首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we reported the presence of ice nucleating activity, apparently proteinaceous, in the plasma of a freeze-tolerant frog, Rana sylvatica, collected in autumn and spring. Although this protein has not been purified, its ice nucleating behavior can act as an internal reference for tests that attempt to modify its ability to nucleate ice formation. If the addition of a chemical reagent alters the temperature of ice crystallization compared with the control, it can be assumed that protein modification may have occurred. The ice nucleating protein in R. sylvatica showed resistance to proteolysis with four different proteases although there was a significant reduction in the temperatures of nucleation with these treatments (ANOVA P less than 0.001). However, ice nucleating activity was lost when plasma was treated with the addition of urea or N-bromosuccinimide. Modification of protein sulphydryl groups with iodoacetamide did not affect the crystallization temperature (Tc) but treatment with iodoacetic acid resulted in a significant increase in Tc of plasma. An abrupt loss of ice nucleating ability was observed in plasma samples after heating above 87 degrees C. Anomalous potentiation of ice nucleating activity occurred when the plasma was heated to and held at temperatures between 67-75 degrees C.  相似文献   

2.
Polyamines have been shown to be necessary for the activity of the extracellular ice–nucleating matter (EIM) from the ice–nucleating bacterium, Erwinia uredovora KUIN-3. When this bacterium was cultured in the presence of methylglyoxal bis(guanylhydrazone), MGBG (2 mM), the ice–nucleating activity of the EIM significantly decreased. Further, the thermal (25–40°C) and pH (alkaline region) stabilities of the activity were stimulated by the addition of spermidine. This phenomenon only occurred in the class A and B structures, and it showed that the hydrophobicities of the class A and B structures in the EIM increased with the addition of spermidine as judged by the freezing difference spectra. We then found by using fluorescent reagents that the physiological roles of spermidine in the EIM controlled the charge, free-amino groups, and hydrophobicities on the surface of the EIM. In conclusion, one could predict that spermidine took part in the charge of the surface, the control of hydrophobicity, and the stability of protein conformation in the class A and B structures in the EIM, and is a critical component in the class A and B nucleating structures.  相似文献   

3.
Although the presence of antifreeze and ice nucleating agents in the hemolymph of insects has been well documented, there have been no reports of either of these types of agent in vertebrates. The technique of differential scanning calorimetry was used to examine the blood, serum, and plasma of a freeze-tolerant frog, Rana sylvatica, for the presence of antifreeze protein activity. Results demonstrate the absence of antifreeze protein but the presence of an ice nucleating agent that may serve as a functional component of the overwintering strategy of this species. Ice nucleating activity was detected in samples of cell-free blood, serum, and plasma, suggesting that the agent is a soluble component and possibly plasma protein. To our knowledge, the identification of ice nucleating activity in this freeze-tolerant vertebrate is novel.  相似文献   

4.
Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-β-d-glucopyranoside (K3Glc), kaempferol 7-O-β-d-glucopyranoside (K7Glc) and quercetin 3-O-β-d-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist.  相似文献   

5.
Wowk B  Fahy GM 《Cryobiology》2002,44(1):14-23
The simple linear polymer polyglycerol (PGL) was found to apparently bind and inhibit the ice nucleating activity of proteins from the ice nucleating bacterium Pseudomonas syringae. PGL of molecular mass 750 Da was added to a solution consisting of 1 ppm freeze-dried P. syringae 31A in water. Differential ice nucleator spectra were determined by measuring the distribution of freezing temperatures in a population of 98 drops of 1 microL volume. The mean freezing temperature was lowered from -6.8 degrees C (control) to -8.0,-9.4,-12.5, and -13.4 degrees C for 0.001, 0.01, 0.1, and 1% w/w PGL concentrations, respectively (SE < 0.2 degrees C). PGL was found to be an ineffective inhibitor of seven defined organic ice nucleating agents, whereas the general ice nucleation inhibitor polyvinyl alcohol (PVA) was found to be effective against five of the seven. The activity of PGL therefore seems to be specific against bacterial ice nucleating protein. PGL alone was an ineffective inhibitor of ice nucleation in small volumes of environmental or laboratory water samples, suggesting that the numerical majority of ice nucleating contaminants in nature may be of nonbacterial origin. However, PGL was more effective than PVA at suppressing initial ice nucleation events in large volumes, suggesting a ubiquitous sparse background of bacterial ice nucleating proteins with high nucleation efficiency. The combination of PGL and PVA was particularly effective for reducing ice formation in solutions used for cryopreservation by vitrification.  相似文献   

6.
Summary A lipoprotein with ice nucleator activity was purified from the hemolymph of the freezetolerant larvae of the craneflyTipula trivittata. Characterization of this lipoprotein ice nucleator (LPIN) showed that it differed from other previously described insect hemolymph lipoproteins which lack ice nucleator activity, by the presence of phosphatidylinositol (PI) at 11.0% by weight of the total phospholipid content. The potential roles of PI and other lipoprotein components in the ice nucleating activity were examined using various phospholipases, proteases, LPIN antibodies, borate compounds and various lipid-protein reconstitutions. It was found that phosphatidylinositol specific phospholipase C was the most effective phospholipase in eliminating the activity of the LPIN. Borate compounds effectively depressed activity. Treatment of the LPIN with protease also eliminated ice nucleator activity but the binding of LPIN specific antibody did not. Reconstitutions consisting of the native LPIN lipids, PI specific phospholipase-treated native LPIN lipids, or pure standard phospholipids with the apolipoproteins of the LPIN andManduca sexta larval lipoproteins gave evidence that both the apolipoproteins of the LPIN and PI are necessary for the ice nucleating activity.Abbreviations LPIN polyclonal antibodies to lipoprotein ice nucleator - ANOVA analysis of variance - Apo-I apolipoprotein I - Apo-II apolipoprotein II - LPIN lipoprotein ice nucleator - PAGE polyacrylamide gel electrophoresis - PAS Periodoacetate-Schiff's base - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - SCP supercooling point (ice nucleation temperature) - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TLC thin layer chromatography  相似文献   

7.
In the fall, freeze tolerant intertidal invertebrates usually produce ice-nucleating proteins that are secreted into the hemolymph. These proteins help protect against freeze damage by insuring that ice formation is limited to extracellular spaces. Geukensia demissa, a freeze tolerant, salt marsh bivalve mollusc was examined for the presence of ice nucleating proteins. The ice-nucleating temperature (INT) of the hemolymph was not significantly different from artificial seawater of the same salinity indicating the lack of an ice nucleating protein in the hemolymph. The palial fluid did have an elevated INT, indicating the presence of an ice nucleator. The INT of the palial fluid was significantly reduced by boiling and filtration through a 0.45-&mgr;m filter. High INT was also observed in the seawater associated with the bivalves, and was demonstrated in water samples collected from salt marshes but not sand and pebble beaches. Moreover, the INT of water samples collected from a salt marsh decreased in the summer. All of these data suggest that the ice-nucleating agents in the hemolymph and the seawater are ice-nucleating bacteria. One species of ice-nucleating bacteria, Pseudomonas fulva was isolated from the gills of Geukensia. These bacteria could perform the same function as hemolymph ice-nucleating proteins by limiting ice formation to extracellular compartments.  相似文献   

8.
The ice nucleation-active protein of Erwinia ananas IN-10 (inaA protein) was over-expressed as inclusion bodies in Escherichia coli in a yield of 15.3 mg of inaA protein from 60 mg of bacterial cells on a dry-matter basis. The inaA protein was purified from the inclusion bodies by solubilization with detergents to obtain a protein preparation free from sugar and lipid. This preparation had a distinct ice nucleation activity, indicating that the inaA protein per se is able to act as a nucleus.  相似文献   

9.
Optimization of the culture medium is essential for the production of a large biomass of high ice-nucleating-active micro-organisms such as Pseudomonas syringae. Cultures in bioreactors show that optimal substrate concentrations are approximately the same for ice nucleating activity (INA) and total biomass (50–80 g/l of glucose; 28 g/l of peptone) but not for the growth rate. The INA is lowest when the growth rate is highest (50 g/l of glucose, 15 g/l of peptone). We have shown that the maximal biomass production and INA are related to the C/N ratio (optimal ratio: 10) rather than to the substrate concentration. These results also contribute to knowledge on the physiology of these bacteria and support the sequential maturation of the ice nucleating sites.  相似文献   

10.
Abstract A number of freeze-tolerant insect species contain proteins/lipoproteins or insoluble crystals that are ice nucleating active at relatively high subzero temperatures. Recently ice nucleating active bacteria and fungi have been identified as normal flora in insect guts. However, most insects are unable to survive internal ice formation and the key factor in their overwintering survival is the regulation of the temperature at which they spontaneously freeze. To enhance their supercooling capacity overwintering insects eliminate endogenous ice nucleators, accumulate low molecular weight polyols and sugars, and synthesize hemolymph antifreeze proteins or peptides. The factors affecting the supercooling capacity of overwintering insects or the mechanism of cold-hardiness are discussed.  相似文献   

11.
大多数冰冻耐受性昆虫具有蛋白质/脂蛋白质或非溶性的晶体,它们相对地在较高温度下具有激活体内冰核的作用。最近已确证,许多昆虫肠道中正常的细菌和真菌是冰核激活菌丛。而对于非冰冻耐受性的昆虫,其存活是不允许体内冰的形成。它们在过冬过程中,关键是要调节体液的过冷却点,避免结冰。为了增加抗冻能力,非冰冻耐受性的过冬昆虫通过去除内源性冰核、积累低分子量的多元醇和糖类以及血淋巴中抗冻蛋白或抗冻肽的合成来降低体液的过冷却点。本文详尽综述了过冬昆虫抗冻机理的研究进展。  相似文献   

12.
Meaningful improvements in winter cereal cold hardiness requires a complete model of freezing behaviour in the critical crown organ. Magnetic resonance microimaging diffusion‐weighted experiments provided evidence that cold acclimation decreased water content and mobility in the vascular transition zone (VTZ) and the intermediate zone in rye (Secale cereale L. Hazlet) compared with wheat (Triticum aestivum L. Norstar). Differential thermal analysis, ice nucleation, and localization studies identified three distinct exothermic events. A high‐temperature exotherm (?3°C to ?5°C) corresponded with ice formation and high ice‐nucleating activity in the leaf sheath encapsulating the crown. A midtemperature exotherm (?6°C and ?8°C) corresponded with cavity ice formation in the VTZ but an absence of ice in the shoot apical meristem (SAM). A low‐temperature exotherm corresponded with SAM injury and the killing temperature in wheat (?21°C) and rye (?27°C). The SAM had lower ice‐nucleating activity and freezing survival compared with the VTZ when frozen in vitro. The intermediate zone was hypothesized to act as a barrier to ice growth into the SAM. Higher cold hardiness of rye compared with wheat was associated with higher VTZ and intermediate zone desiccation resulting in the formation of ice barriers surrounding the SAM.  相似文献   

13.
Antibodies were raised against the InaW protein, the product of the ice nucleation gene of Pseudomonas fluorescens MS1650, after protein isolation from an Escherichia coli clone. On Western blots (immunoblots), these antibodies recognized InaW protein and InaZ protein (the ice nucleation gene product of Pseudomonas syringae S203), produced by both E. coli clones and the source organisms. The InaZ protein appeared in P. syringae S203 during stationary phase; its appearance was correlated with the appearance of the ice nucleation-active phenotype. In contrast, the InaW protein occurred at relatively constant levels throughout the growth phases of P. fluorescens MS1650; the ice nucleation activity was also constant. Western analyses of membrane preparations of P. syringae PS31 and Erwinia herbicola MS3000 with this antibody revealed proteins which were synthesized with development of the nucleating phenotype. In these species the presence or absence of the nucleating phenotype was controlled by manipulation of culture conditions. In all nucleation-positive cultures examined, cross-reacting low-molecular-weight bands were observed; these bands appeared to be products of proteolytic degradation of ice nucleation proteins. The proteolysis pattern of InaZ protein seen on Western blots showed a periodic pattern of fragment sizes, suggesting a highly repetitive site for protease action. A periodic primary structure is predicted by the DNA sequence of the inaZ gene.  相似文献   

14.
Cells of an ice nucleation-active strain of Ermnia ananas were entrapped in calcium alginate to prepare an ice-nucleating gel usable as ice nuclei for freeze concentration. The ice-nucleating gel was also adjusted as to specific gravity. When it was placed at a desired position in a liquid material such as egg white, ice formed at this position as the material was cooled. It was possible to put the ice- nucleating gel in liquid foodstuffs such as egg white and lemon juice before their temperatures reached subzero points. Application of this method produced freeze-concentrated foods whose properties were not significantly deteriorated.  相似文献   

15.
Antifreeze proteins (AFPs) protect many plants and organisms from freezing in low temperatures. Of the different AFPs, the most studied AFP Type I from winter flounder is used in the current computational studies to gain molecular insight into its adsorption at the ice/water interface. Employing molecular dynamics simulations, we calculate the free energy difference between the hydrophilic and hydrophobic faces of the protein interacting with ice. Furthermore, we identify three properties of Type I "antifreeze" proteins that discriminate among these two orientations of the protein at the ice/water interface. The three properties are: the "surface area" of the protein; a measure of the interaction of the protein with neighboring water molecules as determined by the number of hydrogen bond count, for example; and the side-chain orientation angles of the threonine residues. All three discriminants are consistent with our free energy results, which clearly show that the hydrophilic protein face orientations toward the ice/water interface, as hypothesized from experimental and ice/vacuum simulations, are incorrect and support the hypothesis that the hydrophobic face is oriented toward the ice/water interface. The adsorption free energy is calculated to be 2-3 kJ/mol.  相似文献   

16.
Mao X  Liu Z  Ma J  Pang H  Zhang F 《Cryobiology》2011,62(2):91-99
Many ectotherms organisms produce antifreeze proteins (AFPs) which inhibit the growth of ice by binding to the surface of ice crystals. In this study, a novel antifreeze protein gene from the desert beetle Anatolica polita (named as Apafp752) was expressed in a high level in Escherichia coli strain BL21 (DE3). An approximately 30 kDa fusion protein thioredoxin (Trx)-ApAFP752 was purified through Ni–NTA affinity chromatography and gel filtration chromatography. The activity of the purified fusion protein Trx-ApAFP752 was analyzed by thermal hysteresis activity (THA) and cryoprotection assay. The results suggested that Trx-ApAFP752 conferred freeze resistance on bacterium in a concentration- and time-dependent manner and the cryoprotective effect increased under alkaline conditions. Circular Dichroism (CD) spectrum analysis showed that the recombinant protein of ApAFP752 possessing β-sheet as the main structure was stable under a wide range of pH from 2.0 to 11.0 and thermal stability below 50 °C. The predicted 3D structure showed that Trx-ApAFP752 could form a β-helix structure on the antifreeze protein part, which placed most of the Thr in a regular array on one side of the protein to form a putative ice-binding surface.  相似文献   

17.
An ice-binding protein from an Antarctic sea ice bacterium   总被引:4,自引:0,他引:4  
An Antarctic sea ice bacterium of the Gram-negative genus Colwellia, strain SLW05, produces an extracellular substance that changes the morphology of growing ice. The active substance was identified as a approximately 25-kDa protein that was purified through its affinity for ice. The full gene sequence was determined and was found to encode a 253-amino acid protein with a calculated molecular mass of 26,350 Da. The predicted amino acid sequence is similar to predicted sequences of ice-binding proteins recently found in two species of sea ice diatoms and a species of snow mold. A recombinant ice-binding protein showed ice-binding activity and ice recrystallization inhibition activity. The protein is much smaller than bacterial ice-nucleating proteins and antifreeze proteins that have been previously described. The function of the protein is unknown but it may act as an ice recrystallization inhibitor to protect membranes in the frozen state.  相似文献   

18.
Ice nucleation spectrometry was used to look for the presence of ice nucleating agents (INAs), and their inhibitors, in cultures ofPanagrolaimus davidi, an Antarctic nematode which survives intracellular freezing. INA activity was absent in both nematode suspensions and homogenates. The nematodes produce a substance which inhibits the nucleation activity of organic INAs but not of an inorganic INA (AgI). The nucleation inhibitor is both released from the nematode by homogenization and excreted by them into the medium, but the former was more effective at inhibiting nucleation. The inhibitory activity was destroyed by heating. A thermal hysteresis protein, or a similar ice-active substance, may be responsible for the nucleation inhibition.  相似文献   

19.
The antitumor natural product RA-VII has been evaluated as an inhibitor of protein synthesis in vitro. Complete inhibition of protein synthesis in rabbit reticulocyte lysates is observed with 5 μM RA-VII. Mechanistic studies using purified elongation factors and ribosomes identify RA-VII as a peptidyltransferase inhibitor. Thus, similar to the related natural products bouvardin and RA-XII, RA-VII appears to function by binding to eukaryotic ribosomes.  相似文献   

20.
Some ice-nucleating bacterial strains, including Pantoea ananatis (Erwinia uredovora), Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for the ability to shed ice nuclei into the growth medium. A novel ice-nucleating bacterium, Pseudomonas antarctica IN-74, was isolated from Ross Island, Antarctica. Cell-free ice nuclei from P. antarctica IN-74 were different from the conventional cell-free ice nuclei and showed a unique characterization. Cell-free ice nuclei were purified by centrifugation, filtration (0.45 μm), ultrafiltration, and gel filtration. In an ice-nucleating medium in 1 liter of cell culture, maximum growth was obtained with the production of 1.9 mg of cell-free ice nuclei. Ice nucleation activity in these cell-free ice nuclei preparations was extremely sensitive to pH. It was demonstrated that the components of cell-free ice nuclei were protein (33%), saccharide (12%), and lipid (55%), indicating that cell-free ice nuclei were lipoglycoproteins. Also, carbohydrate and lipid stains showed that cell-free ice nuclei contained both carbohydrate and lipid moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号