首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of external sensory organs on the notum of Drosophila is promoted by the proneural genes achaete and scute. Their activity defines proneural cell clusters in the wing imaginal disc. Ectopic expression, under control of the GAL4 system, of the proneural gene lethal of scute (l'sc) causes the development of ectopic bristles. Persistent ectopic expression of l'sc is not sufficient to impose a neural fate on any given cell. This implies that mutual inhibition, mediated by the Notch signaling pathway, occurs among the cells of the ectopic proneural cluster. Consequently, the dominant, quantifiable phenotype associated with ectopic expression of l'sc is modified by mutations in genes known to be involved in neurogenesis. This phenotype has been utilized to screen for dominant enhancers and suppressors that modify the number of ectopic bristles. In this way, about 100 000 progeny of EMS or X-ray-treated flies have been analyzed to identify autosomal genes involved in regulation of the neural fate. In addition 1200 chromosomes carrying lethal P-element insertions were screened for modifiers. Besides mutations in genes expected to modify the phenotype, we have isolated mutations in six genes not known so far to be involved in neurogenesis. Received: 20 September 1997 / Accepted: 8 October 1997  相似文献   

2.
Bristles on the notum of many cyclorraphous flies are arranged into species-specific stereotyped patterns. Differences in the spatial expression of the proneural gene scute correlate with the positions of bristles in those species looked at so far. However, the examination of a number of genes encoding trans-regulatory factors, such as pannier, stripe, u-shaped, caupolican and wingless, indicates that they are expressed in conserved domains on the prospective notum. This suggests that the function of a trans-regulatory network of genes is relatively unchanged in derived Diptera, and that many differences are likely to be due to changes in cis-regulatory sequences of scute. In contrast, in Anopheles gambiae, a basal species with no stereotyped bristle pattern, the expression patterns of pannier and wingless are not conserved, and expression of AgASH, the Anopheles proneural gene, does not correlate in a similar manner with the bristle pattern. We discuss the possibility that independently acting cis-regulatory sequences at the scute locus may have arisen in the lineage giving rise to cyclorraphous flies.  相似文献   

3.
Summary The arrangement of bristles on a leg segment of the fruitflyDrosophila melanogaster was studied in various mutants that have abnormal numbers of bristles on this segment. Eighteen mutations at six different genetic loci were analyzed, plus five double or triple mutant combinations. Recessive mutations at theachaete-scute locus were found to affect distinct groups of bristles:achaete mutations remove mechanosensory bristles, whereasscute mutations remove mainly chemosensory bristles. Mechanosensory bristles remain uniformly spaced along the longitudinal axis unless their number decreases below a certain threshold, suggesting that spacing is controlled by cell interactions that cannot function when bristle cells are too far apart. Above a certain threshold, bristle spacing and alignment both become irregular, perhaps due to excessive force from these same interactions. Chemosensory bristles occupy definite positions that are virtually unaffected by removal of individual bristles from the array. Extra chemosensory bristles develop only near the six normal sites. At two of the six sites the multiple bristles tend to exhibit uniform longitudinal spacing — a property confined to mechanosensory bristles in wild-type flies. To explain the various mutant phenotypes the following scheme is proposed, with different mutations directly or indirectly affecting each step: (1) spots and stripes are demarcated within the pattern area, (2) one bristle cell normally arises within each spot, multiple bristle cells within each stripe, (3) incipient bristle cells inhibit neighboring cells from becoming bristle cells, and (4) the bristle cells within each stripe become aligned to form rows and then repel one another to generate uniform spacing.  相似文献   

4.
Summary We have analysed the role of the achaete-scute gene complex in the development of the pattern of campaniform sensilla on the wing blade of Drosophila. We show that the complete pattern results from the superimposition of two independent subpatterns, one of which depends on the achaete gene and the other on scute. The scute subpattern comprises several clusters of sensilla, most of which seem to require the presence of control regions located upstream of the transcribed region. This is in contrast with the pattern of scute-dependent bristles, most of which depends on control elements located downstream of the transcribed region.  相似文献   

5.
The development of external sensory organs on the notum of Drosophila is promoted by the proneural genes achaete and scute. Their activity defines proneural cell clusters in the wing imaginal disc. Ectopic expression, under control of the GAL4 system, of the proneural gene lethal of scute (l'sc) causes the development of ectopic bristles. Persistent ectopic expression of l'sc is not sufficient to impose a neural fate on any given cell. This implies that mutual inhibition, mediated by the Notch signaling pathway, occurs among the cells of the ectopic proneural cluster. Consequently, the dominant, quantifiable phenotype associated with ectopic expression of l'sc is modified by mutations in genes known to be involved in neurogenesis. This phenotype has been utilized to screen for dominant enhancers and suppressors that modify the number of ectopic bristles. In this way, about 100 000 progeny of EMS or X-ray-treated flies have been analyzed to identify autosomal genes involved in regulation of the neural fate. In addition 1200 chromosomes carrying lethal P-element insertions were screened for modifiers. Besides mutations in genes expected to modify the phenotype, we have isolated mutations in six genes not known so far to be involved in neurogenesis.  相似文献   

6.
P G Georgiev  T I Gerasimova 《Genetika》1990,26(7):1221-1229
The achaete-scute complex contains four homologous genes involved in formation of the central and periphery nervous system in Drosophila melanogaster. The achaete and scute mutations lead to reduction of bristles and hairs on head and thorax. We found mutations at three loci not analyzed earlier. The suppressor of scute mutations suppress phenotypic expression of the achaete and scute alleles. Mutations in two other genes, pseudoscute and microchaetae, induce bristles reduction, i.e. the changes typical of scute mutations. Possible role of these genes in development of nervous system is being discussed.  相似文献   

7.
We examine the effect of mutations in theextramacrochaetae (emc) gene on the positioning of macrochaetes on the notum ofDrosophila. We show that, inemc mutants, most of the precursor cells appear earlier than in wild-type individuals, consistent with an antagonizing effect ofemc on the action of the proneural genesachaete andscute. We also show that reducingemc function affects the position of three bristles and/or of their precursors, but has no marked effect on the positioning of the other bristles.  相似文献   

8.
9.
10.

Analyses of the pollen contents of the crop and intestine of 11 species of New Zealand Syrphidae . showed that small, sparsely haired hover‐flies with unbranched hairs, short, simple bristles, and a short proboscis had ingested at least 99% anemophilous pollens, and that larger, more hairy hover‐flies with pollen‐collecting hairs, long, spirally grooved bristles, and elongate mouthparts had ingested pollens almost exclusively from nectar‐bearing flowers. Pollen‐feeding behaviour was studied in one hairy species, the drone‐fly Eristalis tenax, and in one sparsely‐haired species, Melanostoma fasciatum. Using granulated charcoal as a substitute for pollen, it was found that in E. tenax particles trapped among the body hairs are combed off by the front and hind tibiae and transferred to pollen‐retaining bristles on the front and hind tarsi respectively. Particles retained among the front tarsal bristles are ingested directly from the bristles. Those retained by the hind tarsi are transferred in flight by leg‐scraping movements to the front tarsi, from which they are subsequently eaten. E. tenax also eats pollen directly from anthers. In M. fasciatum apparently all the pollen ingested is taken directly from anther lobes or stigmas. The few pollen grains that adhere to the body of this species are combed off by the front and hind tibiae and transferred to the front and hind tarsi, but are not retained there because the bristles are short and simple. The mouthparts, hairs, and bristles of E. tenax and M. fasciatum are illustrated. Drawings of leg movements associated with pollen collection and ingestion, and photographs showing leg scraping in E. tenax are included. Morphological similarities between drone‐flies and honey‐bees, previously regarded as the result of mimicry, can be explained by convergent evolution in response to similar food‐gathering behaviour. Probably the majority of Syrphidae, and also the related Acroceridae, collect pollen by means of branched or curly‐tipped hairs.  相似文献   

11.

Background  

The frizzled pathway in Drosophila has been studied intensively for its role in the development of planar polarity in wing hairs, thoracic bristles and ommatidia. Selected cells in the arista (the terminal segment of the antenna) elaborate a lateral projection that shares characteristics with both hairs and bristles.  相似文献   

12.
Bristles on the notum of many cyclorraphous flies are arranged into species-specific stereotyped patterns. The positions of bristles correlate with differences in the spatial expression of the scute (sc) gene in those species examined so far. However, a major upstream activator of scute, Pannier (Pnr), is expressed in a conserved domain over the entire medial notum. Here we examine the expression patterns in Calliphora vicina of stripe (sr), u-shaped (ush), caupolican (caup) and wingless (wg), genes known to modify the activity of Pnr or to act downstream of Pnr in Drosophila. We find that, with minor differences, their expression patterns are conserved. This suggests that the function of a trans-regulatory network of genes is relatively unchanged in derived Diptera and that many differences are likely to be due to changes in cis-regulatory sequences of scute.  相似文献   

13.
Summary Mutations conferring resistance to low levels of kanamycin in Escherichia coli have been mapped at 3 locations: the unc locus (min. 83), a locus we have designated, kanA (min. 72), close to strA (rpsL), and a locus at min. 86.5 previously discovered by Plate (1976) that we have designated ecfB. The unc and ecfB mutations are associated with defects in energy metabolism, while mutations at kanA may be in the gene coding for ribosomal protein S12 (rpsL). The three types of mutations cause cross resistance to a number of different aminoglycoside antibiotics and the effects of the mutations are cumulative in combination.  相似文献   

14.
Ren N  He B  Stone D  Kirakodu S  Adler PN 《Genetics》2006,172(3):1643-1653
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular- and tissue-level morphogenesis. The developing hairs are filled with F-actin and microtubules and the activity of these cytoskeletons is important for hair morphogenesis. On the basis of mutant phenotypes several genes have been identified as playing a key role in stimulating hair formation. Mutations in shavenoid (sha) (also known as kojak) result in a delay in hair morphogenesis and in some cells forming no hair and others several small hairs. We report here the molecular identification and characterization of the sha gene and protein. sha encodes a large novel protein that has homologs in other insects, but not in more distantly related organisms. The Sha protein accumulated in growing hairs and bristles in a pattern that suggested that it could directly interact with the actin cytoskeleton. Consistent with this mechanism of action we found that Sha and actin co-immunopreciptated from wing disc cells. The morphogenesis of the hair involves temporal control by sha and spatial control by the genes of the frizzled planar polarity pathway. We found a strong genetic interaction between mutations in these genes consistent with their having a close but parallel functional relationship.  相似文献   

15.
srfA is a locus required for the production of the lipopeptide antibiotic surfactin. This locus is also necessary for efficient sporulation and competence development. Mutations in the 5′ portion of the srfA operon affect all three of these processes, whereas mutations in the 3′ portion of srfA only affect sporulation and surfactin production. Analysis of the proteins encoded by the srfA locus revealed seven large domains which are likely to be responsible for the activation and binding of the seven amino acids of surfactin. Identification of the amino acid that is activated by the srfA domains was determined by amino acid-dependent pyrophosphate exchange reactions on partially purified cell extracts of strains carrying different srfA mutations. These results indicate colin-earity between the order of the domains in the srfA locus and the amino acid sequence of surfactin. The minimal genetic element of srfA required for the establishment of competence was shown to be the 5′ region of the second open reading of srfA, which encodes the valine activation domain. This portion of srfA, when cloned on a plasmid, complemented the competence deficiency of a srfA deletion mutant in trans.  相似文献   

16.
Summary Mutations at a locus on chromosome II of D. melanogaster suppressing position-effect variegation mutations have been identified which display recessive butyrate sensitivity. Survival of homozygous mutant flies is significantly reduced on medium containing sodium n-butyrate. The butyrate sensitive suppressor mutations are further characterized by recessive female sterility and reduced survival of homozygotes. Complementation analysis showed their allelism. The locus of these mutations, Su-var (2) 1, has been localized to 40.5±0.2 and, by using interstitial duplications, to region 31CD on the cytogenetic map. Moreover, the mutant alleles of the Su-var (2) 1 locus display a lethal interaction with the heterochromatic Y chromosome. The presence or absence of a Y chromosome in males or females has a strong influence on the viability of homozygous or transheterozygous suppressor flies. All the genetic properties of Su-var (2) 1 mutants suggest strongly that this locus affects chromosome condensation.  相似文献   

17.
Abstract

Larvae of the New Zealand culicid species Opifex fuscus and Aedes australis have previously been reported to show dimorphism in the structure of their labral brushes, some larvae having pectinate bristles and others only simple hairs. In the scanning electron microscope all larvae showed some degree of pectination of hairs in these brushes. There is also a gradation in the pectination. Some bristles are only sparsely pectinate; because the dimensions of their teeth are close to the limit of resolution by the compound microscope, the pectination had previously gone undetected. The mouthparts of both species are intermediate in character between those typical of filter-feeding larvae and those typical of browsing larvae. The SEM appearance of maxillary sensoria and bristles on the ventral surfaces of the mandibular brushes is described; the latter bristles comb food particles out of the labral brushes and towards the mouth. Features of the mouthparts are illustrated with scanning electron micrographs.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号