-incubation with human amphiregulin neutralizing antibody eliminated GRP-induced Akt phosphorylation. Pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 completely blocked GRP-initiated Akt phosphorylation. These results suggest that GRP stimulates Akt activation primarily via c-Src activation, followed by extracellular release of the EGFR ligand amphiregulin, leading to the activation of EGFR and PI3K. Pretreatment of NSCLC cells with GRP resulted in an increase in the IC(50) of gefitinib of up to 9-fold; this protective effect was mimicked by the pretreatment of cells with amphiregulin and reversed by Akt or PI3K inhibition. GRP appears to rescue NSCLC cells exposed to gefitinib through release of amphiregulin and activation of the Akt pathway, suggesting GRPR and/or EGFR autocrine pathways in NSCLC cells may modulate therapeutic response to EGFR inhibitors.  相似文献   

20.
Many G protein coupled receptors (GPCRs) cause phosphorylation of MAP kinases through transactivation of the epidermal growth factor receptor (EGF-R), leading to increased cell survival and growth, motility, and migration. Phosphoinositide 3-kinase (PI3K) is one of the important cell survival signaling molecules activated by EGF-R stimulation. However, the extent to which EGF-R transactivation is essential for GPCR agonist-stimulated PI3K activation is not known. Here we examined the mechanism of PI3K activation that elicits GPCR-mediated ERK1/2 activation by pathways dependent and/or independent of EGF-R transactivation in specific cell types. Immortalized hypothalamic neurons (GT1-7 cells) express endogenous gonadotropin-releasing hormone receptors (GnRH-R) and their stimulation causes marked phosphorylation of ERK1/2 and Akt (Ser 473) through transactivation of the EGF-R and recruitment of PI3K. In C9 hepatocytes, agonist activation of AT1 angiotensin II (AT1-R), lysophosphatidic acid (LPA), and EGF receptors caused phosphorylation of Akt through activation of the EGF-R in a PI3K-dependent manner. However, ERK1/2 activation by these agonists in these cells was independent of PI3K activation. In contrast, agonist stimulation of HEK 293 cells stably expressing AT1-R caused ERK1/2 phosphorylation that was independent of EGF-R transactivation but required PI3K activation. LPA signaling in these cells showed partial and complete dependence on EGF-R and PI3K, respectively. These data indicate that GPCR-induced ERK1/2 phosphorylation is dependent or independent of PI3K in specific cell types, and that the involvement of PI3K during ERK1/2 activation is not dependent solely on agonist-induced transactivation of the EGF-R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号