首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cryogel matrices composed of different polymeric blends were synthesized, yielding a unique combination of hydrophilicity and hydrophobicity with the presence or absence of charged surface. Four such cryogel matrices composed of polyacrylamide–chitosan (PAAC), poly(N‐isopropylacrylamide)–chitosan, polyacrylonitrile (PAN), and poly(N‐isopropylacrylamide) were tested for growth of different hybridoma cell lines and production of antibody in static culture. All the matrices were capable for the adherence of hybridoma cell lines 6A4D7, B7B10, and H9E10 to the polymeric surfaces as well as for the efficient monoclonal antibody (mAb) production. PAAC proved to be relatively better in terms of both mAb production and cell growth. Further, PAAC cryogel was designed into three different formats, monolith, disks, and beads, and used as packing material for packed‐bed bioreactor. Long‐term cultivation of 6A4D7 cell line on PAAC cryogel scaffold in all the three formats could be successfully done for a period of 6 weeks under static conditions. Continuous packed‐bed bioreactor was setup using 6A4D7 hybridoma cell line in the three reactor formats. The reactors ran continuously for a period of 60 days during which mAb production and metabolism of cells in the bioreactors were monitored periodically. The monolith bioreactor performed most efficiently over a period of 60 days and produced a total of 57.5 mg of antibody in the first 30 days (in 500 mL) with a highest concentration of 115 μg mL?1, which is fourfold higher than t‐flask culture. The results demonstrate that appropriate chemistry and geometry of the bioreactor matrix for cell growth and immobilization can enhance the reactor productivity. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

2.
A major variable to consider in the production of biologicals from mammalian cell cultures is the mode of operation, be it a batch, continuous, perfusion, fed-batch or other production method. The final choice must consider a number of fundamental and economic issues. Here we present some antibody production data from different cell lines using different modes of production and discuss the important factors for consideration in choosing a production strategy. It was found that the productivity of batch cultures was lower than that obtained in continuous and perfused cultures, but that productivity could be improved by implementing suitable feeding strategies. The antibody productivity of one cell line, MCL1, during exponential phase was not affected by media type or glucose level. The maximum productivity of two cell lines in continuous culture was found to occur at dilution rates below the maximum, from 0.019 to 0.030 hr–1.  相似文献   

3.
The protein-free medium TurboDoma HP.1 (THP.1) was used to produce the CB.Hep-1 monoclonal antibody (mAb) in a CP-1000 hollow fiber bioreactor (HFB). This mAb is used for the immunopurification of recombinant hepatitis B surface antigen (rHBsAg), which is included in a vaccine preparation against the Hepatitis B Virus. By using the experimental conditions tested in this work we were able to generate more than 433 mg of IgG in 43 days. The maximum antibody concentration obtained was about 2.4 mg ml-1and the IgG production per day was approximately 11 mg of monoclonal antibody, which constitutes a good concentration value in comparison to the results obtained in ascitic fluid, where concentration for this hybridoma was around 3 mg ml-1. We used different analytical methods to control the quality of mAbs, obtained from the in vitro system. They included affinity constant determination, analysis of N-glycan structures, immunoaffinity chromatography and antigen binding properties. The results obtained suggest that no significant changes occurred in the mean characteristics of the mAb harvested from the bioreactor during the 43 days of cultivation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Hybridoma batch cultures were extended using feed formulations based on nutrient consumption measured during different batch culture phases when (a) growth but negligible antibody production was taking place; (b) maximum antibody production rate and declining viable cell growth rate were observed. Strategy (a) was the more successful (2.8-fold compared with 1.8-fold antibody titer increase) and maintained cell viability for longer. Analysis of the effects of omitting individual amino acids yielded results which were consistent with those from the feeding experiment (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
The cell cycle kinetics of F3(B6) mouse hybridoma was examined by immunocytochemical staining of bromodeoxyuridine incorporated into the DNA of exponentially growing cells in three different cultures: one supplemented with 10% fetal bovine serum and two adapted to serum-free media, TABIES and BITES. The serum-free cultures, particularly the BITES, had longer cycling times and higher specific antibody production rate. Both observations were correlated to the prolongation of the G1 phase traverse time and substantiated with a starvation blocking experiment.  相似文献   

6.
To determine the effect of hyperosmotic stress on the monoclonal antibody (MAb) production by calcium-alginate-immobilized S3H5/gamma2bA2 hybridoma cells, the osmolalities of medium in the MAb production stage were varied through the addition of NaCI. The specific MAb productivity (q(MAb)) of immobilized cells exposed to abrupt hyperosmotic stress (398 mOsm/kg) was increased by 55% when compared with that of immobilized cells in the control culture (286 mOsm/kg). Furthermore, this enhancement of q(MAb) was not transient. Abrupt increase in osmolality, however, inhibited cell growth, resulting in no increase in volumetric MAb productivity (r(MAb)). On the other hand, gradual increase in osmolality allowed further cell growth while maintaining the enhanced q(MAb) immobilized cells. The q(MAb) immobilized cells at 395 mOsm/kg was 0.661 +/- 0.019 mug/10(6) cells/h, which is almost identical to that of immobilized cells exposed to abrupt osmotic stress. Accordingly, the r(MAb) was increased by ca. 40% when compared with that in the control immobilized cell culture. This enhancement in i(MAb) of immobilized S3H5/gamma2bA2 hybridoma cells by applying gradual osmotic stress suggests the potential of using hyperosmolar medium in other perfusion culture systems for improved MAb production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
The specific monoclonal antibody productivity (q(Mab)) of a murine hybridoma (CC9C10) increased with incubation temperature in the range 33 degrees C to 39 degrees C. q(Mab) was constant at each temperature and was independent of the phase of culture. The q(Mab) increased 97% at 39 degrees C and decreased by 21% at 33 degrees C compared with controls at 37 degrees C. Specific rates of substrate (glucose and glutamine) utilization and byproduct (lactate and ammonia) formation also increased with temperature but the yield coefficient, Y(Lac/Llc') was constant for 33 degrees C to 39 degrees C and Y(Amm/Gin) was constant for 37 degrees C to 39 degrees C. Y(Amm/Gin) at 33 degrees C was lower than the control. Changes in specific nucleotide concentrations and ratios were monitored by analysis of intracellular nucleotide pools. The NTP ratio, (ATP + GTP)/(UTP + CTP), increased and the U-ratio (UTP/UDP-GNac) decreased during the course of each culture, whereas the adenylate energy charge, (ATP + 0.5ADP)/(ATP + ADP + AMP), remained relatively constant at a value 0.8. The relative content of UDP-/N acetyl galactosamine, UDP-N acetyl glucosamine, and NAD increased with incubation temperature, whereas the relative ATP content, SA(ATP + ADP + AMP)/SU (UTP + UDP-sugars) ratio, purine/pyrimidine, ATP/GTP, and U-ratio decreased at higher incubation temperatures. It is possible that these nucleotide parameters may have a regulatory role in the changes of q(Mab) observed at the higher temperatures. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
A fixed bed perfusion system for hybridoma cell immobilization is presented. The system consists of a culturing vessel (300 ml total volume) in which polyurethane (PU) sponges in the form of small cubes of about 5 mm sides are packed. Cells are immobilized by physical entrapment in the foam matrix. By entrapment of the cells in the pores of the matrix high cell concentration can be maintained in a mechanically protected environment. Medium is continuously circulated by an airlift pump mounted in the cell-free chamber (700 ml total volume).Medium flow rate, feeding rate, dissolved oxygen, pH, nutrient uptake and waste product formation can be easily monitored and controlled. Steady state conditions are established with medium dilution rates of 1.0–1.5 reactor volume per day. The steady state is characterized by a constant cell density, constant culture volume and constant glucose and lactate levels. Cell-free supernatant is collected continuously in a cold room adjacent to the 37°C culture room. Monoclonal antibodies (MAb) are produced at a concentration of 150–200 g/ml for several weeks. An important feature of the system is the capacity to maintain a population of cells after the growth phase in a non-proliferating state for extended time periods expressing high titers of MAb.Abbreviations DO Dissolved Oxygen - FBS Fetal Bovine Serum - FBR Fixed Bed Reactor - MAb Monoclonal Antibody - PU polyurethane  相似文献   

9.
For the economical production of monoclonal antibodies (MAbs), the cell-culture medium must be optimized for three different phases: growth of the hybridomas, MAb productivity of the hybridomas, and MAb purification or downstream processing. Medium improvements are necessary to meet these requirements for large-scale MAb production. Information bearing on this issue is being addressed in two research areas, cell biology and biochemical engineering, and is reviewed in this article.  相似文献   

10.
A flow cytometric kinetic study of hybidoma growth and monoclonal antibody production is presented, along with the influence of glutamine on intracellular responses such as (relative) cell size, and cell RNA and total protein content. Specific findings are: (1) RNA content remained constant throughout the growth phase, then fell drastically as the cells entered the stationary phase. Also, in stationary phase, RNA content of antibody-producing cells was higher than for those not secreting antibody. (2) The cell size was constant and maximal throughout exponential phase, and diminished monotonically during later stages. (3) Average protein and antibody cellular content declined dramatically upon glutamine exhaustion. Thus, relative RNA levels and cell size provided quantitative determinants of both cell growth state and antibody secretion conditions. These results encourge consideration of structured kinetic studies which recognize the quality of the biophase.  相似文献   

11.
Electron microscopy of mouse hybridoma cell lines shows that the major difference between non, low and high producer cell lines is the amount of endoplasmic reticulum. Vesicular-tubular or cavernous structures of endoplasmic reticulum, which can survive long after cell death, are particularly abundant in producer cell lines. Immunogold labelling with anti-mouse IgG reveals that antibodies are predominantly located in these structures. The cell membrane undergoes structural changes during the late stages of batch culture with the disappearance of microvilli and the appearance of blebs and deep indentations. Necrosis disrupts the cytoplasmic structures and the nucleus is last to degrade.  相似文献   

12.
The flow-cytometric (FCM) analysis of bivariate DNA/lgG distributions has been conducted to study the cell cycle kinetics and monoclonal antibody (MAb) production during perfusion culture of hybridoma cells. Three different perfusion rates were employed to demonstrate the dependency of MAb synthesis and secretion on cell cycle and growth rate. The results showed that, during the rapid growth period of perfusion culture, the level of intracellular igG contents of hybridoma cells changed significantly at each perfusion rate, while the DNA histograms showing cell cycle phases were almost constant. Meanwhile, during the reduced growth period of perfusion culture, the fraction of cells in the S phase decreased, and the fraction cells in the G1/G0 phase increased with decreasing growth rate. The fraction of cells in the G2/M phase was relatively constant during the whole period of perfusion culture. Positive correlation was found between mean intracellular IgG contents and the specific MAb production rate, suggesting that the deletion of intracellular IgG contents by a flow cytometer could be used as a good indicator for the prediction of changes in specific MAb productivity following manipulation of the culture condition. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
Factors affecting cell growth and antibody production in a mouse hybridoma were investigated. Antibody was produced during the growth and decline phases of a batch culture with an increase in the specific rate of antibody production during the decline phase. The specific rate of antibody production was also increased in cells arrested by 2 mM thymidine, suggesting that cell proliferation and antibody production can be uncoupled. Reduced serum concentrations resulted in lower cell growth rates but increased antibody production rates. However, this trend was reversed in hybridomas which had been arrested by thymidine, since the highest antibody production rate was associated with high serum concentrations. Likewise, in proliferating cells, the optimum pH for antibody production (pH 6.8) was lower than the optimum pH for cell growth (pH 7.2), whereas in thymidine-blocked cells, the highest antibody production rate was at pH 7.2. High antibody production rates and product yields were also associated with low growth rates in continuous cultures. The possibility that antibody was under cell cycle control was investigated in synchronized hybridoma cultures. Antibody production occurred during G1 and G2 with a decline in the M phase and evidence of a further decline in the S phase. Thus antibody production was not restricted to the G1 and S phase in this hybridoma.  相似文献   

14.
Batch and fed-batch cultures of a murine hybridomacell line (AFP-27) were performed in a stirred tankreactor to estimate the effect of feed rate on growthrate, macromolecular metabolism and antibodyproduction. Macromolecular composition was foundto change dynamically during batch culture ofhybridoma cells possibly due to active production ofDNA, RNA and protein during the exponential phase.Antibody synthesis is expected to compete with theproduction of cellular proteins from the amino acidpool. Therefore, it is necessary to examine therelationship between cell growth in terms of cellularmacromolecules and antibody production. In this study,we searched for an optimum feeding strategy bychanging the target specific growth rate in fed-batchculture to give higher antibody productivity whileexamining the macromolecular composition. Concentratedglucose (60 mM) and glutamine (20 mM) in DR medium(1:1 mixture of DMEM and RPMI) with additional aminoacids were fed continuously to the culture and thefeed rate was updated after every sampling to ensureexponential feeding (or approximately constantspecific growth rate). Specific antibody productionrate was found to be significantly increased in thefed-batch cultures at the near-zero specific growthrate in which the productions of cellular DNA, RNA,protein and polysaccharide were strictly limited byslow feeding of glucose, glutamine and other nutrients. Possible implications of these results are discussed.  相似文献   

15.
An immunoglobulin G (IgG(2b)) producing hybridoma cell line (S3H5/gamma2bA2) was cloned and subcloned. Twenty subclones were grown in parallel while being adapted in a stepwise fashion to serum-free medium. Following adaptation to serum-free medium, it was found that 16 of the 20 subclones remained at a relatively constant proportion of nonproducing cells. Three of the remaining subclones transiently deviated from this balance but eventually returned toward this population composition. One subclone continued to lose productivity. A population balance was reached at approximately 8% of the population being nonproducers. The loss of antibody productivity was thus highly reproducible. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
A hybridoma cell line, AFP-27-P, was cultivated in continuous culture under glucose-limited conditions. The viable cell concentration, dead-cell concentration, and cell volume all varied with the dilution rate. A model previously developed for a nonproducing clone of the same cell line, AFP-27-NP, was extended to describe the behavior of the cells. The relationship between the specific growth rate and glucose concentration is described by a function similar to the Monod model. A threshold glucose concentration and a minimum specific growth rate are incorporated; the model is meaningful only at glucose concentration and a minimum specific growth rate are incorporated; the model is meaningful only at glucose concentrations and specific growth rates above these levels. The relationship between the death rate and the glucose concentration is described by an inverted Monod-type function. Furthermore, the yield coefficient based on glucose is constant in the lower range of specific growth rates and changes to a new constant value in the upper range of specific growth rates. No maintenance term for glucose consumption is used; in the plot of specific glucose consumption rate vs. specific growth rate, the line intercepts the specific growth rate at a value close to the minimum growth rate. The productivity of antibody as a function of the specific growth rate is described by a mixed type model with a noon-growth-associated term and a negative-growth-associated term. The values for the model parameters were determined from regression analysis of the steady state data.  相似文献   

17.
Growth of a hybridoma culture, along with production of monoclonal antibody, was demonstrated over extended periods in polysulfone hollow fiber membrane modules. The molecular weight cutoffs of the membranes were 70,000, 50,000, and 100,000 daltons. The hybridoma cell line, designated 65/26, produced IgG (2b/kappa) directed at mouse thymus cell surface antigen, TL.1. Cell growth occurred in the shell space of the reactor, using supplemented RPMI 1640 (20% fetal bovine serum) supplied from a separate reservoir vessel through the hollow fiber lumen. The reservoir contained 125 mL media, which was changed every 4 days. Concentrations of immunoglobulin were determined by an enzyme immunoassay (using protein A and alkaline phosphatase-labeled antibody conjugate). For the 10K, 50K, and 100K hollow fiber membrane modules, the maximum IgG concentrations detected in the 2.5-mL shell space were 47.5-80, 510, and 740 mug/mL, respectively. In the 125-mL reservoir for the 100K hollow fiber membrane module, the IgG concentration was measured at 260 mug/mL These values compare with an IgG concentration of 1 mug/mL when grown in a standard tissue culture flask and 3.2-7.6 mug/mL when grown in 100 ml media in a spinner flask. In addition, 10K and 50K hollow fiber membrane modules were run in a mode that decreased the fetal bovine serum supplement with time. Differences between these systems suggest that it is possible to obtain high IgG accumulation rates, both during and after the exponential growth phase of the hybridoma population.  相似文献   

18.
Summary A detailed study of cell growth and antibody production kinetics in continuous culture found that the specific rate of antibody production reached a maximum saturated profile at a specific growth rate less than the maximum. This observation is novel and of importance in the understanding of the mechanism of antibody production and/or antibody transport.  相似文献   

19.
20.
Biopolymer membrane was prepared using two oppositely charged natural biopolymer. The biopolymer membrane was used for the encapsulation of two hybridoma cell (ATCC CRL-1606, ATCC BH-8852) to produce monoclonal antibodies. In order to reduce the down stream steps, the pore size of the membrane was controlled to retain the monoclonal antibodies in the capsules based on the diffusion experiments with standard proteins. T-flask culture showed cell densities of 8×107 cells/mL and 3×107 cells/mL, and MAb concentrations of 506 μg/mL and 109 μg/mL for encapsulated ATCC CRL-1606 and HB-8852, respectively. Two liter perfusion culture with encapsulated ATCC HB-8852 was performed to enhance the MAb production. The MAb production of the encapsulated hybridoma increased considerably comparing to the culture using silicone tubing for oxygen transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号