首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of vanilloid receptor (VR1) by protein kinase C (PKC) was investigated in cells ectopically expressing VR1 and primary cultures of dorsal root ganglion neurons. Submicromolar phorbol 12,13-dibutyrate (PDBu), which stimulates PKC, acutely activated Ca(2+) uptake in VR1-expressing cells at pH 5.5, but not at mildly acidic or neutral pH. PDBu was antagonized by bisindolylmaleimide, a PKC inhibitor, and ruthenium red, a VR1 ionophore blocker, but not capsazepine, a vanilloid antagonist indicating that catalytic activity of PKC is required for PDBu activation of VR1 ion conductance, and is independent of the vanilloid site. Chronic PDBu dramatically down-regulated PKC(alpha) in dorsal root ganglion neurons or the VR1 cell lines, whereas only partially influencing PKCbeta, -delta, -epsilon, and -zeta. Loss of PKC(alpha) correlated with loss of response to acute re-challenge with PDBu. Anandamide, a VR1 agonist in acidic conditions, acts additively with PDBu and remains effective after chronic PKC down-regulation. Thus, two independent VR1 activation pathways can be discriminated: (i) direct ligand binding (anandamide, vanilloids) or (ii) extracellular ligands coupled to PKC by intracellular signaling. Experiments in cell lines co-expressing VR1 with different sets of PKC isozymes showed that acute PDBu-induced activation requires PKC(alpha), but not PKC(epsilon). These studies suggest that PKC(alpha) in sensory neurons may elicit or enhance pain during inflammation or ischemia.  相似文献   

2.
Analysis of small dorsal root ganglion (DRG) neurons revealed novel functions for vanilloid receptor 1 (VR1) in the regulation of cytosolic Ca(2+). The VR1 agonist capsaicin induced Ca(2+) mobilization from intracellular stores in the absence of extracellular Ca(2+), and this release was inhibited by the VR1 antagonist capsazepine but was unaffected by the phospholipase C inhibitor xestospongins, indicating that Ca(2+) mobilization was dependent on capsaicin receptor binding and was not due to intracellular inositol-1,4,5-trisphosphate generation. Confocal microscopy revealed extensive expression of VR1 on endoplasmic reticulum, consistent with VR1 operating as a Ca(2+) release receptor. The main part of the capsaicin-releasable Ca(2+) store was insensitive to thapsigargin, a selective endoplasmic reticulum Ca(2+)-ATPase inhibitor, suggesting that VR1 might be predominantly localized to a thapsigargin-insensitive endoplasmic reticulum Ca(2+) store. In addition, VR1 was observed to behave as a store-operated Ca(2+) influx channel. In DRG neurons, capsazepine attenuated Ca(2+) influx following thapsigargin-induced Ca(2+) store depletion and inhibited thapsigargin-induced inward currents. Conversely, transfected HEK-293 cells expressing VR1 showed enhanced Ca(2+) influx and inward currents following Ca(2+) store depletion. Combined data support topographical and functional diversity for VR1 in the regulation of cytosolic Ca(2+) with the plasma membrane-associated form behaving as a store-operated Ca(2+) influx channel and endoplasmic reticulum-associated VR1 possibly functioning as a Ca(2+) release receptor in sensory neurons.  相似文献   

3.
The vanilloid receptor VR1 is a nonspecific Ca(2+) channel, expressed in sensory neurons in the peripheral nervous system and in various brain regions, which is believed to be an important molecular integrator of several chemical (acid, vanilloids) and physical stimuli (heat) that cause pain. Recently, several endogenous ligands for VR1 have been identified such as arachidonyl ethanolamide (anandamide) and the more potent arachidonyl dopamine (AA-DO). Here, we further characterize AA-DO as a ligand for rat VR1, heterologously expressed in CHO and HEK293 cells. AA-DO inhibited the binding of [3H]RTX to VR1 with a K(d) value of 5.49 +/- 0.68 microM and with positive cooperativity (p = 1.89 +/- 0.27), indicating that AA-DO was about 5-fold more potent than anandamide in this system. The K(d) (9.7 +/- 3.3 microM), and p values (1.54 +/- 0.04) for the binding of AA-DO to spinal cord membranes are in good correlation with the CHO-VR1 data. AA-DO stimulated 45Ca(2+) uptake on CHO-VR1 and HEK-VR1 cells with EC(50) values of 4.76 +/- 1.43 and 7.17 +/- 1.64 microM and Hill coefficients of 1.28 +/- 0.11 and 1.13 +/- 0.13, respectively, consistent with the binding measurements. In contrast to anandamide, AA-DO induced virtually the same level of 45Ca(2+) uptake as did capsaicin (90 +/- 6.6% in the CHO cells expressing VR1 and 89.3 +/- 9.4% in HEK293 cells expressing VR1). In a time dependent fashion following activation, AA-DO partially desensitized VR1 both in 45Ca(2+) uptake assays (IC(50) = 3.24 +/- 0.84 microM, inhibition is 68.5 +/- 6.85%) as well as in Ca(2+) imaging experiments (35.8 +/- 5.1% inhibition) using the CHO-VR1 system. The extent of desensitization was similar to that caused by capsaicin itself. We conclude that AA-DO is a full agonist for VR1 with a potency in the low micromolar range and is able to significantly desensitize the cells in a time and dose dependent manner.  相似文献   

4.
Nociceptive neurons in the peripheral nervous system detect noxious stimuli and report the information to the central nervous system. Most nociceptive neurons express the vanilloid receptor, TRPV1, a nonselective cation channel gated by vanilloid ligands such as capsaicin, the pungent essence of chili peppers. Here, we report the synthesis and biological application of two caged vanilloids: biologically inert precursors that, when photolyzed, release bioactive vanilloid ligands. The two caged vanilloids, Nb-VNA and Nv-VNA, are photoreleased with quantum efficiency of 0.13 and 0.041, respectively. Under flash photolysis conditions, photorelease of Nb-VNA and Nv-VNA is 95% complete in approximately 40 micros and approximately 125 micros, respectively. Through 1-photon excitation with ultraviolet light (360 nm), or 2-photon excitation with red light (720 nm), the caged vanilloids can be photoreleased in situ to activate TRPV1 receptors on nociceptive neurons. The consequent increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) can be visualized by laser-scanning confocal imaging of neurons loaded with the fluorescent Ca(2+) indicator, fluo-3. Stimulation results from TRPV1 receptor activation, because the response is blocked by capsazepine, a selective TRPV1 antagonist. In Ca(2+)-free extracellular medium, photoreleased vanilloid can still elevate [Ca(2+)](i), which suggests that TRPV1 receptors also reside on endomembranes in neurons and can mediate Ca(2+) release from intracellular stores. Notably, whole-cell voltage clamp measurements showed that flash photorelease of vanilloid can activate TRPV1 channels in <4 ms at 22 degrees C. In combination with 1- or 2-photon excitation, caged vanilloids are a powerful tool for probing morphologically distinct structures of nociceptive sensory neurons with high spatial and temporal precision.  相似文献   

5.
The real time dynamics of vanilloid-induced cytotoxicity and the specific deletion of nociceptive neurons expressing the wild-type vanilloid receptor (VR1) were investigated. VR1 was C-terminally tagged with either the 27-kDa enhanced green fluorescent protein (eGFP) or a 12-amino acid epsilon-epitope. Upon exposure to resiniferatoxin, VR1eGFP- or VR1epsilon-expressing cells exhibited pharmacological responses similar to those of cells expressing the untagged VR1. Within seconds of vanilloid exposure, the intracellular free calcium ([Ca(2+)](i)) was elevated in cells expressing VR1. A functional pool of VR1 also was localized to the endoplasmic reticulum that, in the absence of extracellular calcium, also was capable of releasing calcium upon agonist treatment. Confocal imaging disclosed that resiniferatoxin treatment induced vesiculation of the mitochondria and the endoplasmic reticulum ( approximately 1 min), nuclear membrane disruption (5-10 min), and cell lysis (1-2 h). Nociceptive primary sensory neurons endogenously express VR1, and resiniferatoxin treatment induced a sudden increase in [Ca(2+)](i) and mitochondrial disruption which was cell-selective, as glia and non-VR1-expressing neurons were unaffected. Early hallmarks of cytotoxicity were followed by specific deletion of VR1-expressing cells. These data demonstrate that vanilloids disrupt vital organelles within the cell body and, if administered to sensory ganglia, may be employed to rapidly and selectively delete nociceptive neurons.  相似文献   

6.
7.
Seventeen biarylcarboxybenzamide derivatives were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor (VR1) in rat DRG neurons. The replacement of the piperazine moiety of the lead compound 1 with phenyl ring showed quite enhanced antagonistic activity. Among the prepared derivatives, N-(4-tert-butylphenyl)-4-pyridine-2-yl-benzamide (2, IC(50)=31 nM) and N-(4-tert-butylphenyl)-4-(3-methylpyridine-2-yl)benzamide (3g, IC(50)=31 nM), showed 5-fold higher antagonistic activity than 1 in (45)Ca(2+)-influx assay.  相似文献   

8.
The tissue distribution and functional characterization of human VR1   总被引:8,自引:0,他引:8  
The irritant action of capsaicin is mediated by the vanilloid receptor, VR1, which is expressed in sensory neurons termed nociceptors. Capsaicin also desensitizes nociceptors and, thus, is useful clinically as an analgesic. Given the potential importance of VR1 in pain, we have cloned the human capsaicin receptor, hVR1, from a human dorsal root ganglia (DRG) cDNA library. Human VR1 protein is 85% identical to the rat VR1 and many of the amino acid differences are concentrated at the amino and carboxyl termini. VR1 is expressed in DRG as an approximately 4.2 kilobase RNA, and is also expressed in the central nervous system and in the kidney. Capsaicin (EC(50) = 853 nM), low pH (<5.5), and noxious heat (44 degrees C) activate hVR1 expressed in Xenopus oocytes. Subthreshold pH (6.4) sensitizes VR1 to capsaicin (EC(50) = 221 nM). This study demonstrates the similarity of human and rat VR1 in integrating multiple noxious stimuli.  相似文献   

9.
10.
Bradykinin is an important mediator produced during myocardial ischemia and infarction that can activate and/or sensitize cardiac spinal (sympathetic) sensory neurons to trigger chest pain. Because a long-onset latency is associated with the bradykinin effect on cardiac spinal afferents, a cascade of intracellular signaling events is likely involved in the action of bradykinin on cardiac nociceptors. In this study, we determined the signal transduction mechanisms involved in bradykinin stimulation of cardiac nociceptors. Cardiac dorsal root ganglion (DRG) neurons in rats were labeled by intracardiac injection of a fluorescent tracer, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine percholate (DiI). Whole cell current-clamp recordings were performed in acutely isolated DRG neurons. In DiI-labeled DRG neurons, 1 microM bradykinin significantly increased the firing frequency and lowered the membrane potential. Iodoresiniferatoxin, a highly specific transient receptor potential vanilloid type 1 (TRPV1) antagonist, significantly reduced the excitatory effect of bradykinin. Furthermore, the stimulating effect of bradykinin on DiI-labeled DRG neurons was significantly attenuated by baicalein (a selective inhibitor of 12-lipoxygenase) or 2-aminoethyl diphenylborinate [an inositol 1,4,5-trisphosphate (IP(3)) antagonist]. In addition, the effect of bradykinin on cardiac DRG neurons was abolished after the neurons were treated with BAPTA-AM or thapsigargin (to deplete intracellular Ca(2+) stores) but not in the Ca(2+)-free extracellular solution. Collectively, these findings provide new evidence that 12-lipoxygenase products, IP(3), and TRPV1 channels contribute importantly to excitation of cardiac nociceptors by bradykinin. Activation of TRPV1 and the increase in the intracellular Ca(2+) are critically involved in activation/sensitization of cardiac nociceptors by bradykinin.  相似文献   

11.
Agents that activate cannabinoid CB1 receptors for marijuana's active principal, THC, or vanilloid VR1 receptors for red chilli peppers' pungent ingredient, capsaicin, modulate pain perception. Stimulation of presynaptic CB1 leads to inhibition of glutamate release in the spinal cord, whereas VR1 stimulation causes release of substance P and CGRP from DRG neurons. VR1 undergoes rapid desensitization by its agonists, which makes VR1-expressing neurons insensitive to subsequent stimulation and results in analgesia. Thus, both CB1 and VR1, which are coexpressed in several spinal and DRG neurons, are targets for analgesic drug development. CB1 and VR1 also share endogenous agonists, namely anandamide, NADA and some of their analogs, and may be regarded as metabotropic and ionotropic receptors for the same family of mediators, with opposing roles in pain perception. The development of 'hybrid' CB1/VR1 agonists as potent analgesics and the functional relationships between CB1 and VR1 in sensory neurons will be discussed.  相似文献   

12.
Ca(2+)-loaded calmodulin normally inhibits multiple Ca(2+)-channels upon dangerous elevation of intracellular Ca(2+) and protects cells from Ca(2+)-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+). Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+)-uptake via the vanilloid inducible Ca(2+)-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca(2+) entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45)Ca(2+)-uptake at microM concentrations: calmidazolium (broad range) > or = trifluoperazine (narrow range) chlorpromazine/amitriptyline>fluphenazine>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+) or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+)-uptake in intact TRPV1(+) cells, and suggests an extracellular site of inhibition. TRPV1(+), inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+)-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+)-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+)-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2+)-channels but not affecting motoneurons.  相似文献   

13.
The endocannabinoid anandamide is able to interact with the transient receptor potential vanilloid 1 (TRPV1) channels at a molecular level. As yet, endogenously produced anandamide has not been shown to activate TRPV1, but this is of importance to understand the physiological function of this interaction. Here, we show that intracellular Ca2+ mobilization via the purinergic receptor agonist ATP, the muscarinic receptor agonist carbachol or the Ca(2+)-ATPase inhibitor thapsigargin leads to formation of anandamide, and subsequent TRPV1-dependent Ca2+ influx in transfected cells and sensory neurons of rat dorsal root ganglia (DRG). Anandamide metabolism and efflux from the cell tonically limit TRPV1-mediated Ca2+ entry. In DRG neurons, this mechanism was found to lead to TRPV1-mediated currents that were enhanced by selective blockade of anandamide cellular efflux. Thus, endogenous anandamide is formed on stimulation of metabotropic receptors coupled to the phospholipase C/inositol 1,4,5-triphosphate pathway and then signals to TRPV1 channels. This novel intracellular function of anandamide may precede its action at cannabinoid receptors, and might be relevant to its control over neurotransmitter release.  相似文献   

14.
In human embryonic kidney cells over-expressing the human vanilloid receptor type 1 (VR1), palmitoylethanolamide (PEA, 0.5-10 microM) enhanced the effect of arachidonoylethanolamide (AEA, 50 nM) on the VR1-mediated increase of the intracellular Ca2+ concentration. PEA (5 microM) decreased the AEA half-maximal concentration for this effect from 0.44 to 0.22 microM. The PEA effect was not due to inhibition of AEA hydrolysis or adhesion to non-specific sites, since bovine serum albumin (0.01-0.25%) potently inhibited AEA activity, and PEA also enhanced the effect of low concentrations of the VR1 agonists resiniferatoxin and capsaicin. PEA (5 microM) enhanced the affinity of AEA for VR1 receptors as assessed in specific binding assays. These data suggest that PEA might be an endogenous enhancer of VR1-mediated AEA actions.  相似文献   

15.
We address the specific role of cytoplasmic Ca(2+) overload as a cell death trigger by expressing a receptor-operated specific Ca(2+) channel, vanilloid receptor subtype 1 (VR1), in Jurkat cells. Ca(2+) uptake through the VR1 channel, but not capacitative Ca(2+) influx stimulated by the muscarinic type 1 receptor, induced sustained intracellular [Ca(2+)] rises, exposure of phosphatidylserine, and cell death. Ca(2+) influx was necessary and sufficient to induce mitochondrial damage, as assessed by opening of the permeability transition pore and collapse of the mitochondrial membrane potential. Ca(2+)-induced cell death was inhibited by ruthenium red, protonophore carbonyl cyanide m-chlorophenylhydrazone, or cyclosporin A treatment, as well as by Bcl-2 expression, indicating that this process requires mitochondrial calcium uptake and permeability transition pore opening. Cell death occurred without caspase activation, oligonucleosomal/50-kilobase pair DNA cleavage, or release of cytochrome c or apoptosis inducer factor from mitochondria, but it required oxidative/nitrative stress. Thus, Ca(2+) influx triggers a distinct program of mitochondrial dysfunction leading to paraptotic cell death, which does not fulfill the criteria for either apoptosis or necrosis.  相似文献   

16.
Vanilloid agonists such as capsaicin activate ion flux through the TRPV1 channel, a heat- and ligand-gated cation channel that transduces painful chemical or thermal stimuli applied to peripheral nerve endings in skin or deep tissues. We have probed the SAR of a variety of 1,4-dihydropyridine (DHP) derivatives as novel 'enhancers' of TRPV1 activity by examining changes in capsaicin-induced elevations in (45)Ca(2+)-uptake in either cells ectopically expressing TRPV1 or in cultured dorsal root ganglion (DRG) neurons. The enhancers increased the maximal capsaicin effect on (45)Ca(2+)-uptake by typically 2- to 3-fold without producing an action when used alone. The DHP enhancers contained 6-aryl substitution and small alkyl groups at the 1 and 4 positions, and a 3-phenylalkylthioester was tolerated. Levels of free intracellular Ca(2+), as measured by calcium imaging, were also increased in DRG neurons when exposed to the combination of capsaicin and the most efficacious enhancer 23 compared to capsaicin alone. Thus, DHPs can modulate TRPV1 channels in a positive fashion.  相似文献   

17.
Yang X  Han JQ  Liu R 《生理学报》2008,60(1):143-148
本文旨在探讨肠道局部炎症对脊髓肠道感觉传入神经通路的近期及远期效应,应用三硝基苯磺酸(trinitrobenzenesulfonic acid,TNBS)建立大鼠结肠炎动物模型,用DiI(3)逆行神经标记法识别支配肠道炎症部位的脊髓背根神经节(dorsalrootganglia,DRG)神经元,通过肉眼观察、平均组织损伤评分及髓过氧化物酶活性测定等方法评价肠道组织的炎症反应状态,用免疫组织化学法测定香草酸受体l(vanilloid receptor 1,VRl)和降钙素基因相关肽(calcitonin gene-related peptide,CGRP)在支配结肠炎症部位的DRG神经元中的表达,比较炎症不同阶段(给予TNBS后7、21、42 d)CGRP和VRI阳性神经元的数目.结果显示,炎症急性期(即给予TNBS后7 d)结肠黏膜肉眼可见明显损伤,同时相应DRG中表达CGRP及VRl的神经元增加近2倍[(95.38±9.45)%VS(42.86±5.02)%,(89.23±8.21)%VS(32.54±4.58)%].给予TNBS后21、42 d,肠道炎症反应已完全消退,但表达CGRP及VRl的DRG神经元数目仍明显高于对照组[(86.25±8.21)%,(68.28±7.12)%VS(42.86±5.02)%;(67.22±6.52)%,(56.25±4.86)%VS(32.54±4.58)%].结果提示,肠道局部炎症可以上调支配肠道的脊髓传入神经元中CGRP和VRl的表达,这种异常表达可以持续至肠道炎症反应消退后的一定时间.  相似文献   

18.
Herein, we provide the first evidence on the capsaicin (CPS) receptor vanilloid receptor type-1 (VR1) by rat thymocytes, and its involvement in CPS-induced apoptosis. VR1 mRNA was identified by quantitative RT-PCR in CD5(+) thymocytes. By immunofluorescence and flow cytometry, we found that a substantial portion of CD5+ thymocytes, namely CD4+ and double negative (DN) cell subsets, express VR1 that was present on plasma membrane on discrete spots. By Western blot, VR1 protein was identified as a single band of 95 kDa. We also described that CPS could trigger two distinct pathways of thymocyte death, namely apoptosis and necrosis depending on the dose of CPS exposure. CPS-induced apoptosis involved intracellular free calcium (Ca2+) influx, phosphatidylserine exposure, mitochondrial permeability transmembrane pore (PTP) opening and mitochondrial transmembrane potential (Delta Psi m) dissipation leading to cytochrome c release, activation of caspase-9 and -3 and oligonucleosomal DNA fragmentation. VR1 was functionally implicated in these events as they were completely abrogated by the VR1 antagonist, capsazepine (CPZ). Finally, we demonstrated that VR1 expression on distinct thymocytes was associated with the selective ability of CPS to trigger DNA fragmentation in VR1+ CD4+ and DN thymocytes. Overall, our results suggest that the expression of VR1 on thymocytes may function as a sensor of harmful stimuli present in the thymic environment.  相似文献   

19.
Diabetes mellitus is associated with one or more kinds of stimulus-evoked pain including hyperalgesia and allodynia. The mechanisms underlying painful diabetic neuropathy remain poorly understood. Previous studies demonstrate an important role of vanilloid receptor 1 (VR1) in inflammation and injury-induced pain. Here we investigated the function and expression of VR1 in dorsal root ganglion (DRG) neurons isolated from streptozotocin-induced diabetic rats between 4 and 8 weeks after onset of diabetes. DRG neurons from diabetic rats showed significant increases in capsaicin- and proton-activated inward currents. These evoked currents were completely blocked by the capsaicin antagonist capsazepine. Capsaicin-induced desensitization of VR1 was down-regulated, whereas VR1 re-sensitization was up-regulated in DRG neurons from diabetic rats. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate blunted VR1 desensitization, and this effect was reversible in the presence of the PKC inhibitor bisindolylmaleimide I. Compared with the controls, VR1 protein was decreased in DRG whole-cell homogenates from diabetic rats, but increased levels of VR1 protein were observed on plasma membranes. Of interest, the tetrameric form of VR1 increased significantly in DRGs from diabetic rats. Increased phosphorylation levels of VR1 were also observed in DRG neurons from diabetic rats. Colocalization studies demonstrated that VR1 expression was increased in large myelinated A-fiber DRG neurons, whereas it was decreased in small unmyelinated C-fiber neurons as a result of diabetes. These results suggest that painful diabetic neuropathy is associated with altered cell-specific expression of the VR1 receptor that is coupled to increased function through PKC-mediated phosphorylation, oligomerization, and targeted expression on the cell surface membrane.  相似文献   

20.
Agents that activate cannabinoid CB1 receptors for marijuana's active principal, THC, or vanilloid VR1 receptors for red chilli peppers' pungent ingredient, capsaicin, modulate pain perception. Stimulation of presynaptic CB1 leads to inhibition of glutamate release in the spinal cord, whereas VR1 stimulation causes release of substance P and CGRP from DRG neurons. VR1 undergoes rapid desensitization by its agonists, which makes VR1‐expressing neurons insensitive to subsequent stimulation and results in analgesia. Thus, both CB1 and VR1, which are coexpressed in several spinal and DRG neurons, are targets for analgesic drug development. CB1 and VR1 also share endogenous agonists, namely anandamide, NADA and some of their analogs, and may be regarded as metabotropic and ionotropic receptors for the same family of mediators, with opposing roles in pain perception. The development of ‘hybrid’ CB1/VR1 agonists as potent analgesics and the functional relationships between CB1 and VR1 in sensory neurons will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号