首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of guanine nucleotides on binding of 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX), a highly selective A1 adenosine receptor antagonist, have been investigated in rat brain membranes and solubilized A1 receptors. GTP, which induces uncoupling of receptors from guanine nucleotide binding proteins, increased binding of [3H]DPCPX in a concentration-dependent manner. The rank order of potency for different guanine nucleotides for increasing [3H]DPCPX binding was the same as for guanine nucleotide-induced inhibition of agonist binding. Therefore, a role for a guanine nucleotide binding protein, e.g., Gi, in the regulation of antagonist binding is suggested. This was confirmed by inactivation of Gi by N-ethylmaleimide (NEM) treatment of membranes, which resulted in an increase in [3H]DPCPX binding similar to that seen with addition of GTP. Kinetic and equilibrium binding studies showed that the GTP- or NEM-induced increase in antagonist binding was not caused by an affinity change of A1 receptors for [3H]DPCPX but by an increased Bmax value. Guanine nucleotides had similar effects on membrane-bound and solubilized receptors, with the effects in the solubilized system being more pronounced. In the absence of GTP, when most receptors are in a high-affinity state for agonists, only a few receptors are labeled by [3H]DPCPX. It is suggested that [3H]DPCPX binding is inhibited when receptors are coupled to Gi. Therefore, uncoupling of A1 receptors from Gi by guanine nucleotides or by inactivation of Gi with NEM results in an increased antagonist binding.  相似文献   

2.
A human neuroblastoma cell line, IMR32, has been characterized as far as morphology, membrane receptors for neurotransmitters, and uptake and release of [3H]3,4-dihydroxyphenylethylamine ([3H]dopamine). These cells expressed at their surface both nicotinic and muscarinic cholinergic receptors, revealed by [125I]alpha-bungarotoxin and [3H]quinuclidinylbenzilate ([3H]QNB) binding, respectively. [125I]alpha-Bungarotoxin binding was efficiently inhibited by alpha-bungarotoxin, nicotine, carbachol, and d-tubocurarine. [3H]QNB binding was competitively inhibited by atropine, pirenzepine, and carbachol. Hexamethonium did not affect the binding of either ligand. In competition experiments with [3H]QNB, pirenzepine recognized only one binding site with "low affinity," and carbachol recognized two sites with different affinities. beta-adrenergic receptors were present in a very low amount, whereas alpha-adrenergic and dopaminergic receptors were not detectable. IMR32 cells had an imipramine-sensitive [3H]dopamine uptake, but carbachol, high levels of K+, the calcium ionophore A23187, and alpha-latrotoxin were not able to induce release of [3H]dopamine that had been taken up. The ultrastructural analysis showed that IMR32 cells contained very few dense-core vesicles, suggesting a low storage capacity for neurotransmitter. These cells could be an useful in vitro model for studying neurotransmitter receptors of the human CNS.  相似文献   

3.
Dopamine receptors in the central nervous system can be studied by measuring the specific binding of [3H]dopamine, [3H]haloperidol, d-[3H]LSD, [3H]dihydroergocryptine or [3H]apomorphine. The receptors are stereoselectively blocked by +)-butaclamol, a neuroleptic. All neuroleptics inhibit the specific binding of [3H]haloperidol in relation to their clinical potencies. The radioligand that desorbs most slowly from the receptor is [3H]apomorphine, thus making it a reliable ligand for dopamine receptors. Dopamine agonists that compete for [3H]apomorphine binding do so at concentrations that correlate with their potency in stimulating striatal adenylate cyclase. Structure-activity analysis, using [3H]apomorphine, confirms that the active dopamine-mimetic conformation is the beta rotamer of dopamine. Prolonged exposure in vitro of caudate homogenate to high concentrations of dopamine leads to increased binding of [3H]apomorphine or [3H]haloperidol, suggesting receptor "sensitization." Chronic haloperidol treatment of rats leads to an increased number of dopamine/neuroleptic receptors in the striatum, but a decrease in the pituitary.  相似文献   

4.
This report describes the uptake of L-[propyl-2,3-3H]dihydroalprenolol, a beta-adrenergic antagonist, by HeLa (human adenocarcinoma) cells. [3H]Dihydroalprenolol binds to sites of high capacity and low affinity in intact HeLa cells. The binding achieves equilibrium rapidly and is rapidly reversible. Bound [3H]dihydroalprenolol is displaceable by beta-adrenergic antagonists in a nonstereoselective fashion, but is not displaceable by isoproterenol, an adrenergic agonist. Phentolamine, an alpha-adrenergic antagonist, and chloroquine, a lysosomotropic amine, also compete for [3H]dihydroalprenolol binding sites. [3H]Dihydroalprenolol binding is inhibited by metabolic inhibitors, but not by cytoskeletal blocking agents. The binding is sensitive to extracellular pH (less binding at lower pH) and is temperature-sensitive (less binding at lower temperatures). The bound radioligand is rapidly reversed following hypotonic lysis of the cells. These [3H]dihydroalprenolol binding sites in intact HeLa cells therefore do not have the characteristics expected for beta-adrenergic receptors. Further studies showed that beta-adrenergic receptors could be detected in a HeLa membrane preparation using [125I]iodohydroxybenzylpindolol, and that chloroquine had very low affinity for these receptors. We conclude that [3H]dihydroalprenolol diffuses across the plasma membrane of intact HeLa cells and accumulates in acidic intracellular compartments.  相似文献   

5.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

6.
We have shown previously that unoccupied type I receptors for adrenal steroids in brain cytosol lose their capacity to bind [3H]aldosterone ([3H]ALDO) in a time- and temperature-dependent manner. Based on reports that sugars and polyvalent alcohols are capable of stabilizing a variety of globular proteins, we attempted in the present study to stabilize type I receptors by including polyhydric compounds in our brain cytosol preparations. However, contrary to expectations, adjusting cytosol to a 10% (g/dl) concentration of ethylene glycol, glycerol, erythritol, xylitol, ribitol, or sorbitol failed to stabilize these receptors at 0 degree C and in fact produced a slight reduction in [3H]ALDO binding capacity. The magnitude of this reduction was greater when cytosol was incubated for 2 h at 22 degrees C prior to incubation with [3H]ALDO. In contrast to these results, when brain cytosol was adjusted to a 10% (g/dl) concentration of the monohydric compound, ethanol, a significant increase in [3H]ALDO binding to type I receptors was found. Under identical conditions, methanol and propanol failed to have a significant effect on the binding capacity of these receptors. When cytosol was aged for 2 h at 22 degrees C, all three of these monohydric compounds produced a marked loss in the [3H]ALDO binding capacity of type I receptors. An investigation of various doses of ethanol at 0 degree C on the subsequent binding of [3H]ALDO yielded an inverse U-shaped curve with 10% ethanol producing the highest level of specific binding, as reflected by an increase in maximal binding in Scatchard plots, and 40% ethanol producing a complete loss in type I receptor binding capacity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Chemical modification of amino acid residues was used to probe the ligand recognition site of A1 adenosine receptors from rat brain membranes. The effect of treatment with group-specific reagents on agonist and antagonist radioligand binding was investigated. The histidine-specific reagent diethylpyrocarbonate (DEP) induced a loss of binding of the agonist R-N6-[3H] phenylisopropyladenosine ([3H]PIA), which could be prevented in part by agonists, but not by antagonists. DEP treatment induced also a loss of binding of the antagonist [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX). Antagonists protected A1 receptors from this inactivation while agonists did not. This result provided evidence for the existence of at least 2 different histidine residues involved in ligand binding. Consistent with a modification of the binding site, DEP did not alter the affinity of [3H]DPCPX, but reduced receptor number. From the selective protection of [3H] PIA and [3H]DPCPX binding from inactivation, it is concluded that agonists and antagonists occupy different domains at the binding site. Sulfhydryl modifying reagents did not influence antagonist binding, but inhibited agonist binding. This effect is explained by modification of the inhibitory guanine nucleotide binding protein. Pyridoxal 5-phosphate inactivated both [3H]PIA and [3H]DPCPX binding, but the receptors could not be protected from inactivation by ligands. Therefore, no amino group seems to be located at the ligand binding site. In addition, it was shown that no further amino acids with polar side chains are present. The absence of hydrophilic amino acids from the recognition site of the receptor apart from histidine suggests an explanation for the lack of hydrophilic ligands with high affinity for A1 receptors.  相似文献   

8.
TRH receptors have been solubilized from GH4C1 cells using the plant glycoside digitonin. Solubilized receptors retain the principal binding characteristics exhibited by the TRH receptor in intact pituitary cells and their membranes. The binding of the methylhistidyl derivative of TRH [( 3H]MeTRH) attained equilibrium within 2-3 h at 4 C, and it was reversible, dissociating with a t1/2 of 7 h. Analysis of [3H]MeTRH binding to soluble receptors at 4 C yielded a dissociation constant (Kd) of 3.8 nM and a total binding capacity (Bmax) of 3.9 pmol/mg protein. Peptides known to interact with non-TRH receptors on GH cells failed to interfere with the binding of [3H]MeTRH, indicating that the TRH binding was specific. Chlordiazepoxide, a competitive antagonist for TRH action in GH cells, inhibited TRH binding to soluble receptors with an IC50 of 11 microM. When [3H]MeTRH was bound to membranes and the membrane proteins were then solubilized, we found enhanced dissociation of the prebound [3H]MeTRH from its solubilized receptor by guanyl nucleotides. Maximal enhancement of [3H]MeTRH dissociation by 10 microM GTP gamma S occurred within about 45 min at 22 C. GTP gamma S, GTP, GDP beta S, and GDP were all effectors of [3H]MeTRH dissociation, exhibiting EC50s in the range of 14-450 nM. The rank order of potency of the tested nucleotides was GTP gamma S greater than GTP congruent to GDP beta S greater than GDP much greater than ATP gamma S greater than GMP. We conclude that TRH receptors have been solubilized from GH cells with digitonin and retain the binding characteristics of TRH receptors in intact pituitary cells. Furthermore, prebinding [3H]MeTRH to GH4C1 cell membranes results in the solubilization of a complex in which the TRH receptor is linked functionally to a GTP binding protein.  相似文献   

9.
The binding profile of [(3)H]BHDP ([(3)H]N-benzyl-N'-(2-hydroxy-3,4-dimethoxybenzyl)-piperazine) was evaluated. [(3)H]BHDP labelled a single class of binding sites with high affinity (K(d)=2-3 nM) in rat liver mitochondria and synaptic membranes. The pharmacological characterization of these sites using sigma reference compounds revealed that these sites are sigma receptors and, more particularly, sigma1 receptors. Indeed, BHDP inhibited [(3)H]pentazocine binding, a marker for sigma1 receptors, with high affinity in a competitive manner. BHDP is selective for sigma1 receptors since it did not show any relevant affinity for most of the other receptors, ion channels or transporters tested. Moreover, in an in vitro model of cellular hypoxia, BHDP prevented the fall in adenosine triphosphate (ATP) levels caused by 24 h hypoxia in cultured astrocytes. Taken together, these results demonstrate that [(3)H]BHDP is a potent and selective ligand for sigma1 receptors showing cytoprotective effects in astrocytes.  相似文献   

10.
The binding of medroxyprogesterone acetate (MPA) with cytosol androgen receptors from rat pituitary and hypothalamus was studied. The pituitary and hypothalamic cytosol androgen receptors from adult castrated female rats were in vitro labeled using 3H natural (testosterone (T) and 5 alpha-dihydrotestosterone (DHT] and [3H]synthetic (methyltrienolone) androgens as radioligands. The [3H]androgen-receptor complexes sedimented with a coefficient of 8S in linear sucrose gradients. When incubated with an excess of radioinert MPA, specific binding was abolished indicating interaction of MPA with androgen receptors. Furthermore specific [3H]MPA-androgen cytosol receptor complexes could be identified in these neuroendocrine tissues when a post-gradient receptor labeling technique was used in the absence or presence of radioinert MPA, DHT, and triamcinolone acetonide. A study of binding kinetics disclosed that the equilibrium dissociation constant and saturation binding capacity for the MPA binder, were similar to those exhibited by DHT binding to androgen receptors in both studied tissues under identical experimental conditions. The overall results were interpreted as demonstrating that MPA interacts with cytosol steroid receptors other than those of progesterone in the rat hypothalamus and anterior pituitary. The data are consistent with MPA binding to androgen receptors.  相似文献   

11.
A monoclonal anti-idiotypic antibody (H10E4C9F) that interacts with the aldosterone receptors was generated using an auto-anti-idiotypic approach by immunizing a mouse with a 3-O-carboxymethyloxime of aldosterone coupled to bovine serum albumin. This antibody, an IgG1, displayed internal image properties of aldosterone and was considered as an Ab2 beta according to the following criteria. (i) H10E bound to Fab fragments of affinity-purified rabbit anti-aldosterone antibody that had high affinity for aldosterone (Kd = 5 x 10(-10) M). Binding was inhibited by aldosterone but not by estradiol. (ii) H10E inhibited [3H]aldosterone binding to rabbit polyclonal antibodies and also to murine monoclonal antibodies raised during the same fusion. Inhibition was concentration-dependent. These results are consistent with the antibody recognizing an interspecies cross-reacting epitope involved in the aldosterone combining site. (iii) The antibody could be affinity-purified on an immobilized monoclonal anti-aldosterone antibody. (iv) It inhibited [3H]aldosterone binding to rabbit kidney cytosolic aldosterone receptors but had no effect on glucocorticoid receptors. Additional evidence for the interaction of H10E with aldosterone receptors was provided by glycerol gradients analyses: the anti-idiotypic antibody displaced [3H]aldosterone and [3H]corticosterone from the native untransformed 9 S aldosterone receptor in the presence of RU 26988, a specific marker of glucocorticoid receptors. All of the above are consistent with the first successful production of a monoclonal antibody that mimics aldosterone and interacts specifically with the steroid binding domain of aldosterone receptors.  相似文献   

12.
Receptors for the specific muscarinic radioligand [3H]quinuclidinyl benzilate ([3H]QNB) were solubilized by digitonin from a particulate preparation of bovine brain without significant alteration in binding affinities for muscarinic antagonists. Electron microscopy and sucrose density gradient sedimentation analysis confirmed the solubility of these receptors in aqueous solutions of digitonin. Equilibrium and kinetic studies of [3H]QNB binding to solubilized receptors indicated that binding was stereoselective and was blocked by muscarinic compounds. These tests permit tentative identification of digitonin-solubilized [3H]QNB binding sites as muscarinic acetylcholine receptors. Digitonin-solubilized receptors were homogeneous with respect to sedimentation behavior and binding affinities for agonist and antagonist drugs, unlike membrane-bound receptors. Enzyme digestion studies and treatment with group-specific reagents indicated that muscarinic receptors are proteins whose binding activity could be disrupted by reduction with dithiothreitol or by modification of sulfhydryl residues.  相似文献   

13.
Ethyl beta-carboline-3-carboxylate has recently been isolated from human urine and it was proposed that derivatives of this compound might be related to an endogenous ligand for benzodiazepine receptors. In the present study we investigated high-affinity binding of [3H]propyl beta-carboline-3-carboxylate ([3H]PrCC) to rat brain membranes. [3H]PrCC binds specifically and with high affinity (half-maximal binding at ca. 1nM) to rat brain membranes. The regional and subcellular distributions of specific [3H]PrCC binding are similar, but not identical, to the distributions of [3H]flunitrazepam or [3H]-diazepam binding. The total numbers of binding sites labelled by [3H]PrCC and [3H]flunitrazepam in rat cerebellum are closely similar, and both ligands bind to cerebellar membranes in a mutually exclusive way. The pharmacological selectivity of [3H]PrCC and [3H]diazepam binding is almost identical. Binding of [3H]PrCC like binding of [3H]diazepam, can be increased in vitro by muscimol, GABA and SQ 20.009. Although subtle differences in binding characteristics were observed, these results indicate that [3H]PrCC and benzodiazepines bind to a common recognition site on benzodiazepine receptors.  相似文献   

14.
The regulation by monovalent cations, guanine nucleotides, and bacterial toxins of [3H]FMLP binding to rabbit neutrophil plasma membranes was studied by using dissociation techniques to identify regulatory effects on separate receptor states. Under conditions of low receptor occupancy (1 nM [3H]FMLP) and in both Na+ and K+ buffers, dissociation is heterogenous, displaying two distinct, statistically significant off rates. [3H]FMLP binding was enhanced by substituting other monovalent cations for Na+. In particular, enhanced binding in the presence of K+ relative to Na+ was caused by additional binding to both rapidly and slowly dissociating receptors. Three receptor dissociation rates, two of which appear to correspond to the two affinity states detected in equilibrium binding studies, were defined by specific GTP and pertussis toxin (PT) treatments. Neither GTP, nor PT or cholera toxins (CT) had an effect on the rate of dissociation of [3H]FMLP from the rapidly dissociating form of the receptor. Both 100 microM GTP and PT treatments increased the percentage of rapidly dissociating receptors, correspondingly decreasing the percentage of slowly dissociating receptors. The observed changes in the rapidly and slowly dissociating receptors after GTP, PT, and CT treatments were caused by an absolute decrease in the amount of binding to the slowly dissociating receptors. However, complete inhibition of slowly dissociating receptor binding by GTP, PT, or both was never observed. Both GTP and PT treatments, but not CT treatment, increased by two-fold the rate of dissociation of 1 nM [3H]FMLP from the slowly dissociating form of the receptor, resulting in a third dissociation rate. Thus, slowly dissociating receptors comprise two different receptor states, a G protein-associated guanine nucleotide and PT-sensitive state and a guanine nucleotide-insensitive state.  相似文献   

15.
Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of mu and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of [3H]-D-Ala2-D-Leu5-enkephalin (DADLE) in the presence of 10(-5) M D-Pro4-morphiceptin (to block the mu receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of [3H]-dihydromorphine, together with the higher potency of morphine analogues to displace [3H]-naloxone binding established the presence of mu sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of [3H]-DADLE binding. The observed heterogeneity of opioid receptors in cultured SH-SY5Y cells would serve as an excellent model for the biochemical and pharmacological characterization of brain opiate receptors.  相似文献   

16.
In vivo regulation of the serotonin-2 receptor in rat brain   总被引:1,自引:0,他引:1  
Serotonin-2 (5-HT-2) receptors in brain were measured using [3H]ketanserin. We examined the effects of amitriptyline, an antidepressant drug, of electroconvulsive shock (ECS) and of drug-induced alterations in presynaptic 5-HT function on [3H]ketanserin binding to 5-HT-2 receptors in rat brain. The importance of intact 5-HT axons to the up-regulation of 5-HT-2 receptors by ECS was also investigated, and an attempt was made to relate the ECS-induced increase in this receptor to changes in 5-HT presynaptic mechanisms. Twelve days of ECS increased the number of 5-HT-2 receptors in frontal cortex. Neither the IC50 nor the Hill coefficient of 5-HT in competing for [3H]ketanserin binding sites was altered by ECS. Repeated injections of amitriptyline reduced the number of 5-HT-2 receptors in frontal cortex. Reserpine, administered daily for 12 days, caused a significant increase in 5-HT-2 receptors, but neither daily injections of p-chlorophenylalanine (PCPA) nor lesions of 5-HT axons with 5,7-dihydroxytryptamine (5,7-DHT) affected 5-HT-2 receptors. However, regulation of 5-HT-2 receptors by ECS was dependent on intact 5-HT axons since ECS could not increase the number of 5-HT-2 receptors in rats previously lesioned with 5,7-DHT. Repeated ECS, however, does not appear to affect either the high-affinity uptake of [3H]5-HT or [3H]imipramine binding, two presynaptic markers of 5-HT neuronal function. 5-HT-2 receptors appear to be under complex control. ECS or drug treatments such as reserpine or amitriptyline, which affect several monoamine neurotransmission systems including 5-HT, can alter 5-HT-2 receptors. While depleting 5-HT alone (5,7-DHT or PCPA) does not alter [3H]ketanserin binding to 5-HT-2 receptors, intact 5-HT axons are necessary for the adaptive up-regulation of the receptor following ECS.  相似文献   

17.
Dopamine D4-like binding sites are abundant in human cerebral cortex as detected by [3H]nemonapride. The extremely low density of D4 mRNA in human cerebral cortex is inconsistent with the high amount of D4-like binding sites. To investigate the nature of the D4-like receptors, [3H]nemonapride binding sites in the nonhuman primate cerebral cortex were characterized. Although [3H]nemonapride binding sites were D4-like, displaceable by clozapine but not raclopride, [3H]nemonapride binding was not displaced by selective D4 antagonists but was displaced by the selective 5-HT2A antagonist MDL100907. Using [3H]ketanserin as a 5-HT2A ligand, nemonapride showed high affinity for monkey (Ki = 10.4 nM) and cloned human (Ki = 9.4 nM) 5-HT2A receptors, while its affinity for rat receptors was lower (Ki = 140 nM). The present study demonstrates that cerebral cortical D4-like binding sites labeled by [3H]nemonapride in nonhuman primates consist of a very small portion of D4, but a substantial portion of 5-HT2A receptors. The unexpectedly high affinity of nemonapride for primate 5-HT2A receptor suggests reconsidering previous data from other studies using [3H]nemonapride, particularly those on D4-like receptors.  相似文献   

18.
Studies outlined here compare the properties of mineralocorticoid (Type I) and glucocorticoid (Type II) receptors in cytosol from adrenalectomized mouse brain. Pretreating cytosol with dextran-coated charcoal (DCC) produced a 4.7-fold increase in the subsequent macromolecular binding of the mineralocorticoid, [3H]aldosterone (20 nM ALDO, in the presence of a 50-fold molar excess of the highly specific synthetic glucocorticoid, RU 26988), whereas it produced a 55% decrease in the binding of the glucocorticoid, [3H]triamcinolone acetonide (20 nM TA). Scatchard analyses revealed that DCC pretreatment had no effect on the affinity or maximal binding of Type I receptors for [3H]ALDO (in the presence of a 0-, 50- or 500-fold excess of RU 26988), whereas it produced a 3- to 6-fold increase in the Kd, and an 8-43% decrease in the maximal binding, of Type II receptors for [3H]TA and [3H]dexamethasone. Optimal stability of unoccupied Type I receptors at 0 degree C was found to be achieved in buffers containing glycerol, but lacking molybdate. Although the addition of molybdate was found to reduce the loss in Type I receptor binding observed after incubating unlabelled cytosol at 12 or 22 degrees C, this stabilization was accompanied by a concentration-dependent reduction in the binding of [3H]ALDO at 0 degree C. Scatchard analyses showed that this reduction was due to a shift in the maximal binding, and not the affinity, of the Type I receptors for [3H]ALDO. The presence or absence of dithiothreitol in cytosol appeared to have little effect on the stability of Type I receptors. In contrast to our finding for Type I receptors, it was possible to stabilize the binding capacity of unoccupied Type II receptors, even after 2-4 h at 12 or 22 degrees C, if the glycerol containing buffers were supplemented with both molybdate and dithiothreitol. In summary, these results indicate distinct chemical differences between Type I and Type II receptors for adrenal steroids.  相似文献   

19.
[3H]PK 11195 binding to peripheral type benzodiazepine binding sites in kidney membranes is inhibited by the histidine blocking agent diethylpyrocarbonate. This reagent irreversibly decreases the Bmax for [3H]PK 11195 without affecting the affinity. By contrast binding of [3H]RO5-4864 is not affected by diethylpyrocarbonate treatment. However RO5-4864 can protect in a concentration dependent manner the [3H]PK 11195 binding site from diethylpyrocarbonate whereas clonazepam and RO15-1788 are not active. These results suggest that PK 11195 and RO5-4864 interact with different conformational states of the receptors that RO5-4864. This is in agreement with our previous hypothesis that PK 11195 is an antagonist and RO5-4864 an agonist at the "peripheral type" benzodiazepine receptors.  相似文献   

20.
Abstract

Gallamine and d-tubocurarine inhibited (3H)N-methylscopolamine ((3H)NMS) binding to rat cardiac muscarinic receptors with I50 values of 0.7 μM and 22 μM, respectively. They decreased the association and dissociation rates of the two ligands (3H)NMS and (3H)Oxotremorine M ((3H)Oxo-M).

Gallamine interaction with muscarinic receptors was markedly inhibited by (3H)NMS and (3H)Oxo-M binding to the receptors. We were unable to demonstrate (3H)NMS or (3H)Oxo-M binding to the muscarinic receptor-gallamine complex.

By contrast, d-tubocurarine interaction with rat cardiac muscarinic receptors was facilitated by (3H)Oxo-M binding and only slightly inhibited by (3H)NMS binding to muscarinic binding sites. Furthermore, (3H)NMS and (3H)Oxo-M bound to the receptor-d-tubocurarine complex, indicating that the latter drug interacted with an allosteric site on cardiac muscarinic receptors but did not recognize the muscarinic binding site (at concentrations below 1 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号