首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
武娟妮  石磊 《生态学报》2010,30(22):6208-6217
以江苏宜兴经济开发区为例,基于物质流分析构建了工业园区的氮代谢网络和分析方法,解析了工业园区中产业系统和污水处理系统的氮代谢途径和通量。研究表明,氮物质流系统的源和汇比磷物质流系统多,流通量大且较为集中;氮肥生产、纺织印染和食品加工行业是宜兴经济开发区的主要氮排放源;企业自备处理设施除氮效果较好,去除率约79%,而污水处理厂由于设计和运行等原因氮去除率较低,约57%;生活污水氮去除率低;直接排入水体的降水造成的水体负荷约28%。由此,建议企业继续完善企业内处理设施,对集中污水处理厂进行脱氮除磷提标改造,同时加强对园区内生活污水、生活垃圾和企业固体排放物的管理。  相似文献   

2.
城市食物磷足迹研究——以龙岩市为例   总被引:1,自引:0,他引:1  
许肃  黄云凤  高兵  黄葳  崔胜辉 《生态学报》2016,36(22):7279-7287
运用物质流分析法,以龙岩市为例,分析了1985—2010年城市食物磷代谢的变化,估算了食物磷足迹。研究表明,龙岩市总磷输入和总磷输出都有明显的增长(总磷输入从4110 t增加到12102 t,总磷输出从3855 t增加到11315 t);总磷足迹从6482t增加到20473 t,直接磷足迹的比例从53%下降到42%;而间接磷足迹的增速明显高于直接磷足迹;龙岩市在城市尺度上是重要的磷汇,在流域尺度上则是重要的磷源。磷足迹的研究有助于全面理解和评估城市磷代谢的特征;将磷足迹与磷流动分析结合,对我国磷资源和区域磷素管理调控具有指导意义。  相似文献   

3.
傅银银  袁增伟  武慧君  张玲 《生态学报》2012,32(5):1578-1586
氮、磷等营养物质过量输入是造成我国湖泊富营养化问题日益严重的根源,磷作为水体富营养化过程关键限制元素,主要来自流域社会经济系统中的人类活动排放,因此,定量刻画社会经济系统内的磷流动路径是追踪水体外源磷来源和进行有效控制磷排放量的前提。以巢湖流域的安徽省含山县为例,构建社会经济系统磷流分析框架,建立磷流核算模型,并在实地调查和数据统计分析的基础上定量刻画了含山县2008年度社会经济系统磷流路径。结果表明,2008年含山县社会经济系统向水体排放的磷总量为1592t,其中农业种植子系统的排放所占比例最大(77%),该子系统的磷利用效率也较低(45%)。因此,含山县富营养化治理的重点是优化农业种植系统的磷流路径,主要措施包括合理施肥、科学排灌等。  相似文献   

4.
张炳  黄和平  毕军 《生态学报》2009,29(5):2473-2480
区域生态效率(eco-efficiency)评价是考量区域可持发展的重要内容.基于物质流分析(material flow analysis, MFA)构建区域生态效率评价指标体系,并将污染物排放作为一种非期望输入引入到数据包络分析(data envelopment analysis, DEA)模型中,以江苏省(1990~2005年)为例进行生态效率分析评价.结果表明,江苏省的区域生态效率在1990~2005年期间呈现逐步上升的趋势.但是,同期的总物质投入(total material input, TMI)、物质需求总量(total material requirement, TMR)和污染物排放量也呈上升趋势.因此,江苏省社会经济发展和环境影响总体上呈现"弱脱钩(weak de-link)".  相似文献   

5.
磷元素物质流分析研究进展   总被引:6,自引:1,他引:5  
陈敏鹏  郭宝玲  刘昱  夏旭  陈吉宁 《生态学报》2015,35(20):6891-6900
磷是重要的营养元素,也是不可再生的重要非金属矿物资源。为了分析人类活动对磷流动的扰动,国内外开展了大量磷元素的物质流分析和模拟。综述了磷元素物质流分析的最新研究进展,分析了国内外磷元素物质流研究的特点和不足,并展望了未来相关研究的研究热点和发展方向。从研究尺度看,现有磷元素的物质流研究以全球尺度和国家尺度为主,区域和城市尺度以及企业和产品尺度的研究较少。从研究问题看,现阶段研究主要关注农业或者食品生产和消费对磷流动的影响,对林业、钢铁和能源部门略有涉及。从模型特征看,现有研究以分析流量变化的静态模型为主,考虑存量变化的动态模拟较少。从研究的发展方向看,未来磷物质流的相关分析将关注五大问题:(1)考虑不同驱动力和存量变化的动态模拟;(2)不同层次和尺度的磷足迹研究;(3)磷与其他元素相比对社会经济的重要性;(4)全球变化背景下不同部门磷依赖的脆弱性;(5)磷和其他元素的耦合研究。为了适应未来的研究需求,磷的物质流模拟重点在于开发动态模型,并将物质流分析与多种手段结合,以预测全球变化、社会经济发展、技术变化以及其他重要变化对磷流动的扰动及其相应的环境影响。  相似文献   

6.
城市物质代谢的生态效率——以深圳市为例   总被引:4,自引:0,他引:4  
张妍  杨志峰 《生态学报》2007,27(8):3124-3131
城市可持续发展研究的关键是城市物质代谢通量及其效率研究,但物质代谢通量仅能反映代谢速率,而其生态效率则能反映支持社会经济发展的物质代谢能力。从工业、生活的源头循环(减少原生资源的消耗)和末端循环(减少污染物的产生)角度,构建城市物质代谢生态效率的度量模型,并依据中国城市化发展进程,选定深圳市作为研究区,核算城市水、能量和废物代谢通量以及代谢的生态效率。结果表明:随着深圳市社会经济的快速发展,水、能源和废物代谢通量呈现出增长势头,但代谢的生态效率不断提高。1998~2004年间,GDP增长2.7倍,城市水和电的代谢通量分别增长1.5倍和3.0倍;工业增加值增长3.7倍,工业水、电、能源和废物的代谢通量分别增长1.9、3.5、2.7倍和2.0倍;常住人口增长1.5倍,居民水和电的代谢通量分别增长1.8倍和1.7倍;资源效率提高1.8倍,环境效率提高3.7倍,生态效率提高2.3倍。虽然深圳市物质代谢的生态效率在提高,但是随着物质资源的日益稀缺,物质代谢的生态效率仍需进一步提高,而提高城市物质代谢生态效率的关键是资源效率和环境效率的协同发展,以及逐步构建废物资源化的循环链条。  相似文献   

7.
城市物质流分析框架及其指标体系构建   总被引:2,自引:0,他引:2  
陈波  杨建新  石垚  欧阳志云 《生态学报》2010,30(22):6289-6296
借鉴国内外物质流分析的研究成果,结合我国城市物质代谢特点,建立了城市物质流分析的框架及指标体系。该框架以城市社会经济系统物质通量的变化为核心,增加了对城市社会经济系统可持续能力的考察以及对城市和区域循环经济贡献的关注。论文识别了城市物质流分析中系统边界界定等关键问题,并提出了解决方法;指标体系在借鉴国家层面物质流分析指标体系的基础上,注重对城市经济系统内部循环及不同城市经济系统间的物质循环的考察,增加了再生资源输入量、内部资源回收量、可回收废物输出量、新鲜水输入量、中水回用量等指标,用于表征城市可持续发展的能力及实践成果。  相似文献   

8.
黄和平  毕军  李祥妹  张炳  杨洁 《生态学报》2006,26(8):2578-2586
运用物质流分析(MFA)方法,对江苏省常州市武进区生态经济系统中物质输入与输出进行了系统的分析,结果表明:(1)随着社会经济发展和人口增长,武进区物质输入总量及人均物质输入量也在增加,但递增速率均远小于GDP增长速率,而物质输出总量及人均物质输出量则呈现递减趋势;(2)在不考虑水的因素情况下,武进区物质输入量保持较快的上升速度,其中固体物质的增长速率远远大于气体物质的增长速率;物质输出量则呈总体下降趋势,其中以气体物质输出量的贡献最大,对环境造成污染的物质以气体特别是以化石燃料燃烧排放的废气和工业废气为主;(3)排除占大部分比例农业用水的上升,工业用水、城镇生活用水和地下水总量及人均利用强度都在减少;同时,总的废水排放量及人均排放量在减少,其中又以生活废水排放量的减少最快,其次是工业废水;(4)单位GDP物质输入量的变化处于波动状态,同期的单位GDP物质输出量则呈递减趋势,单位GDP用水量和单位GDP废水排放量则有相同的递减趋势,表征了武进区资源利用效率的稳步提高,区域经济增长和环境压力也在逐步脱钩。上述结果体现了武进区近年来循环经济发展模式的优势,但还存在较多问题,说明武进区在调整物质利用强度和提高资源利用效率方面还需下更大的功夫,并采取相关措施,以期提高实施循环经济战略与建设节约型社会的地位和意义。文章最后结合研究区实际情况就区域环境一经济的协调发展进行了展望,指出了物质流分析方法在应用中的一些缺陷,为今后该领域的进一步研究提供了借鉴。  相似文献   

9.
将物质流分析方法和生态足迹模型相结合,构建可持续发展指标体系,利用因子分析法对安徽省铜陵市2000—2010年间的可持续发展状况进行了评价。结果表明:(1)铜陵市直接物质输入(DMI)总体呈增长趋势,2010年相比2000年增长2.65倍,进口比重有所下降,区域资源开采活动有所增强,但直接物质输入仍主要依赖于进口,区内加工排放(DPO)总体呈上升趋势,区域内隐藏流(DHF)成为环境压力的主要来源;(2)铜陵市物质生产力数据显示其在物质利用效益方面有了改善,但与同期国内平均水平相比,仍存在一定差距;(3)铜陵市人均生态足迹持续上升,2010年达到7 hm2/人,生态足迹与生态承载力之间的矛盾逐渐加大;(4)可持续发展指标体系评价表明,铜陵市可持续发展状况呈现下降趋势。铜陵市应从调整三次产业关系、转变经济运行方式等角度出发,实现真正意义上的可持续发展。  相似文献   

10.
建设生态海岛是海岛生态经济系统实现可持续发展的重要途径。运用物质流分析方法对长海县的物质输入与输出状况进行计算,并用物质消耗强度、废物排放强度和环境负荷强度3个指标衡量了该海岛县生态效率的变化,分析了技术进步对海岛生态经济系统生态压力变化的贡献状况。结果表明,2003—2009年间,长海县物质输入总量、物质输出总量和环境负荷总量呈增长态势;生态效率明显提高;技术进步对减轻海岛生态经济系统生态压力的贡献没有抵消经济增长所产生的生态压力的增加量。为了减少物质输入和废物输出,减轻经济活动对海岛生态系统产生的压力,建立创新型管理机制有效促进技术进步,不断提高生态效率具有特别重要的作用。  相似文献   

11.
Human activity has quadrupled the mobilization of phosphorus (P), a nonrenewable resource that is not fully recycled biologically or industrially. P is accumulated in both water and solid waste due to fertilizer application and industrial, agricultural, and animal P consumption. This paper characterizes the industrial flows, which, although smaller than the agricultural and animal flows, are an important phosphorus source contributing to the pollution of surface waters. We present the quantification of the network of flows as constrained by mass balances of the global annual metabolism of phosphorus, based on global consumption for 2004, all of which eventually ends up as waste and in the soil and water systems. We find that on a yearly basis, 18.9 million metric tons (MMT) of P is produced, of which close to 75% goes to fertilizer and the rest to industrial and others uses. Phosphoric acid is the precursor for many of the intermediate and end uses of phosphate compounds described in this study and accounts for almost 80% of all P consumed. Eventually, all of the P goes to waste: 18.5 MMT ends up in the soil as solid waste, and 1.32 MMT is emissions to air and water. Besides quantifying P flows through our economy, we also consider some possible measures that could be taken to increase the degree of recovery and optimization of this resource and others that are closely related, such as the recovery of sulfur from gypsum and wastewater (sludge), and fluorine from wet phosphoric acid production.  相似文献   

12.
Phosphorus (P) is a key factor in aquatic eutrophication, and P contamination has become a common issue worldwide. Many developing countries, including China, have made great efforts in the anti‐P contamination battle. In this article we mainly discuss the P flow in Wuwei, a typical county in China with insufficient wastewater treatment, using the method of static substance flow analysis. We show that characterizing P metabolic pathways and flows at the county level can provide useful information about P pollution. Through complex calculations, we found that Wuwei County released 3,552 metric tons (t) of P into the local aquatic environment in 2008 and that its P load (3.35 kilograms P per capita per year [kg P/cap/yr] or 19.43 kilograms P per hectare per year [kg‐P/ha/yr]) was greater than both the adjoining counties’ and Chaohu City's average levels combined. The agricultural subsystem discharged the largest quantity of P (2,572 t) and had a relatively low production conversion efficiency (32%) and P waste recycling rate (36%). The rural residential and small‐scale livestock breeding systems also accounted for substantial portions of P discharge. Anti‐P contamination efforts should consequently focus on those three subsystems. Based on the results of this case study, we also discuss the feasibility of potential efforts to reduce P contamination.  相似文献   

13.
Material flow analysis is a tool that is increasingly used as a foundation for resource management and environmental protection. This tool is primarily applied in a static manner to individual years, ignoring the impact of time on the material budgets. In this study, a detailed multiyear model of the Austrian phosphorus budget covering the period 1990–2011 was built to investigate its behavior over time and test the hypothesis that a multiyear approach can also contribute to the improvement of static budgets. Further, a novel method was applied to investigate the quality and characteristics of the data and quantify the uncertainty. The degree of change between the budgets was assessed and showed that approximately half of the flows have changed significantly and, at times, abruptly since 1990, but it is not possible to distinguish unequivocally between constant and moderately changing flows given their uncertainty. The study reveals that the phosphorus transported in waste flows has increased more rapidly than its recovery, which accounted for 55% to 60% of the total waste phosphorus in 1990 and only 40% in 2011. The loss ratio in landfills and cement kilns has oscillated in the range of 40% to 50%. From a methodological point of view, the multiyear approach has broadened the conceptual model of the budget, making it more suitable as a basis for material accounting and monitoring. Moreover, the analysis of the data reconciliation process over a long period of time proved to be a useful tool for identifying systematic errors in the model.  相似文献   

14.
Future phosphorus (P) scarcity and eutrophication risks demonstrate the need for systems‐wide P assessments. Despite the projected drastic increase in world‐wide fish production, P studies have yet to include the aquaculture and fisheries sectors, thus eliminating the possibility of assessing their relative importance and identifying opportunities for recycling. Using Norway as a case, this study presents the results of a current‐status integrated fisheries, aquaculture, and agriculture P flow analysis and identifies current sectoral linkages as well as potential cross‐sectoral synergies where P use can be optimized. A scenario was developed to shed light on how the projected 2050 fivefold Norwegian aquaculture growth will likely affect P demand and secondary P resources. The results indicate that, contrary to most other countries where agriculture dominates, in Norway, aquaculture and agriculture drive P consumption and losses at similar levels and secondary P recycling, both intra‐ and cross‐sectorally, is far from optimized. The scenario results suggest that the projected aquaculture growth will make the Norwegian aquaculture sector approximately 4 times as P intensive as compared to agriculture, in terms of both imported P and losses. This will create not only future environmental challenges, but also opportunities for cross‐sectoral P recycling that could help alleviate the mineral P demands of agriculture. Near‐term policy measures should focus on utilizing domestic fish scrap for animal husbandry and/or fish feed production. Long‐term efforts should focus on improving technology and environmental systems analysis methods to enable P recovery from aquaculture production and manure distribution in animal husbandry.  相似文献   

15.
This article is the first of a two-part series that describes and compares the essential features of nine existing "physical economy" approaches for quantifying the material demands of the human economy upon the natural environment. A range of material flow analysis (MFA) and related techniques is assessed and compared in terms of several major dimensions. These include the system boundary identification for material flow sources, extents, and the key socioinstitutional entities containing relevant driving forces, as well as the nature and detailing of system components and flow interconnections, and the comprehensiveness and types of flows and materials covered.
Shared conceptual themes of a new wave of physical economy approaches are described with a brief overview of the potential applications of this broad family of methodologies. The evolving and somewhat controversial nature of the characteristics and role that define MFA is examined. This review suggests the need to specify whether MFA is a general metabolic flow measurement procedure that can be applied from micro to macrolevels of economic activity, or a more specific methodology aimed primarily at economy-wide analyses that "map" the material relations between society and nature. Some alternative options for classifying MFA are introduced for discussion before a more detailed comparative summary of the key methodological features of each approach in the second part of this two-part article.
The review is presented (1) as a reference and resource for the increasing number of policy makers and practitioners involved in industrial ecology and the evaluation of the material basis of economies and the formulation of eco-efficiency strategies, and (2) to provoke discussion and ongoing dialogue to clarify the many existing areas of discordance in environmental accounting related to material flows, and help consolidate the methodological basis and application of MFA.  相似文献   

16.
Human activities have significantly intensified natural phosphorus cycles, which has resulted in some serious environmental problems that modern societies face today. This article attempts to quantify the global phosphorus flows associated with present day mining, farming, animal feeding, and household consumption. Various physical characteristics of the related phosphorus fluxes as well as their environmental impacts in different economies, including the United States, European countries, and China, are examined. Particular attention is given to the global phosphorus budget in cropland and the movement and transformation of phosphorus in soil, because these phosphorus flows, in association with the farming sector, constitute major fluxes that dominate the anthropogenic phosphorus cycle. The results show that the global input of phosphorus to cropland, in both inorganic and organic forms from various sources, cannot compensate for the removal in harvests and in the losses by erosion and runoff. A net loss of phosphorus from the world's cropland is estimated at about 10.5 million metric tons (MMT) phosphorus each year, nearly one half of the phosphorus extracted yearly.  相似文献   

17.
This work introduces a new approach to integrating the discharges of industrial processes with macroscopic watershed systems. The key concept is that environmental quality models (such as material flow analysis) can be inverted and included in an optimization formulation that seeks to determine the maximum allowable target for the process discharges while meeting the overall environmental requirements of the watershed. Because of its holistic nature, this approach simultaneously considers the effects of the inputs and outputs to the watershed (e.g., agricultural, residential, wastewater treatment plants, industrial, and so on) and the various physical, chemical, and biological phenomena occurring within the watershed. An optimization formulation is developed to systematically represent the reverse problem formulation. To illustrate the effectiveness of this approach, a case study is solved to manage phosphorus in Bahr El‐Baqar drainage system leading to Lake Manzala in Egypt. The key environmental and economic aspects are addressed and used to screen plant location and discharges.  相似文献   

18.
Recycling rates of aluminum are defined in different (sometimes inconsistent) ways and poorly quantified. To address this situation, the definitions and calculation methods of four groups of indicators are specified for the United States: (1) indicators used to measure recycling efficiencies of old aluminum scrap at the end‐of‐life (EOL) stage, including EOL collection rate (CR), EOL processing rate, EOL recycling rate, and EOL domestic recycling rate; (2) indicators used to compare generation or use of new with old scrap, including new to old scrap ratio, new scrap ratio (NSR), and old scrap ratio; (3) indicators used to compare production or use of primary aluminum with secondary aluminum, including four recycling input rates (RIRs); and (4) indicators used to track the sinks of aluminum metal in the U.S. anthroposphere. I find that the central estimate of EOL CR varies between 38% and 65% in the United States from 1980 to 2009 and shares a relatively similar historical trend with the primary aluminum price. The RIR is shown to be significantly reduced if excluding secondary aluminum produced from new scrap resulting from the relatively high NSR. In 2003, a time when approximately 73% of all of the aluminum produced globally since 1950 was considered to still be “in service,” approximately 68% to 69% of all metallic aluminum that had entered the U.S. anthroposphere since 1900 was still in use: 67% in domestic in‐use stock and 1% to 2% exported as scrap. Only 6% to 7% was definitely lost to the environment, although the destination of 25% of the aluminum was unknown. It was either exported as EOL products, was currently hibernating, or was lost during collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号