首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin resistance is a major pathologic feature of human obesity and diabetes. Understanding the fundamental mechanisms underlying this insulin resistance has been advanced by the recent cloning of the genes encoding a family of facilitated diffusion glucose transporters which are expressed in characteristic patterns in mammalian tissues. Two of these transporters, GLUT1 and GLUT4, are present in muscle and adipose cells, tissues in which glucose transport is markedly stimulated by insulin. To understand the mechanisms underlying in vivo insulin resistance, regulation of these transporters is being investigated. Studies reveal divergent changes in the expression of GLUT1 and GLUT4 in a single cell type as well as tissue specific regulation. Importantly, alterations in glucose transport in rodent models of diabetes and in human obesity and diabetes cannot be entirely explained by changes in glucose transporter expression. This suggests that defects in glucose transporter function such as impaired translocation, fusion with the plasma membrane, or activation probably contribute importantly to in vivo insulin resistance.  相似文献   

2.
Glucose transporters: structure, function, and regulation   总被引:2,自引:0,他引:2  
Glucose is transported into the cell by facilitated diffusion via a family of structurally related proteins, whose expression is tissue-specific. One of these transporters, GLUT4, is expressed specifically in insulin-sensitive tissues. A possible change in the synthesis and/or in the amount of GLUT4 has therefore been studied in situations associated with an increase or a decrease in the effect of insulin on glucose transport. Chronic hyperinsulinemia in rats produces a hyper-response of white adipose tissue to insulin and resistance in skeletal muscle. The hyper-response of white adipose tissue is associated with an increase in GLUT4 mRNA and protein. In contrast, in skeletal muscle, a decrease in GLUT4 mRNA and a decrease (tibialis) or no change (diaphragm) in GLUT4 protein are measured, suggesting a divergent regulation by insulin of glucose transport and transporters in the 2 tissues. In rodents, brown adipose tissue is very sensitive to insulin. The response of this tissue to insulin is decreased in obese insulin-resistant fa/fa rats. Treatment with a beta-adrenergic agonist increases insulin-stimulated glucose transport, GLUT4 protein and mRNA. The data suggest that transporter synthesis can be modulated in vivo by insulin (muscle, white adipose tissue) or by catecholamines (brown adipose tissue).  相似文献   

3.
Adiponectin/Acrp30 is a hormone secreted by adipocytes, which acts as an antidiabetic and antiatherogenic adipokine. We reported previously that AdipoR1 and -R2 serve as receptors for adiponectin and mediate increased fatty acid oxidation and glucose uptake by adiponectin. In the present study, we examined the expression levels and roles of AdipoR1/R2 in several physiological and pathophysiological states such as fasting/refeeding, obesity, and insulin resistance. Here we show that the expression of AdipoR1/R2 in insulin target organs, such as skeletal muscle and liver, is significantly increased in fasted mice and decreased in refed mice. Insulin deficiency induced by streptozotocin increased and insulin replenishment reduced the expression of AdipoR1/R2 in vivo. Thus, the expression of AdipoR1/R2 appears to be inversely correlated with plasma insulin levels in vivo. Interestingly, the incubation of hepatocytes or myocytes with insulin reduced the expression of AdipoR1/R2 via the phosphoinositide 3-kinase/Foxo1-dependent pathway in vitro. Moreover, the expressions of AdipoR1/R2 in ob/ob mice were significantly decreased in skeletal muscle and adipose tissue, which was correlated with decreased adiponectin binding to membrane fractions of skeletal muscle and decreased AMP kinase activation by adiponectin. This adiponectin resistance in turn may play a role in worsening insulin resistance in ob/ob mice. In conclusion, the expression of AdipoR1/R2 appears to be inversely regulated by insulin in physiological and pathophysiological states such as fasting/refeeding, insulin deficiency, and hyper-insulinemia models via the insulin/phosphoinositide 3-kinase/Foxo1 pathway and is correlated with adiponectin sensitivity.  相似文献   

4.
5.
Adipose tissue plays an important role in glucose homeostasis and affects insulin sensitivity in other tissues. In obesity and type 2 diabetes, glucose transporter 4 (GLUT4) is downregulated in adipose tissue, and glucose transport is also impaired in muscle. To determine whether overexpression of GLUT4 selectively in adipose tissue could prevent insulin resistance when glucose transport is impaired in muscle, we bred muscle GLUT4 knockout (MG4KO) mice to mice overexpressing GLUT4 in adipose tissue (AG4Tg). Overexpression of GLUT4 in fat not only normalized the fasting hyperglycemia and glucose intolerance in MG4KO mice, but it reduced these parameters to below normal levels. Glucose infusion rate during a euglycemic clamp study was reduced 46% in MG4KO compared with controls and was restored to control levels in AG4Tg-MG4KO. Similarly, insulin action to suppress hepatic glucose production was impaired in MG4KO mice and was restored to control levels in AG4Tg-MG4KO. 2-deoxyglucose uptake during the clamp was increased approximately twofold in white adipose tissue but remained reduced in skeletal muscle of AG4Tg-MG4KO mice. AG4Tg and AG4Tg-MG4KO mice have a slight increase in fat mass, a twofold elevation in serum free fatty acids, an approximately 50% increase in serum leptin, and a 50% decrease in serum adiponectin. In MG4KO mice, serum resistin is increased 34% and GLUT4 overexpression in fat reverses this. Overexpression of GLUT4 in fat also reverses the enhanced clearance of an oral lipid load in MG4KO mice. Thus overexpression of GLUT4 in fat reverses whole body insulin resistance in MG4KO mice without restoring glucose transport in muscle. This effect occurs even though AG4Tg-MG4KO mice have increased fat mass and low adiponectin and is associated with normalization of elevated resistin levels.  相似文献   

6.
We have examined the nutritional and insulin regulation of the mRNA expression of transmembrane fatty acid (FA) transporters [FA transport protein-1 (FATP1) and CD36] together with the lipoprotein lipase (LPL), the cytosolic FA carrier FA binding protein (FABP3), and mitochondrial FA-CoA and -carnitine palmitoyl transferase carriers (CPT)1 and -2 in Atlantic salmon tissues and myocyte cell culture. Two weeks of fasting diminished FATP1, CD36, and LPL in adipose tissue, suggesting a reduction in FA uptake, while FABP3 increased in liver, probably enhancing the transport of FA to the mitochondria. Insulin injection decreased FATP1 and CD36 in white and red muscles, while both transporters were upregulated in the adipose tissue in agreement with the role of insulin-inhibiting muscle FA oxidation and stimulating adipose fat stores. Serum deprivation of 48 h in Atlantic salmon myotubes increased FATP1, FABP3, and CPT-2, while CPT-1 was diminished. In myotubes, insulin induced FATP1 expression but decreased CD36, FABP3, and LPL, suggesting that FATP1 could be more involved in the insulin-stimulated FA uptake. Insulin increased the FA uptake in myotubes mediated, at least in part, through the relocation of FATP1 protein to the plasma membrane. Overall, Atlantic salmon FA transporters are regulated by fasting and insulin on in vivo and in vitro models.  相似文献   

7.
Insulin resistance plays a major role in the pathogenesis of type 2 diabetes. Insulin regulates blood glucose levels primarily by promoting glucose uptake from the blood into multiple tissues and by suppressing glucose production from the liver. The glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in muscle and adipose tissue. Decreased GLUT4 expression in adipose tissue is a common feature of many insulin resistant states. GLUT4 expression is preserved in skeletal muscle in many insulin resistant states. However, functional defects in the intracellular trafficking and plasma membrane translocation of GLUT4 result in impaired insulin-stimulated glucose uptake in muscle. Tissue-specific genetic knockout of GLUT4 expression in adipose tissue or muscle of mice has provided new insights into the pathogenesis of insulin resistance. We recently determined that the expression of serum retinol binding protein (RBP4) is induced in adipose tissue as a consequence of decreased GLUT4 expression. We found that RBP4 is elevated in the serum of insulin resistant humans and mice. Furthermore, we found that increasing serum RBP4 levels by transgenic overexpression or by injection of purified RBP4 protein into normal mice causes insulin resistance. Therefore, RBP4 appears to play an important role in mediating adipose tissue communication with other insulin target tissues in insulin resistant states.  相似文献   

8.
We have studied the in vivo and in vitro effects of Topiramate (TPM) in female Zucker diabetic fatty (ZDF) rats. After weight matching, drug treatment had a marked effect to lower fasting glucose levels of relatively normoglycemic animals as well as during an oral glucose tolerance test. The glucose clamp studies revealed a approximately 30% increased glucose disposal, increased hepatic glucose output (HGO) suppression from approximately 30 to 60%, and an increased free fatty acid suppression from 40 to 75%. Therefore, TPM treatment led to enhanced insulin sensitivity at the level of tissue glucose disposal (increased ISGDR), liver (increased inhibition of HGO), and adipose tissue (enhanced suppression of lipolysis). When soleus muscle strips of control or TPM-treated ZDF rats were studied ex vivo, insulin-stimulated glucose transport was not enhanced in the drug-treated animals. In contrast, when isolated adipocytes were studied ex vivo, a marked increase (+55%) in insulin-stimulated glucose transport was observed. In vitro treatment of muscle strips and rat adipocytes showed no effect on glucose transport in muscle with a 40% increase in insulin-stimulated adipocyte glucose transport. In conclusion, 1) TPM treatment leads to a decrease in plasma glucose and increased in vivo insulin sensitivity; 2) insulin sensitization was observed in adipocytes, but not muscle, when tissues were studied ex vivo or in vitro; and 3) TPM directly enhances insulin action in insulin-resistant adipose cells in vitro. Thus the in vivo effects of TPM treatment appear to be exerted through adipose tissue.  相似文献   

9.
Regulation of glucose transporters in diabetes   总被引:2,自引:0,他引:2  
It is now widely accepted that insulin stimulates glucose metabolism in its target tissues via recruitment of transporters from a large intracellular pool to the plasma membrane. Recent studies, however, suggest a two-step model for insulin action, of transporter translocation and transporter activation. Data confirming this hypothesis for the first time are presented. It is shown that insulin significantly enhances the intrinsic activity of glucose transporters in human and rat adipose cells, in physiological as well as in diabetic state. The functional activity of transporters is impaired in the diabetic state, but surprisingly, 'diabetic' transporters exhibit normal or even enhanced intrinsic activity. In both noninsulin-dependent diabetes mellitus and streptozotocin-diabetic rats, insulin resistance is associated with 50% transporter depletion in the intracellular pool, thus leading to a decreased number of transporters appearing in the plasma membrane in response to insulin. It is concluded that impaired glucose transport in diabetes is secondary (1) to intracellular transporter depletion, and (2) to the presence of inhibitory factors interfering with the full expression of glucose transporters at the plasma membrane, thus contributing to postreceptor insulin resistance.  相似文献   

10.
11.
Postprandial cellular glucose uptake is dependent on an insulin-signaling cascade in muscle and adipose tissue, resulting in the translocation of the insulin-dependent glucose transporter 4 (Glut4) into the plasma membrane. Additionally, extended food deprivation is characterized by suppressed insulin signaling and decreased Glut4 expression. Northern elephant seals are adapted to prolonged fasts characterized by high levels of plasma glucose. To address the hypothesis that the fasting-induced decrease in insulin is associated with reduced insulin signaling in prolonged fasted seals, we compared the adipose protein levels of the cellular insulin-signaling pathway, Glut4 and plasma glucose, insulin, cortisol, and adiponectin concentrations between Early (n = 9; 2-3 wks postweaning) and Late (n = 8; 6-8 wks postweaning) fasted seals. Plasma adiponectin (230 ± 13 vs. 177 ± 11 ng/ml), insulin (2.7 ± 0.4 vs. 1.0 ± 0.1 μU/ml), and glucose (9.8 ± 0.5 vs. 8.0 ± 0.3 mM) decreased, while cortisol (124 ± 6 vs. 257 ± 30 nM) doubled with fasting. Glut4 increased (31%) with fasting despite the significant decreases in the cellular content of phosphatidylinositol 3-kinase as well as phosphorylated insulin receptor, insulin receptor substrate-1, and Akt2. Increased Glut4 may have contributed to the decrease in plasma glucose, but the decrease in insulin and insulin signaling suggests that Glut4 is not insulin-dependent in adipose tissue during prolonged fasting in elephant seals. The reduction of plasma glucose independent of insulin may make these animals an ideal model for the study of insulin resistance.  相似文献   

12.
Fasting readily induces hepatic steatosis. Hepatic steatosis is associated with hepatic insulin resistance. The purpose of the present study was to document the effects of 16 h of fasting in wild-type mice on insulin sensitivity in liver and skeletal muscle in relation to 1) tissue accumulation of triglycerides (TGs) and 2) changes in mRNA expression of metabolically relevant genes. Sixteen hours of fasting did not show an effect on hepatic insulin sensitivity in terms of glucose production in the presence of increased hepatic TG content. In muscle, however, fasting resulted in increased insulin sensitivity, with increased muscle glucose uptake without changes in muscle TG content. In liver, fasting resulted in increased mRNA expression of genes promoting gluconeogenesis and TG synthesis but in decreased mRNA expression of genes involved in glycogenolysis and fatty acid synthesis. In muscle, increased mRNA expression of genes promoting glucose uptake, as well as lipogenesis and beta-oxidation, was found. In conclusion, 16 h of fasting does not induce hepatic insulin resistance, although it causes liver steatosis, whereas muscle insulin sensitivity increases without changes in muscle TG content. Therefore, fasting induces differential changes in tissue-specific insulin sensitivity, and liver and muscle TG contents are unlikely to be involved in these changes.  相似文献   

13.
We have used differential display to identify genes whose expression is altered in type 2 diabetes thus contributing to its pathogenesis. One mRNA is overexpressed in fibroblasts from type 2 diabetics compared with non-diabetic individuals, as well as in skeletal muscle and adipose tissues, two major sites of insulin resistance in type 2 diabetes. The levels of the protein encoded by this mRNA are also elevated in type 2 diabetic tissues; thus, we named it PED for phosphoprotein enriched in diabetes. PED cloning shows that it encodes a 15 kDa phosphoprotein identical to the protein kinase C (PKC) substrate PEA-15. The PED gene maps on human chromosome 1q21-22. Transfection of PED/PEA-15 in differentiating L6 skeletal muscle cells increases the content of Glut1 transporters on the plasma membrane and inhibits insulin-stimulated glucose transport and cell-surface recruitment of Glut4, the major insulin-sensitive glucose transporter. These effects of PED overexpression are reversed by blocking PKC activity. Overexpression of the PED/PEA-15 gene may contribute to insulin resistance in glucose uptake in type 2 diabetes.  相似文献   

14.
15.
It is well documented that adipose tissue glycogen content decreases during fasting and increases above control during refeeding. We now present evidence that these fluctuations result from adaptations intrinsic to adipose tissue glycogen metabolism that persist in vitro: in response to insulin (1 milliunit/ml), [3H]glucose incorporation into rat fat pad glycogen was reduced to 10% of control after a 3-day fast; incorporation increased 6-fold over fed control on the 4th day of refeeding following a 3-day fast. We have characterized this adaptation with regard to alterations in glycogen synthase and phosphorylase activity. In addition, we found that incubation of fat pads from fasted rats with insulin (1 milliunit/ml) increased glucose-6-P content, indicating that glucose transport was not the rate-limiting step for glucose incorporation into glycogen in the presence of insulin. In contrast, feeding a fat-free diet resulted in dramatic increases in glycogen content of fat pads without a concomitant increase in glucose incorporation into glycogen in response to insulin (1 milliunit/ml). Thus, fasting and refeeding appeared to alter insulin action on adipose tissue glycogen metabolism more than this dietary manipulation.  相似文献   

16.
17.
Caveolin-3 (Cav-3) is expressed predominantly in skeletal muscle fibers, where it drives caveolae formation at the muscle cell's plasma membrane. In vitro studies have suggested that Cav-3 may play a positive role in insulin signaling and energy metabolism. We directly address the in vivo metabolic consequences of genetic ablation of Cav-3 in mice as it relates to insulin action, glucose metabolism, and lipid homeostasis. At age 2 mo, Cav-3 null mice are significantly larger than wild-type mice, and display significant postprandial hyperinsulinemia, whole body insulin resistance, and whole body glucose intolerance. Studies using hyperinsulinemic-euglycemic clamps revealed that Cav-3 null mice exhibited 20% and 40% decreases in insulin-stimulated whole body glucose uptake and whole body glycogen synthesis, respectively. Whole body insulin resistance was mostly attributed to 20% and 40% decreases in insulin-stimulated glucose uptake and glucose metabolic flux in the skeletal muscle of Cav-3 null mice. In addition, insulin-mediated suppression of hepatic glucose production was significantly reduced in Cav-3 null mice, indicating hepatic insulin resistance. Insulin-stimulated glucose uptake in white adipose tissue, which does not express Cav-3, was decreased by 70% in Cav-3 null mice, suggestive of an insulin-resistant state for this tissue. During fasting, Cav-3 null mice possess normal insulin receptor protein levels in their skeletal muscle. However, after 15 min of acute insulin stimulation, Cav-3 null mice show dramatically reduced levels of the insulin receptor protein, compared with wild-type mice treated identically. These results suggest that Cav-3 normally functions to increase the stability of the insulin receptor at the plasma membrane, preventing its rapid degradation, i.e., by blocking or slowing ligand-induced receptor downregulation. Thus our results demonstrate the importance of Cav-3 in regulating whole body glucose homeostasis in vivo and its possible role in the development of insulin resistance. These findings may have clinical implications for the early diagnosis and treatment of caveolinopathies. limb girdle muscular dystrophy; glucose intolerance; hyperinsulinemia; insulin receptor degradation  相似文献   

18.
Glucose transport into muscle cells occurs through facilitated diffusion mediated primarily by the GLUT1 and GLUT4 glucose transporters. These transporter proteins are controlled by acute and chronic exposure to insulin, glucose, muscle contraction, and hypoxia. We propose that acute responses occur through recruitment of pre-formed glucose transporters from an intracellular storage site to the plasma membrane. In contrast, chronic control is achieved by changes in transporter biosynthesis and protein stability. Using subcellular fractionation of rat skeletal muscle, recruitment of GLUT4 glucose transporters to the plasma membrane is demonstrated by acute exposure to insulin in vivo. The intracellular pool appears to arise from a unique organelle depleted of transverse tubule, plasma membrane, or sarcoplasmic reticulum markers. In diabetic rats, GLUT4 content in the plasma membranes and in the intracellular pool is reduced, and incomplete insulin-dependent GLUT4 recruitment is observed, possibly through a defective incorporation of transporters to the plasma membrane. The lower content of GLUT4 transporters in the muscle plasma membranes is reversed by restoration of normoglycemia with phlorizin treatment. In some muscle cells in culture, GLUT1 is the only transporter expressed yet they respond to insulin, suggesting that this transporter can also be regulated by acute mechanisms. In the L6 muscle cell line, GLUT1 transporter content diminishes during myogenesis and GLUT4 appears after cell fusion, reaching a molar ratio of about 1:1 in the plasma membrane. Prolonged exposure to high glucose diminishes the amount of GLUT1 protein in the plasma membrane by both endocytosis and reduced biosynthesis, and lowers GLUT4 protein content in the absence of changes in GLUT4 mRNA possibly through increased protein degradation. These studies suggest that the relative contribution of each transporter to transport activity, and the mechanisms by which glucose exerts control of the glucose transporters, will be key subjects of future investigations.  相似文献   

19.
Facilitated sugar entry into mammalian cells is catalysed by multiple isoforms of the glucose transporter and regulated by hormonal stimuli, nutritional status and oncogenesis. A large reserve of latent glucose transport capacity must be maintained by muscle and adipose cells that are sensitive to insulin, the primary activator of sugar uptake after feeding. Intracellular sequestration of sugar transporters accounts for a large part of this latent capacity, but new findings suggest that there is also reversible suppression of intrinsic catalytic activity of those glucose transporters residing at the cell surface. The mechanism of this suppression appears to be occlusion or disruption of the exofacial sugar-binding sites on the glucose-transporter proteins.  相似文献   

20.
Calorie restriction (CR) has been shown to improve peripheral insulin resistance and type 2 diabetes in animal models. However, the exact mechanism of CR on GLUT4 expression and translocation in insulin-sensitive tissues has not been well elucidated. In the present study, we examine the effect of CR on the expression of glucose transporter 4 (GLUT4), GLUT4 translocation, and glucose transport activity in adipose tissue from Otsuka Long-Evans Tokushima Fatty (OLETF) rat and control (LETO) rats. CR (70% of satiated group) ameliorated hyperglycemia and improved impaired glucose tolerance (IGT) in OLETF rats. In skeletal muscle, the expression levels of GLUT4 and GLUT1 were not significantly different between LETO and OLETF rats, and were not affected by CR. By contrast, the expression level of GLUT4 was markedly decreased in the adipose tissue of OLETF rats, but was dramatically increased by CR. The GLUT4 recruitment stimulated by insulin was also improved in OLETF rat adipocytes by CR. The insulin-stimulated 2-deoxyglucose (2DG) uptake was significantly increased in adipocytes from the CR OLETF rats, as compared with the satiated OLETF rats. Taken together, these results suggest that CR improves whole body glucose disposal and insulin resistance in OLETF rats, and that these effects may associate with the increased adipocyte-specific GLUT4 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号