首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent present in green tea, is a promising chemopreventive agent. We recently showed that green tea polyphenols exert remarkable preventive effects against prostate cancer in a mouse model and many of these effects are mediated by the ability of polyphenols to induce apoptosis in cancer cells [Proc. Natl. Acad. Sci. USA 98 (2001) 10350]. Earlier, we showed that EGCG causes a G0/G1 phase cell cycle arrest and apoptosis of both androgen-sensitive LNCaP and androgen-insensitive DU145 human prostate carcinoma cells, irrespective of p53 status [Toxicol. Appl. Pharmacol. 164 (2000) 82]. Here, we provide molecular understanding of this effect. We tested a hypothesis that EGCG-mediated cell cycle dysregulation and apoptosis is mediated via modulation of cyclin kinase inhibitor (cki)-cyclin-cyclin-dependent kinase (cdk) machinery. As shown by immunoblot analysis, EGCG treatment of LNCaP and DU145 cells resulted in significant dose- and time-dependent (i) upregulation of the protein expression of WAF1/p21, KIP1/p27, INK4a/p16, and INK4c/p18, (ii) down-modulation of the protein expression of cyclin D1, cyclin E, cdk2, cdk4, and cdk6, but not of cyclin D2, (iii) increase in the binding of cyclin D1 toward WAF1/p21 and KIP1/p27, and (iv) decrease in the binding of cyclin E toward cdk2. Taken together, our results suggest that EGCG causes an induction of G1 phase ckis, which inhibits the cyclin-cdk complexes operative in the G0/G1 phase of the cell cycle, thereby causing an arrest, which may be an irreversible process ultimately leading to apoptotic cell death. This is the first systematic study showing the involvement of each component of cdk inhibitor-cyclin-cdk machinery during cell cycle arrest and apoptosis of human prostate carcinoma cells by EGCG.  相似文献   

2.
3.
Emerging evidence provide credible support in favor of the potential role of bioactive products derived from ingesting cruciferous vegetables such as broccoli, brussel sprouts, cauliflower and cabbage. Among many compounds, 3,3'-diindolylmethane (DIM) is generated in the acidic environment of the stomach following dimerization of indole-3-carbinol (I3C) monomers present in these classes of vegetables. Both I3C and DIM have been investigated for their use in preventing, inhibiting, and reversing the progression of cancer - as a chemopreventive agent. In this review, we summarize an updated, wide-ranging pleiotropic anti-tumor and biological effects elicited by DIM against tumor cells. It is unfeasible to point one single target as basis of cellular target of action of DIM. We emphasize key cellular and molecular events that are effectively modulated in the direction of inducing apoptosis and suppressing cell proliferation. Collectively, DIM orchestrates signaling through Ah receptor, NF-κB/Wnt/Akt/mTOR pathways impinging on cell cycle arrest, modulation of key cytochrome P450 enzymes, altering angiogenesis, invasion, metastasis and epigenetic behavior of cancer cells. The ability of DIM to selectively induce tumor cells to undergo apoptosis has been observed in preclinical models, and thus it has been speculated in improving the therapeutic efficacy of other anticancer agents that have diverse molecular targets. Consequently, DIM has moved through preclinical development into Phase I clinical trials, thereby suggesting that DIM could be a promising and novel agent either alone or as an adjunct to conventional therapeutics such as chemo-radio and targeted therapies. An important development has been the availability of DIM formulation with superior bioavailability for humans. Therefore, DIM appears to be a promising chemopreventive agent or chemo-radio-sensitizer for the prevention of tumor recurrence and/or for the treatment of human malignancies.  相似文献   

4.
5.
Isoliquiritigenin (ISL) inhibits ErbB3 signaling in prostate cancer cells   总被引:2,自引:0,他引:2  
Isoliquiritigenin (ISL), a flavonoid found in licorice, shallot, and bean sprouts, has been identified as a potent anti-tumor promoting agent. We previously demonstrated that ISL reduces cell proliferation and induces apoptosis in DU145 human prostate cancer cells and MAT-LyLu (MLL) rat prostate cancer cells. Overexpression of members of the ErbB receptor family is a frequently observed event in several human cancers, and ErbB receptors currently constitute the primary targets of anticancer strategies. In order to elucidate the mechanisms underlying the ISL regulation of prostate cancer cell proliferation, the present study attempted to determine whether ISL inhibits heregulin (HRG)-beta-induced ErbB3 signaling. DU145 and MLL cells were cultured in serum-free medium with ISL and/or HRG-beta. Exogenous HRG-beta alone was shown to effect an increase in the numbers of viable cells, whereas HRG-beta did not counteract the ISL-induced growth inhibition. ISL reduced the protein and mRNA levels of ErbB3 in a dose-dependent manner, but exerted no effect on HRG protein levels. Immunoprecipitation/Western blot studies indicated that ISL inhibited the HRG-beta-induced tyrosine phosphorylation of ErbB3, the recruitment of the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K) to ErbB3, and Akt phosphorylation in DU145 cells. These results indicate that ISL inhibits the proliferation of prostate cancer cells, at least in part, via the inhibition of ErbB3 signaling and the PI3K/Akt pathway.  相似文献   

6.
7.
Paeonol (Pae) is the main active ingredient from the root bark of Paeonia moutan and the grass of Radix Cynanchi Paniculati. Numerous reports indicate that Pae effectively inhibits several types of cancer lines. In this study, we report that Pae hinders prostate cancer growth both in vivo and in vitro. Human prostate cancer lines DU145 and PC-3 were cultured in the presence of Pae. The xenograft tumor in mice was established by subcutaneous injection of DU145 cells. Cell growth was measured by MTT, and the apoptosis was detected by the flow cytometry. Expression of Bcl-2, Bax, Akt, and mTOR were tested by western blotting assay. DU145 and PC-3 showed remarkable sensitivity to Pae, and exposure to Pae induced dose-and time-dependent growth inhibitory responses. Moreover, treatment of Pae promoted apoptosis and enhanced activities of caspase-3, caspase-8, and caspase-9 in DU145. Further work demonstrated Pae reduced expression of Bcl-2 and increased expression of Bax in DU145. Interestingly, we observed that Pae significantly decreased phosphorylated status of Akt and mTOR, and inhibitory effects of Pae and PI3K/Akt inhibitor on DU145 proliferation were synergistic. Finally, we confirmed that oral administration of Pae to the DU145 tumor-bearing mice significantly lowered tumor cell proliferation and led to tumor regression. Pae possesses inhibitory effects on prostate cancer cell growth both in vitro and in vivo, and the anti-proliferative effect may be closely related to its activation of extrinsic and intrinsic apoptotic pathway and inhibition of the PI3K/Akt pathway.  相似文献   

8.
Genetic alterations and/or deletion of the tumor suppressor gene PTEN/MMAC/TEP1 occur in many types of human cancer including prostate cancer. We describe the production of monoclonal antibody against recombinant human PTEN and the study of PTEN gene and protein expression in three commercially available human prostate cancer cell lines, PC-3, LNCaP, and DU 145. Northern blotting analyses showed that LNCaP and DU145 but not PC-3 cells expressed PTEN mRNA. However, Western blotting analyses using a monoclonal antibody against PTEN demonstrated the expression of PTEN protein in DU145 but not LNCaP cells. In DU145 cells, PTEN expression at both the mRNA and protein levels inversely correlated with serum concentrations and levels of PKB/Akt phosphorylation. In addition, the basal activity of PKB/Akt as indicated by level of phosphorylation was higher in prostate cancer cells which do not express PTEN than that in the cells expressing wild type PTEN. Thus, PTEN may play a critical role in regulating cellular signaling in prostate cancer cells.  相似文献   

9.
The treatment options available for prostate cancer are limited because of its resistance to therapeutic agents. Thus, a better understanding of the underlying mechanisms of the resistance of prostate cancer will facilitate the discovery of more efficient treatment protocols. Human phosphatidylethanolamine-binding protein 4 (hPEBP4) is recently identified by us as an anti-apoptotic molecule and a potential candidate target for breast cancer treatment. Here we found the expression levels of hPEBP4 were positively correlated with the severity of clinical prostate cancer. Furthermore, hPEBP4 was not expressed in TRAIL-sensitive DU145 prostate cancer cells, but was highly expressed in TRAIL-resistant LNCaP cells, which show highly activated Akt. Interestingly, hPEBP4 overexpression in TRAIL-sensitive DU145 cells promoted Akt activation but inhibited ERK1/2 activation. The hPEBP4-overexpressing DU145 cells became resistant to TRAIL-induced apoptosis consequently, which could be reversed by PI3K inhibitors. In contrast, silencing of hPEBP4 in TRAIL-resistant LNCaP cells inhibited Akt activation but increased ERK1/2 activation, resulting in their sensitivity to TRAIL-induced apoptosis that was restored by the MEK1 inhibitor. Therefore, hPEBP4 expression in prostate cancer can activate Akt and deactivate ERK1/2 signaling, leading to TRAIL resistance. We also demonstrated that hPEBP4-mediated resistance to TRAIL-induced apoptosis occurred downstream of caspase-8 and at the level of BID cleavage via the regulation of Akt and ERK pathways, and that hPEBP4-regulated ERK deactivation was upstream of Akt activation in prostate cancer cells. Considering that hPEBP4 confers cellular resistance to TRAIL-induced apoptosis and is abundantly expressed in poorly differentiated prostate cancer, silencing of hPEBP4 suggests a promising approach for prostate cancer treatment.  相似文献   

10.
Radioresistance is a major challenge in prostate cancer (CaP) radiotherapy (RT). In this study, we investigated the role and association of epithelial–mesenchymal transition (EMT), cancer stem cells (CSCs) and the PI3K/Akt/mTOR signaling pathway in CaP radioresistance. We developed three novel CaP radioresistant (RR) cell lines (PC-3RR, DU145RR and LNCaPRR) by radiation treatment and confirmed their radioresistance using a clonogenic survival assay. Compared with untreated CaP-control cells, the CaP-RR cells had increased colony formation, invasion ability and spheroid formation capability (P<0.05). In addition, enhanced EMT/CSC phenotypes and activation of the checkpoint proteins (Chk1 and Chk2) and the PI3K/Akt/mTOR signaling pathway proteins were also found in CaP-RR cells using immunofluorescence, western blotting and quantitative real-time PCR (qRT-PCR). Furthermore, combination of a dual PI3K/mTOR inhibitor (BEZ235) with RT effectively increased radiosensitivity and induced more apoptosis in CaP-RR cells, concomitantly correlated with the reduced expression of EMT/CSC markers and the PI3K/Akt/mTOR signaling pathway proteins compared with RT alone. Our findings indicate that CaP radioresistance is associated with EMT and enhanced CSC phenotypes via activation of the PI3K/Akt/mTOR signaling pathway, and that the combination of BEZ235 with RT is a promising modality to overcome radioresistance in the treatment of CaP. This combination approach warrants future in vivo animal study and clinical trials.  相似文献   

11.
Peptidylglycine alpha-amidating monooxygenase (PAM) converts inactive terminal-glycine prohormones into their activated alpha-amidated forms. PAM is thought to play a role in the development of antiandrogen drug resistance in prostate cancer (CaP) through PAMactivated autocrine growth. On the basis of the previous finding that many lung cancer cell lines excrete PAM into their culture media, this study investigates PAM levels in media collected from human CaP cell line cultures. Androgen-independent DU145 and PC-3 prostate cancer cell lines exhibited readily detectable levels of PAM activity in extracts and media, whereas the androgen-dependent LNCaP cell line showed little or no activity. Because of the much larger volume of media versus cell extracts, more than 90% of the total PAM activity was located in the media for both the PC-3 and DU145 cell lines, providing a readily accessible source of CaP PAM. A simple, scalable method to obtain PAM from the culture media of androgen-independent human prostate cancer cell lines is described in this article. This approach provides a much easier means of collecting CaP-derived PAM than previously described cell fractionation procedures and should facilitate the investigations of the role and targeting of PAM in hormone-independent CaP.  相似文献   

12.
Previous studies from our laboratory have shown anti-proliferative and pro-apoptotic effects of 3,3'-diindolylmethane (DIM) through regulation of Akt and androgen receptor (AR) in prostate cancer cells. However, the mechanism by which DIM regulates Akt and AR signaling pathways has not been fully investigated. It has been known that FOXO3a and glycogen synthase kinase-3beta (GSK-3beta), two targets of activated Akt, interact with beta-catenin, regulating cell proliferation and apoptotic cell death. More importantly, FOXO3a, GSK-3beta, and beta-catenin are all AR coregulators and regulate the activity of AR, mediating the development and progression of prostate cancers. Here, we investigated the molecular effects of B-DIM, a formulated DIM with higher bioavailability, on Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling in hormone-sensitive LNCaP and hormone-insensitive C4-2B prostate cancer cells. We found that B-DIM significantly inhibited the phosphorylation of Akt and FOXO3a and increased the phosphorylation of beta-catenin, leading to the inhibition of cell growth and induction of apoptosis. We also found that B-DIM significantly inhibited beta-catenin nuclear translocation. By electrophoretic mobility shift and chromatin immunoprecipitation assays, we found that B-DIM inhibited FOXO3a binding to the promoter of AR and promoted FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive prostate cancer cells. These results suggest that B-DIM-induced cell growth inhibition and apoptosis induction are partly mediated through the regulation of Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling. Therefore, B-DIM could be a promising non-toxic agent for possible treatment of hormone-sensitive but most importantly hormone-refractory prostate cancers.  相似文献   

13.
14.
Lu W  Lin C  Roberts MJ  Waud WR  Piazza GA  Li Y 《PloS one》2011,6(12):e29290
The Wnt/β-catenin signaling pathway is important for tumor initiation and progression. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for Wnt/β-catenin signaling and represents a promising anticancer target. Recently, the antihelminthic drug, niclosamide was found to inhibit Wnt/β-catenin signaling, although the mechanism was not well defined. We found that niclosamide was able to suppress LRP6 expression and phosphorylation, block Wnt3A-induced β-catenin accumulation, and inhibit Wnt/β-catenin signaling in HEK293 cells. Furthermore, the inhibitory effects of niclosamide on LRP6 expression/phosphorylation and Wnt/β-catenin signaling were conformed in human prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. Moreover, we showed that the mechanism by which niclosamide suppressed LRP6 resulted from increased degradation as evident by a shorter half-life. Finally, we demonstrated that niclosamide was able to induce cancer cell apoptosis, and displayed excellent anticancer activity with IC(50) values less than 1 μM for prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. The IC(50) values are comparable to those shown to suppress the activities of Wnt/β-catenin signaling in prostate and breast cancer cells. Our data indicate that niclosamide is a unique small molecule Wnt/β-catenin signaling inhibitor targeting the Wnt co-receptor LRP6 on the cell surface, and that niclosamide has a potential to be developed a novel chemopreventive or therapeutic agent for human prostate and breast cancer.  相似文献   

15.
One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation in all three prostate cancer cell lines. The IC(50) values after 24h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 microg/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation, (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 microg/ml. In cell cycle analysis, TRF (10-40 microg/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.  相似文献   

16.
17.
Parathyroid hormone-related protein (PTHrP) possesses a variety of physiological and developmental functions and is also known to facilitate the progression of many common cancers, notably their skeletal invasion, primarily by increasing bone resorption. The purpose of this study was to determine whether PTHrP could promote epithelial-to-mesenchymal transition (EMT), a process implicated in cancer stem cells that is critically involved in cancer invasion and metastasis. EMT was observed in DU 145 prostate cancer cells stably overexpressing either the 1-141 or 1-173 isoform of PTHrP, where there was upregulation of Snail and vimentin and downregulation of E-cadherin relative to parental DU 145. By contrast, the opposite effect was observed in PC-3 prostate cancer cells where high levels of PTHrP were knocked-down via lentiviral siRNA transduction. Increased tumor progression was observed in PTHrP-overexpressing DU 145 cells while decreased progression was observed in PTHrP-knockdown PC-3 cells. PTHrP-overexpressing DU 145 formed larger tumors when implanted orthoptopically into nude mice and in one case resulted in spinal metastasis, an effect not observed among mice injected with parental DU 145 cells. PTHrP-overexpressing DU 145 cells also caused significant bone destruction when injected into the tibiae of nude mice, while parental DU 145 cells caused little to no destruction of bone. Together, these results suggest that PTHrP may work through EMT to promote an aggressive and metastatic phenotype in prostate cancer, a pathway of importance in cancer stem cells. Thus, continued efforts to elucidate the pathways involved in PTHrP-induced EMT as well as to develop ways to specifically target PTHrP signaling may lead to more effective therapies for prostate cancer.  相似文献   

18.
Dual roles of E-cadherin in prostate cancer invasion   总被引:6,自引:0,他引:6  
The role(s) of E-cadherin in tumor progression, invasion, and metastasis remains somewhat enigmatic. In order to investigate various aspects of E-cadherin biological activity, particularly in prostate cancer progression, our laboratory cloned unique subpopulations of the heterogeneous DU145 human prostatic carcinoma cell line and characterized their distinct biological functions. The data revealed that the highly invasive, fibroblastic-like subpopulation of DU145 cells (designated DU145-F) expressed less than 0.1-fold of E-cadherin protein when compared to the parental DU145 or the poorly invasive DU145 cells (designated DU145-E). Experimental disruption of E-cadherin function stimulated migration and invasion of DU145-E and other E-cadherin-positive prostate cancer cell lines, but did not affect the fibroblastic-like DU145-F subpopulation. Within the medium of parental DU145 cells, the presence of an 80 kDa E-cadherin fragment was detected. Subsequent functional analyses revealed the stimulatory effect of this fragment on the migratory and invasive capability of E-cadherin-positive cells. These results suggest that E-cadherin plays an important role in regulating the invasive potential of prostate cancer cells through an unique paracrine mechanism.  相似文献   

19.
Toll-like receptors (TLRs) are widely expressed in immune cells and play a crucial role in many aspects of the immune response. Although some types of TLRs are also expressed in cancer cells, the effects and mechanisms of TLR signaling in cancer cells have not yet been fully elucidated. In the present study, we analyzed the effects of polyinosinic-polycytidylic acid [poly(I:C)], a TLR3 ligand, on three TLR3-expressing human prostate cancer cell lines (LNCaP, PC3, and DU145). We then further characterized the underlying mechanisms, focusing on the poly(I:C)-sensitive LNCaP cell line. Poly(I:C) significantly reduced the viability of LNCaP cells TLR3 and endosome dependently. One mechanism for the antitumor effect was caspase-dependent apoptosis, and another mechanism was poly(I:C)-induced growth arrest. Cell survival and proliferation of LNCaP cells depended on the PI3K/Akt pathway, and PI3K/Akt inhibitors induced apoptosis and growth arrest similar to poly(I:C) treatment. Additionally, poly(I:C) treatment caused dephosphorylation of Akt in LNCaP cells, but transduction of the constitutively active form of Akt rendered LNCaP cells resistant to poly(I:C). Immunoblot analysis of proliferation- and apoptosis-related molecules in poly(I:C)-treated LNCaP cells revealed participation of cyclinD1, c-Myc, p53, and NOXA. Interestingly, poly(I:C) treatment of LNCaP cells was accompanied by autophagy, which was cytoprotective toward poly(I:C)-induced apoptosis. Together, these findings indicate that TLR3 signaling triggers apoptosis and growth arrest of LNCaP cells partially through inactivation of the PI3K/Akt pathway and that treatment-associated autophagy plays a cytoprotective role.  相似文献   

20.
ADAM17是金属蛋白酶家族(ADAMs)成员之一,研究发现ADAM17可以通过水解细胞表面蛋白的胞外结构域导致肿瘤细胞的增殖和转移.本课题前期研究结果显示,与LNCap细胞相比,ADAM17在DU145细胞中高表达,且与细胞增殖相关.为了研究ADAM17与前列腺癌细胞增殖相关基因p27表达的关系及调控机制,我们采用RNAi技术下调ADAM17的表达,加入PMA(一种ADAM17的激活剂)上调ADAM17的表达,通过细胞计数和CCK-8方法检测细胞增殖,RT-PCR检测p27mRNA的表达,Western印迹检测ADAM17的表达;进一步阻断EGFR和PI3K/Akt信号转导,RT-PCR方法检测p27mRNA的表达,Western印迹检测ADAM17、EGFR、pEGFR、Akt和pAkt的表达.结果显示ADAM17的表达与前列腺癌细胞的增殖呈正相关(P0.05);p27mRNA的表达与ADAM17的表达呈负相关(P0.05);分别阻断EGFR和PI3K/Akt信号转导通路,同时使ADAM17表达增加,与对照组(单独PMA处理组)相比,p27mRNA的表达均增加(P0.05).提示ADAM17调控前列腺癌细胞增殖相关基因p27表达是通过EGFR-PI3K/Akt信号通路实现的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号