首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Canada bluejoint grass [Calamagrostis canadensis (Michx.) Beauv., referred to as bluejoint below] is a competitive understory species widely distributed in the boreal region in North America and builds up a thick litter layer that alters the soil surface microclimate in heavily infested sites. This study examined the effects of understory removal, N fertilization, and litter layer removal on litter decomposition, soil microbial biomass N (MBN), and net N mineralization and nitrification rates in LFH (the sum of organic horizons of litter, partially decomposed litter and humus on the soil surface) and mineral soil (0–10 cm) in a 13-year-old white spruce [Picea glauca (Moench.) Voss] plantation infested with bluejoint in Alberta, Canada. Removal of the understory vegetation and the litter layer together significantly increased soil temperature at 10 cm below the mineral soil surface by 1.7 and 1.3°C in summer 2003 and 2004, respectively, resulting in increased net N mineralization (by 1.09 and 0.14 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004) and net nitrification rates (by 0.10 and 0.20 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004). When the understory vegetation was intact, nitrification might have been limited by NH4 + availability due to competition for N from bluejoint and other understory species. Litter layer removal increased litter decomposition rate (percentage mass loss per month) from 2.6 to 3.0% after 15 months of incubation. Nitrogen fertilization did not show consistent effects on soil MBN, but increased net N mineralization and nitrification rates as well as available N concentrations in the soil. Clearly, understory removal combined with N fertilization was most effective in increasing rates of litter decomposition, net N mineralization and nitrification, and soil N availability. The management of understory vegetation dominated by bluejoint in the boreal region should consider the strong effects of understory competition and the accumulated litter layer on soil N cycling and the implications for forest management.  相似文献   

2.
Databases on effects of chronic low-LET radiation exposure were analyzed by non-parametric statistical methods, to estimate the threshold dose rates above which radiation effects can be expected in vertebrate organisms. Data were grouped under three umbrella endpoints: effects on morbidity, reproduction, and life shortening. The data sets were compiled on a simple ‘yes’ or ‘no’ basis. Each data set included dose rates at which effects were reported without further details about the size or peculiarity of the effects. In total, the data sets include 84 values for endpoint “morbidity”, 77 values for reproduction, and 41 values for life shortening. The dose rates in each set were ranked from low to higher values. The threshold TDR5 for radiation effects of a given umbrella type was estimated as a dose rate below which only a small percentage (5%) of data reported statistically significant radiation effects. The statistical treatment of the data sets was performed using non-parametric order statistics, and the bootstrap method. The resulting thresholds estimated by the order statistics are for morbidity effects 8.1 × 10−4 Gy day−1 (2.0 × 10−4–1.0 × 10−3), reproduction effects 6.0 × 10−4 Gy day−1 (4.0 × 10−4–1.5 × 10−3), and life shortening 3.0 × 10−3 Gy day−1 (1.0 × 10−3–6.0 × 10−3), respectively. The bootstrap method gave slightly lower values: 2.1 × 10−4 Gy day−1 (1.4 × 10−4–3.2 × 10−4) (morbidity), 4.1 × 10−4 Gy day−1 (3.0 × 10−4–5.7 × 10−4) (reproduction), and 1.1 × 10−3 Gy day−1 (7.9 × 10−4–1.3 × 10−3) (life shortening), respectively. The generic threshold dose rate (based on all umbrella types of effects) was estimated at 1.0 × 10−3 Gy day−1.  相似文献   

3.
The response of decomposition of litter for the dominant tree species in disturbed (pine), rehabilitated (pine and broadleaf mixed) and mature (monsoon evergreen broadleaf) forests in subtropical China to simulated N deposition was studied to address the following hypothesis: (1) litter decomposition is faster in mature forest (high soil N availability) than in rehabilitated/disturbed forests (low soil N availability); (2) litter decomposition is stimulated by N addition in rehabilitated and disturbed forests due to their low soil N availability; (3) N addition has little effect on litter decomposition in mature forest due to its high soil N availability. The litterbag method (a total of 2880 litterbags) and N treatments: Control-no N addition, Low-N: −5 g N m−2 y−1, Medium-N: −10 g N m−2 y−1, and High-N: −15 g N m−2 y−1, were employed to evaluate decomposition. Results indicated that mature forest, which has likely been N saturated due to both long-term high N deposition in the region and the age of the ecosystem, had the highest litter decomposition rate, and exhibited no significant positive and even some negative response to nitrogen additions. However, both disturbed and rehabilitated forests, which are still N limited due to previous land use history, exhibited slower litter decomposition rates with significant positive effects from nitrogen additions. These results suggest that litter decomposition and its responses to N addition in subtropical forests of China vary depending on the nitrogen status of the ecosystem.  相似文献   

4.
In floating soils, organic matter accumulation is the result of the imbalance between decomposition rate and macrophytes’ production, and it can limit nutrient availability. In this study, we determined the percentage of litter that is added to the floating soil in one year and the nitrogen dynamics of Rhynchospora asperula (Nees) Steud (Cyperaceae), an abundant species in Esteros del Iberá, a South American wetland with extended areas of floating soils. According to the decomposition rate determined (k = 0.0032 day−1), the annual percentage of mass lost was 69%. Conditions of the floating soil were simulated in a 146-day field experiment. The results show that the decomposition rate was higher when the litter was in water contact, and the mass loss in the field sampling at the beginning of the decomposition was similar to that of the treatments that simulated this condition. The nitrogen concentration in the aboveground biomass was almost constant, and the results indicate that there was translocation from the senescent leaves, but not a preferential nitrogen translocation from the rhizomes and roots. During summer the maximum biomass and the low nitrogen concentration in the floating soil coincide, but the nitrogen intake by the aboveground biomass was only 4% of the total nitrogen content of the floating soil. Nitrogen concentration in the litter increased and, though immobilization cannot be ruled out, there was net mineralization. The nitrogen mineralized in the first decomposition year was 30% of the nitrogen added to aboveground biomass during the study period.  相似文献   

5.
Studies of the effects of precipitation on litter decomposition and nitrogen mineralization in arid and semiarid environments have demonstrated contradictory results. We conducted a manipulative experiment with rainout shelters in the semiarid Patagonian steppe, aimed at assessing the direct effects of water availability on litter decomposition and net nitrogen mineralization while isolating the indirect effects. We created four levels of precipitation input: control and three levels (30, 55 and 80%) of precipitation interception and we examined litter decomposition and nutrient release of a dominant grass species, Stipa speciosa, inorganic soil nitrogen, and in situ net nitrogen mineralization over two consecutive years. Litter decomposition rates (k, year−1) varied significantly (P < 0.001) among precipitation interception treatments and were positively correlated with incoming annual precipitation (APPT, mm/year) (k = 0.0007 × APPT + 0.137). In contrast, net N mineralization was not correlated with incoming precipitation. Soil NO3 significantly decreased with increasing precipitation input, whereas soil NH4+ concentration did not differ among precipitation interception treatments. Controls of water input on litter decomposition appear to be different from controls on N mineralization in the semiarid Patagonian steppe. We suggest that although water availability affects both the mineralization of C and N, it differentially affects the movement and fate of the inorganic products. A consequence of the accumulation of inorganic N during dry episodes is that periods of maximum water and soil nutrient availability may occur at different times. This asynchrony in the availability of N and water in the soil may explain the observed lags in the response of primary production to increases in water availability.  相似文献   

6.
We determined the impact of the invasive herb, Tradescantia fluminensis Vell., on litter decomposition and nutrient availability in a remnant of New Zealand lowland podocarp–broadleaf forest. Using litter bags, we found that litter beneath mats of Tradescantia decomposed at almost twice the rate of litter placed outside the mat. Values of k (decomposition quotient) were 9.44±0.42 yrs for litter placed beneath Tradescantia and 5.42±0.42 yrs for litter placed in native, non-Tradescantia plots. The impact of Tradescantia on decomposition was evident through the smaller forest floor mass in Tradescantia plots (2.65±1.05 t ha−1) compared with non-Tradescantia plots (5.05±1.05 t ha−1), despite similar quantities of annual leaf litterfall into Tradescantia plots (6.85±0.85 t ha−1 yr−1) and non-Tradescantia plots (7.45±1.05 t ha−1 yr−1). Moreover, there was increased plant nitrate available, as captured on resin bags, in Tradescantia plots (25.77 ± 8.32 cmol(−)/kg resin) compared with non-Tradescantia plots (9.55±3.72 cmol(−)/kg resin). Finally, the annual nutrient uptake by Tradescantia represented a large proportion of nutrients in litterfall (41% N, 61% P, 23% Ca, 46% Mg and 83% K), exceeded the nutrient content of the forest floor (except Ca), but was a small proportion of the topsoil nutrient pools. Taken together, our results show that Tradescantia increases litter decomposition and alters nutrient availability, effects that could influence the long-term viability of the majority of podocarp–broadleaf forest remnants affected with Tradescantia in New Zealand. These impacts are likely mostly due to Tradescantia's vegetation structure (i.e., tall, dense mats) and associated microclimate, compared with native ground covers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The effects of simulated N deposition on changes in mass, C, N and P of decomposing pine (Pinus massoniana) needles in a disturbed and a rehabilitated forest in tropical China were studied during a 24-month period. The objective of the study was to test the hypothesis that litter decomposition in a disturbed forest is more sensitive to N deposition rate than litter decomposition in a rehabilitated forest due to the relatively low nutrient status in the former as a result of constant human disturbance (harvesting understory and litter). The litterbag method and N treatments (control, no N addition; low-N, 5 g N m−2 year−1; medium-N, 10 g N m−2 year−1) were employed to evaluate decomposition. The results revealed that N addition increased (positive effect) mass loss rate and C release rate but suppressed (negative effect) the release rate of N and P from decomposing needles in both disturbed and rehabilitated forests. The enhanced needle decomposition rate by N addition was significantly related to the reduction in the C/N ratio in decomposing needles. However, N availability is not the sole factor limiting needle decomposition in both disturbed and rehabilitated forests. The positive effect was more sensitive to the N addition rate in the rehabilitated forest than in the disturbed forest, however the reverse was true for the negative effect. These results suggest that nutrient status could be one of the important factors in controlling the response of litter decomposition and its nutrient release to elevated N deposition in reforested ecosystems in the study region.  相似文献   

8.
This study monitored deposition and decomposition of cattle dung in a grazed young Chamaecyparis obtusa (an evergreen conifer) plantation in southwestern Japan, as a part of exploring the impacts of livestock in the forest grazing system. Animals defecated 10–19 times hd−1 day−1, producing feces of 2.2–3.5 kg DM and 33–73 g N per animal per day. The DM and N concentrations of feces ranged from 157–207 g DM kg−1 and 14.8−23.1 g (kg DM)−1, respectively. Occurrence of defecation was spatially heterogeneous, with feces being concentrated mainly on areas for resting (forest roads, ridges and valleys) and moving (forest roads and along fence lines). Decomposition of dung pats was considerably slow, showing the rates of 1.37–3.05 mg DM (g DM)−1 day−1 as DM loss. Decomposition was further slower on the basis of N release, 0.51–1.63 mg N (g N)−1 day−1, resulting in steadily increased N concentrations of dung pats with time after deposition. The results show that introduction of livestock into a forest (i.e., forest grazing) may limit nutrient availability to plants, by redistributing nutrients into areas with no vegetation (bare land and streams) and by establishing a large N pool as feces due to an imbalance between deposition and slow release, though further studies are necessary for investigating the occurrence of slow dung decomposition in other forest situations.  相似文献   

9.
From 1996 to 2002, we measured litterfall, standing litter crop, and litter turnover rates in scrub, basin, fringe and riverine forests in two contrasting mangrove ecosystems: a carbonate-dominated system in the Southeastern Everglades and a terrigenous-dominated system in Laguna de Terminos (LT), Mexico. We hypothesized that litter dynamics is driven by latitude, geomorphology, hydrology, soil fertility and soil salinity stress. There were significant temporal patterns in LT with litterfall rates higher during the rainy season (2.4 g m−2 day−1) than during the dry season (1.8 g m−2 day−1). Total annual litterfall was significantly higher in the riverine forest (12.8 Mg ha−2 year−1) than in the fringe and basin forests (9.7 and 5.2 Mg ha−2 year−1, respectively). In Southeastern Everglades, total annual litterfall was also significantly higher during the rainy season than during the dry season. Spatially, the scrub forest had the lowest annual litterfall (2.5 Mg ha−2 year−1), while the fringe and basin had the highest (9.1 and 6.5 Mg ha−2 year−1, respectively). In LT, annual standing litter crop was 3.3 Mg ha−1 in the fringe and 2.2 Mg ha−1 in the basin. Litter turnover rates were significantly higher in the fringe mangrove forest (4.1 year−1) relative to the basin forests (2.2 year−1). At Southeastern Everglades there were significant differences in annual standing litter crop: 1.9, 3.3 and 4.5 Mg ha−1 at scrub, basin and fringe mangrove sites, respectively. Furthermore, turnover rates were similar at both basin and fringe mangrove types (2.1 and 2.0 year−1, respectively) but significantly higher than scrub mangrove forest (1.3 year−1). These findings suggest that litter export is important in regulating litter turnover rates in frequently flooded riverine and fringe forests, while in infrequently flooded basin forests, in situ litter decomposition controls litter turnover rates.  相似文献   

10.
The influence of stand age (5, 10, 15, 20, 30 and 40 years) on the decomposition of litter fractions, nutrient and energy release of mixtures of N2-fixing alder (Alnus nepalensis) and non-N2-fixing large cardamom (Amomum subulatum) systems was compared. Seasonal decomposition rates were distinct with the highest rate in the first 6 months followed by subsequent seasons. The decomposition rate was substantially high in younger stands (10- to 15-years) and declined in the older stands. Heat sink from the stand floor litter increased from 171 × 106 kJ year−1 in 5 years to 299 × 106 kJ year−1 at 15 years and then considerably decreased with advancing age. However, energy and nutrient releases were slow at a high initial lignin-to-initial N ratio and C-to-N ratio, and there was an inverse relationship between the k-value of ash-free-mass and N expressed as a function of the C-to-N ratio. Quantities of nutrient release and energy loss per unit area in 24 months of decomposition were highest in 15 years and subsequently they lowered with advancing age. Nutrient loss indicated approximately uniform absolute and relative rates. Absolute energy consistently decreased by 81–88% in 24 months. Ash-free mass of decomposing litter remaining at different retrieval dates was associated with a narrowing of the C-to-N ratio. The relative loss rate of ash-free mass, nutrients and energy content was strongly related to the C-to-N ratio, litter temperature and litter moisture. The influence of Alnus in the younger stands on nutrient and energy releases were rapid, indicating accelerated nutrient cycling and energy dynamics. The intensity of the processes was highly phenomenal and considerably high in younger stands up to 20 years. Thus, an appropriate management cycle of the Alnus-cardamom system for sustainability is 15–20 years.  相似文献   

11.
Purple Loosestrife is rapidly displacing native vegetation in North American wetlands. Associated changes in wetland plant communities are well understood. Effects of Loosestrife invasion on nutrient cycling and decomposition rates in affected wetlands are unknown, though potentially of significance to wetland function. We used litter bag methods to quantify decomposition rates and phosphorus concentrations of purple Loosestrife (Lythrum salicaria) and native cattails (Typha spp.) in fourteen Minnesota wetlands. A 170-day study that began in autumn modeled decomposition of Loosestrife leaves. Loosestrife stems andTypha shoots that had overwintered and fragmented were measured in a 280- day study that began in spring. In general, Loosestrife leaves decomposed most rapidly of the three;Typha shoots decomposed faster than Loosestrife stems. Significant decay coefficients (k-values) were determined by F-testing single exponential model regressions of different vegetation types in the fourteen wetlands. Significant decay coefficients were:k = 2.5 × 10−3 and 4.32 × 10−3 for all Loosestrife leaves (170 d);k = 7.2 × 10−4 and 1.11 × 10−3 for overwintered Loosestrife stems (280-d) andk = 7.9 × 10−4, 1.42 × 10−3 and 2.24 × 10−3 for overwinteredTypha shoots (280-d). Phosphorus concentrations of plant tissue showed an initial leaching followed by stabilization or increase probably associated with microbial growth. Loosestrife leaves had twice the phosphorus concentration of Loosestrife stems andTypha shoots. Our results indicate that conversion of wetland vegetation from cattails to Loosestrife may result in significant change in wetland function by altering timing of litter input and downstream phosphorus loads. Conversion of a riverine, flow- through wetland fromTypha to Loosestrife may effectively accelerate eutrophication of downstream water bodies. Impacts of Loosestrife invasion must be considered when wetlands are managed for wildlife or for improvement of downstream water quality.  相似文献   

12.
This paper presents an integrated analysis of organic carbon (C) pools in soils and vegetation, within-ecosystem fluxes and net ecosystem exchange (NEE) in three 40-year old Norway spruce stands along a north-south climatic gradient in Sweden, measured 2001–2004. A process-orientated ecosystem model (CoupModel), previously parameterised on a regional dataset, was used for the analysis. Pools of soil organic carbon (SOC) and tree growth rates were highest at the southernmost site (1.6 and 2.0-fold, respectively). Tree litter production (litterfall and root litter) was also highest in the south, with about half coming from fine roots (<1 mm) at all sites. However, when the litter input from the forest floor vegetation was included, the difference in total litter input rate between the sites almost disappeared (190–233 g C m−2 year−1). We propose that a higher N deposition and N availability in the south result in a slower turnover of soil organic matter than in the north. This effect seems to overshadow the effect of temperature. At the southern site, 19% of the total litter input to the O horizon was leached to the mineral soil as dissolved organic carbon, while at the two northern sites the corresponding figure was approx. 9%. The CoupModel accurately described general C cycling behaviour in these ecosystems, reproducing the differences between north and south. The simulated changes in SOC pools during the measurement period were small, ranging from −8 g C m−2 year−1 in the north to +9 g C m−2 year−1 in the south. In contrast, NEE and tree growth measurements at the northernmost site suggest that the soil lost about 90 g C m−2 year−1. An erratum to this article can be found at  相似文献   

13.
The numbers, biomass, and production of bacterioplankton were determined in the Russian Sector of the Gdansk Basin (Baltic Sea) in 2007–2009. Significant spatial and temporal variations were determined. During the year, bacterial activity increased with increasing water temperature and higher availability of organic substrates. The lowest bacterial production (0.01–31.63 mg C m−3 day−1) was observed in late winter and late autumn, while the highest (0.17–341.70 mg C m−3 day−1) occurred in spring and summer. Since bacterial numbers and biomass were found to depend on the weather conditions and the terrigenous inflow, significant variations were observed from year to year. The highest and lowest numbers and biomass of bacterioplankton determined in summer were 0.09–1.10 × 106 cells mL−1 and 2–22 mg C m−3 for July 2007 and 1.96–11.23 × 106 cells mL−1 and 23–123 mg C m–3 for July 2009. The values of these parameters were the highest along the coast and decreased towards the open sea.  相似文献   

14.
Decomposition of culms (sheaths and stems) of the emergent macrophyte Phragmites australis (common reed) was followed for 16 months in the litter layer of a brackish tidal marsh along the river Scheldt (the Netherlands). Stems and leaf sheaths were separately analyzed for mass loss, litter-associated fungal biomass (ergosterol), nutrient (N and P), and cell wall polymer concentrations (cellulose and lignin). The role of fungal biomass in litter nutrient dynamics was evaluated by estimating nutrient incorporation within the living fungal mass. After 1 year of standing stem decay, substantial fungal colonization was found. This corresponded to an overall fungal biomass of 49 ± 8.7 mg g−1 dry mass. A vertical pattern of fungal colonization on stems in the canopy is suggested. The litter bag experiment showed that mass loss of stems was negligible during the first 6 months, whereas leaf sheaths lost almost 50% of their initial mass during that time. Exponential breakdown rates were −0.0039 ± 0.0004 and −0.0026 ± 0.0003 day−1 for leaf sheaths and stems, respectively (excluding the initial lag period). In contrast to the stem tissue—which had no fungal colonization—leaf sheaths were heavily colonized by fungi (93 ± 10 mg fungal biomass g−1 dry mass) prior to placement in the litter layer. Once being on the sediment surface, 30% of leaf sheath's associated fungal biomass was lost, but ergosterol concentrations recovered the following months. In the stems, fungal biomass increased steadily after an initial lag period to reach a maximal biomass of about 120 mg fungal biomass g−1 dry mass for both plant parts at the end of the experiment. Fungal colonizers are considered to contain an important fraction of nutrients within the decaying plant matter. Fungal N incorporation was estimated to be 64 ± 13 and 102 ± 15% of total available N pool during decomposition for leaf sheaths and stems, respectively. Fungal P incorporation was estimated to be 37 ± 9 and 52 ± 15% of total available P during decomposition for leaf sheaths and stems, respectively. Furthermore, within the stem tissue, fungi are suggested to be active immobilizers of nutrients from the external environment because fungi were often estimated to contain more than 100% of the original nutrient stock.  相似文献   

15.
Nutrient-enriched water hyacinths were stocked in outdoor tanks and cultured under both high nutrient (HN) and low nutrient (LN) regimes for 10 months. Seasonal changes in standing crop biomass and morphology of LN water hyacinths were similar to those of HN water hyacinths, despite a ten-fold between-treatment difference in N availability and a two-fold difference in average plant N concentrations (1.0 and 2.0% for LN and HN plants, respectively). Tissue N accumulated by the LN plants prior to stocking helped support standing crop development during the 10 month study. In both HN and LN treatments, the rate of detritus deposition, or the sloughing of dead plant tissues from the mat, was lower than the actual detritus production rate because of the retention of dead ‘aerial’ tissues (laminae and petioles) in the floating mat. The retention of laminae and petioles may serve as a nutrient conservation mechanism, since nutrients released from decomposing tissues in the mat-water environment may be assimilated by adjacent plants. The average rate of detritus deposition (both dry matter and N) by LN water hyacinths (1.2 g dry wt. m−2 day−1 and 0.017 g N m−2 day−1) was lower than that of HN plants (3.0 g dry wt. m−2 day−1 and 0.075 g N m−2 day−1) during the study. Low detrital N losses by the water hyacinth probably enhance the survival of this species in aquatic systems which receive nutrient inputs intermittently.  相似文献   

16.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

17.
Invertebrate colonization during leaf litter decomposition was studied at the 2nd order of Yanase River, Iruma city, Saitama, Japan from November 13, 2002 to May 20, 2003. Two different mesh sizes (1 and 5 mm) of litter-bags were used to evaluate the decomposition of leaf litter of Sakura (Prunus lannesiana), bags were placed equally in riffle (water flow velocity: 0.2–0.6 m s−1) and pool (water flow velocity: 0.04–0.06 m s−1). Mass loss and invertebrates in the litter-bags were monitored at interval between 1 and 3 weeks, and the invertebrates were classified based on their functional feeding group. Among the invertebrates found inside the litter-bags, the case-bearing shredder Lepidostomatidae was the most dominant invertebrates and they were the early colonizer that appeared about 3 months after the litter-bags immersion. In absence or low number of leaf-shredders, the decomposition rates in 1 and 5 mm litter mesh bags followed the exponential (or first-order) decay kinetic (R 2: 0.72–0.92). However, the presence of a large number of leaf-shredders in 1 mm litter-bags caused an acceleration of decomposition process; that even resulted faster mass loss than the loss from the 5 mm mesh bags placed in riffle area (0.030 day−1 vs. 0.011 day−1). Our results shows the importance of using different mesh sizes of litter-bags in decomposition study, which is applicable to the experiment in lotic or lentic ecosystem. Using smaller mesh size of litter-bags can provide information on how significant the effect of detritus feeders on the decomposition process, while the bigger mesh size can represent better the natural decomposition process when a large number detritus feeders is present in the smaller mesh size of litter-bags.  相似文献   

18.
Alchichica is a warm-monomictic, oligotrophic lake whose phytoplanktonic biomass is dominated by large size (average ca. 55 μm) diatoms. The fast sinking phytoplankton leads to silica, and other nutrient exportation out of the productive zone of the lake. The aim of the present study was to identify and measure the sedimentation fluxes of the diatom species and their temporal dynamics to better understand the magnitude of silica and carbon fluxes. Sediment-traps were exposed at three different depths and collected monthly. A total of 13 diatom species were observed in the traps. The maximum diatom flux was in February (304 × 106 cells m−2 day−1) related to the winter diatom bloom. The diatom silica (DSi) fluxes varied from 2.2 to 2,997 mg m−2 day−1 and the diatom carbon (DC) fluxes from 1.2 to 2,918 mg m−2 d−1. Cyclotella alchichicana was the main contributor (>98%) to the total DSi and DC fluxes. The annual diatom (15 × 109 cells m−2 year−1), DSi (147 g m−2 year−1) and DC (92 g m−2 year−1) fluxes are higher than in other aquatic ecosystems of similar or even higher trophic conditions. Our findings in Alchichica are indicative of the relevance of the phytoplankton type and size in understanding the role tropical and oligotrophic lakes play regarding silica and carbon fluxes. In addition, our results support previous findings suggesting that inland aquatic ecosystems are more important than formerly thought in processing carbon, and can, therefore, affect regional carbon balances.  相似文献   

19.
Closure of the Clipperton Island atoll (10°17′ N 109°13′ W), now a meromictic lake, is estimated to have occurred between 1839 and 1849. It was still closed in 2005. Brackish waters in the upper layer (0–10 m) were oxygenated, while saline waters in the deep layer (>20 m) were anoxic. Allowing for the methodological difficulties of earlier measurements, the physical characteristics of the lagoon did not seem to have changed significantly since the last expedition (1980). The intermediate layer between brackish and saline waters was characterized by a strong density gradient and a temperature inversion of up to 1.6°C. Microbial activity, water exchange between the deep layer and surrounding oceanic waters and the geothermal flux hypothesis are discussed. The low DIN and SRP concentrations observed in the upper layer, despite high nutrient input by seabird droppings, reflect the high nutrient uptake by primary producers as attested by the elevated overall gross primary production (6.6 g C m−2 day−1), and high suspended photosynthetic biomass (2.23 ± 0.23 μg Chl a l−1) and production (263 ± 27 μg C l−1 day−1). Phytoplankton composition changed in 67 years with the advent of new taxa and the disappearance of previously recorded species. The freshwater phytoplanktonic community comprised 43 taxa: 37 newly identified during the expedition and 6 previously noted; 16 species previously found were not seen in 2005. The closure of the lagoon, combined with the positive precipitation–evaporation budget characteristic of the region, has induced drastic changes in lagoon functioning compared with other closed atolls.  相似文献   

20.
Although there is a growing body of evidence that herbivorous insects have a significant impact on decomposition and soil nutrient dynamics through frass excretion, how mixtures of leaf litter and insect frass influence such ecosystem processes remains poorly understood. We examined the effects of mixing of leaf litter and insect frass on decomposition and soil nutrient availability, using a study system consisting of a willow, Salix gilgiana Seemen, and a herbivorous insect, Parasa consocia Walker. The chemical characteristics of insect frass differed from those of leaf litter. In particular, frass had a 42-fold higher level of ammonium–nitrogen (NH4 +–N) than litter. Incubation experiments showed that the frass was decomposed and immobilized with respect to N more rapidly than the litter. Furthermore, litter and frass mixtures showed non-additive enhancement of decomposition and reduction of NH4 +–N, depending on the litter–frass mixing ratio. These indicate that, while insect frass generally accelerated decomposition, the effect of frass on soil nutrient availability was dependent largely on the relative amounts of litter and frass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号